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ABSTRACT 

This dissertation discusses the nim game in detail. Nim game is a traditional two

person game where players alternatively take turns in removing counters (objects) from 

the piles of counters. The purposes of this study are to identify different ways in 

winning the nim game mathematically, to modify the standard nim game and also use 

game trees in winning the nim game. The number of counters use to play this game in 

this research vary from one to thirty and the number of piles are within the range from 

one to four. In determining the winning ways for the nim game, a few methods are 

used. namely the binary concept, XOR (bitwise-exclusive-or) and game trees. Binary 

concept includes changing decimal numbers to binary numbers and the other way 

round. XOR is a concept where binary numbers are added without carry. This concept 

is used to determine the winning position of the game. Modifications are done to the 

standard nim game in order to make it a game of chance. In this dissertation, the nim 

game is firstly modified by blocking certain moves and secondly by modifying the coin 

game. These modifications allow equal chances of both the players to win the game. 

Finally, game trees are illustrations formed to represent the nim game with small 

amount of piles and counters. The winner of the game is the last player who removes 

the counter except for one variation discussed which is the misere nim. In conclusion, 

all the objectives of this dissertation have been achieved. These include obtaining 

different winning methods mathematically for the nim game, successfully modifying 

the nim game to obtain a game of chance and finally winning the nim game through 

game trees. 
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RAHSIA DI SEBALIK PERMAINAN NIM 

ABSTRAK 

Disertasi ini membincangkan permainan nim secara mendalam. Permainan nim 

adalah suatu permainan tradisional di antara dua orang di mana pemain-pemain 

mengambil sebilangan objek (batu, guli dan sebagainya) daripada jumlah objek yang 

dilonggokkan. Tujuan kajian ini dijalankan adalah untuk mengenalpasti kaedah yang 

digunakan dalam memenangi permainan nim dengan menggunakan konsep matematik, 

mengubahsuai permainan nim yang sedia ada dan menggunakan garnbar rajah pokok 

bagi memenangi permainan nim. Bilangan objek yang digunakan di dalam kajian ini 

adalah di antara satu bingga tiga puluh dan bilangan longgokkan objek-objek ini adalah 

di antara julat satu hingga empat. Beberapa konsep diperkenalkan bagi memenangi 

permainan nim iaitu, konsep binari, XOR (bitwise-exclusive-or) dan gambar rajah 

pokok. Konsep binari yang digunakan ialah penukaran nombor asas sepuluh kepada 

nombor asas dua dan juga sebaliknya. XOR pula adalah hasil tambah nombor-nombor 

binari tanpa baki. Konsep ini digunakan bagi menjanakan kaedah bagi memenangi 

permainan nim secara matematik. Pengubahsuaian dilakukan ke atas permainan nim 

untuk menukarkan sifatnya yang 'sentiasa boleh menang' kepada perrnainan yang 

boleh dimenangi secara adil dan ia dilakukan melalui dua cara. Yang pertama adalah 

melalui kaedah memblok sesetengah nombor dan kedua melalui pengubahsuaian 'coin 

game'. Pengubahsuaian ini dilakukan untuk memberlkan peluang yang sarna bagi 

kedua-dua pemain memenangi permainan ini. Garnbarajah pokok digunakan bagi 

permainan nim dengan jumlah objek dan longgokkan yang kecil. Pemenang bagi 

permainan ini adalah pemain yang mengambil objek yang terakhir daripada 

longgokkan kecuali satu variasi permainan nim yang dibincangkan iaitu misere nim 

yang pemenangnya adalah pemain yang tidak mengambil objek terakhir. Sebagai 

kesimpulan, kesemua objektif bagi disertasi ini dicapai iaitu, kaedah matematik 

memenangi permainan nim, mengubahsuai permainan nim kepada bentuk yang lebih 

menarik dan memenangi permainan nim menggunakan gambar rajah pokok. 
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CHAPTERl 

INTRODUCTION 

1.1 INTRODUCTION 

Whether or not Alain Resnais' movie, L'annee der niere a Marienbad (Last Year in 

Marienbad) hit the box office in the year 1962, it sure did hit something into 

mathematicians of that time. In that movie, a game with matches was played (Final 

Answers, 2005). The game which was played in a different version managed to capture 

the hearts of mathematicians who till today are doing researches about the game. The 

name of the game was nim and through that movie the nim game gained its fame. 

The name is probably derived from German 'nimm' which means "take!" Some 

people have noted that turning the word NIM results in WIN, but this is probably just a 

coincidence (Nim, 2005). According to Gough (1999), a game needs to have two or 

more players, who take turns each competing to achieve a winning situation of some 

kind, each able to exercise some choice about how to move any time through the 

playing. The nim game does fulfill all the descriptions of a game set by Gough. 
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The following discussion shows how the nim game works. There are j heaps, 

each with ii, i2, ... , ij pebbles in each heap. The first player chooses a pile and removes 

one up to all the pebbles in that particular pile. According to Brauldi, players may 

choose only one pile at a time to remove objects from. This process continues until the 

last pebble is removed - and the player who does so is the winner. This is the standard 

way of playing the nim game. Other than pebbles, other objects can be used to play the 

nim game. These include matches, buttons, coins and more. These objects are known 

as counters. Some do not use objects as they prefer playing the nim game manually, 

which is to draw lines and cancel off the lines as a symbol that the counter has been 

removed. 

These are some ways how the objects for a standard nim game can be arranged: 

Figure 1.1 

III 
I I 1/ 
I I I I I 

The classical arrangements of a nim game. 

Figure 1.2 The nim game with one pile. 



Figure 1.3 

00000 
000000 

• 
Nim game with a few piles. 

00000 
000000 

o - the original number of counters that have been drawn 

o - the counters that has been cancelled off as a sign of removing it from the 

pile 

Figure 1.4 Playing nim the manual way. 

3 

The winner of a nim game can be pre-determined. Due to this extra feature, the 

nim game is known as a game of no chance. This is because, the nim game carries a 

mathematical concept in winnning. Therefore, if either one of the pJayer knows this 

concept, he or she will definitely win at each game causing absolutely no chance for 

the opponent to win. We can say that the nim game is a mathematical game of strategy 

as it involves knowledge of mathematical concepts to win the game. The mathematical 

concept used is the binary number system. Knowing the application of this concept 

ensures a player the winning position as long as certain conditions are fulfilled. 
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1.2 NIM GAME AS A GAME OF CHANCE 

Nim game is a game of mathematical concept and a game of no chance. In a game of 

no chance, a player who understands the underlying concept of nim game can surely 

win the game ifhe or she is the first player or he or she is playing against someone who 

does not know the concept. Therefore, mathematicians have come up with ways to 

modify the nim game of no chance into a nim game of chance. After these 

modifications, winning the nim game purely depends on the player and not the 

mathematical concept. These are some of the modifications: 

8. Blocking Nim 

The basic rules for the modified version of this nim game is the same. In this game of 

blocking nim, two players take alternate turns in playing. The name of this modified 

nim is given based on the procedures that we do in the game. This blocking nim game 

is not like any other nim game because it does not require counters but it is played with 

paper and pencil. This game which has been modified is played only with one pile. 

This is how the game is played. A number will be given at the beginning of the 

game. That number is reduced through subtraction. In the process of reducing the 

number, the opponent does not allow it by blocking the numbers. This game ends when 

either one of the player is incapable of moving or the total number given in the 

beginning becomes negative. Other than that, there are also a few more conditions and 
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assumptions made in this game that is discussed in this dissertation. The winner of this 

game is the player who manages to subtract the last number. Through this brief 

explanation of the blocking nim, we can see that it is not a game of no chance because 

there are blocks and these blocks are not always the same. 

b. Coin Game 

This modified version on the nim game comes from the original version of the coin 

game. Unlike the blocking nim game, this game is played with counters and are put in 

piles. As usual, two players alternately take turns in removing counters from the piles. 

What differentiates this modified nim game from the standard one is that in this game, 

the number of counters to be removed at each turn is determined by both the players. 

This is how the modified coin game is played. Two pairs of integers are chosen 
") . 
, ". 

where in each pair there are two different numbers. The first pair belongs to the present 

player while the second pair belongs to his opponent. The present player chooses a pile 

of counters and tells the opponent. Then, both the players write down a number which 

is in between the pairs of integers assigned to them. This is a secretive act. When they 

have written it down, they reveal the numbers to each other. Then, the numbers are 

added together. If the number is more than the number of counters in the pile, the 

present player removes the whole pile. If the number of counters are more than the 

addition of both the integers, the number of counters removed are exactly the addition 

of both the integers. When it comes to the next round, the current opponent will be the 
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present player so he will have the first pair of integers and his opponent the second pair 

of integers. 

The details of this modified coin game are further discussed in this dissertation. 

Through the brief introduction of the game, we can say that this modified version of 

coin game is really a game of chance. This is because both players decide the amount 

of counters to be removed together. 

1.3 BINARY CONCEPT IN NIM GAME 

We use the decimal number system as we have ten fingers. The main advantage of this 

system is that it uses place-value notation (or positional notation) as the value of each 

figure depends on its position (Number Systems, 2002). However, there are other 

number systems too. The number system that will be used to analyze the nim game is 

the binary system. Binary numbers are numbers which are written in base 2. 

Therefore, the symbols involved in writing binary numbers are 0 and 1. The theoretical 

mechanism which is used to make computers work is also based on the binary number 

system (Number Systems, 2002). 

In the year 1902, C.L. Bouton from Harvard University discovered the way 

where standard nim game can be won using a mathematical concept. This concept 

involves the application of binary numbers. Winning the nim game with the binary 

concept has its own strategy. The strategy used to win the game is to make certain 
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calculations in base 2. The game is used as a way of introducing some initial concepts 

about number systems (Number Systems. 2002). 

The ways binary numbers are used in winning the nim game will be further 

discussed in this dissertation. 

1.4 GAME TREES IN NIM GAME 

Other than the application of binary numbers in winning the nim game, game trees are 

another alternative to winning the nim game. Game trees can be used for nim games 

that involve a small number of counters and piles. This method is usually taught to 

children who have not learnt binary concepts but do know the nim game. Figure 1.5 

portrays an example of a typical game tree. 

Now, with the game tree, we can analyze the possible moves that can be made. 

This game tree represents a nim game of three piles and each pile has one, two and two 

counters respectively which can be written as (1, 2, 2). The first player has three 

options in removing his counters. He can remove one or two counters in his first move 

which will leave him with either (1, 2), (2, 2) or (1, 1,2) counters. The pile positions 

(1, 2) and (1, 1, 2 ) are at losing position because the opponent has the power to 

remove counters where at least one of the possible arrangements after the counters are 

being removed can cause the first player to lose. 
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From the game tree from Figure 1.5, we can see the usage of two different 

colours. The numbers in black represent the winning position for the first player 

whereas the numbers in red are the player's losing position. The benefits attained from 

playing with a game tree is that a particular player has the chance of having a view of 

the whole game even before playing the game and as he's playing the game he enables 

himself to make careful moves so that he's always at the winning position 

• - losing position for the first player 

• - winning position of the first player. 

Figure 1.5 Game tree in solving the nim game. 
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1.5 RESEARCH OBJECTIVES 

The objectives of this research are: 

a. To compare the differences between the winning strategy of the standard nim 

game and the misere nim game by applying the binary concept. 

b. To modify the standard nim game from a game of no chance into a game of 

chance with blocking and the modification of the coin game 

c. To solve the standard Dim game with smail number of counters and piles for 

various configurations using game trees. 

1.6 RESEARCH SCOPE 

As discussed above, the nim game can be played anywhere, with anything and can be 

modified into a different game to make it more interesting. Considering all possibilities 

for this dissertation would be rather impossible. Therefore, we have set a scope of what 

this dissertation will be about. This dissertation will mainly revolve around the three 

objectives mentioned above. 

The nim game in this research will be played based on the requirements set by 

each objective which has been mentioned above. There are no particular settings of the 

arrangements of the Dim game because all types of arrangements are being used. 
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The number of piles is within the range of one to four. The number of counters 

per pile will be within the range one to thirty. These particular arrangements are chosen 

because the number of counters and the number of piles do not play a role in 

determining the winner or having a winning position. By having smaller number of 

counters and piles, the concept of the game can be understood more deeply and 

discussed in more complete manner. Colours that are being used in this dissertation do 

have meaning which is connected to the research. Colours in this context are mainly 

used in game trees where the winning and losing points are showed. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

In this chapter, we will be discussing about the origin and development of the nim 

game, the details concerning a game tree and the development of the binary system. 

This chapter also gives an outlook of different types of nim game and how it has 

advanced over the years of research. 

2.2 THE BIRTH OF NIM GAME 

According to Martin Gardner, nim game is one of the oldest two person game known 

till today (Bogomolny, 2001). The nim game is believed to have originated from 

China. In the 1500's, a similar game was mentioned by an Italian Mathematician by the 

name Luca Pacioli (The Game of Nim, 2005). In the year 1902, C.L. Bouton, an 

associate professor of Mathematics at Harvard University first analyzed this game. He 

found the solution for this game and that is now viewed as the birth of combinatorial 

game theory (Combinatorial Game Theory Background, 2005). The name nim was 

given by C.L. Bouton. This name is believed to have originated from a German verb 
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