ABUNDANCE, FEEDING AND BEHAVIOURAL ECOLOGY OF ORANGUTANS (PONGO PYGMAEUS MORIO) IN THE FRAGMENTED FORESTS OF THE KINABATANGAN FLOODPLAIN

FELICITY ANNE LOUISE ORAM

PERPUSTAKAAN UNIVERSITI MALAYSIA SABA#

THESIS SUBMITTED IN FULLFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF TROPICAL BIOLOGY AND CONSERVATION UNIVERSITI MALAYSIA SABAH 2018

DECLARATION

I hereby declare this dissertation is based on my original work, except for quotations, equations, summaries and references, each of which I have fully acknowledged.

Felicity Anne Louise Oram DX1311001A

CERTIFICATION

NAME : Felicity Anne Louise Oram

MATRIC NO. : DX1311001A

 TITLE
 : ABUNDANCE, FEEDING AND BEHAVIOURAL ECOLOGY OF

 ORANGUTANS (PONGO PYGMAEUS MORIO) IN THE

 FRAGMENTED FORESTS OF THE KINABATANGAN FLOODPLAIN

DEGREE : DOCTOR OF PHILOSOPHY (ECOLOGICAL PROCESSES)

VIVA DATE :19 March 2018

CERTIFIED BY

SIGNATURE

SUPERVISOR

Assoc. Prof. Dr. Henry Bernard.

CO-SUPERVISOR Dr. Isabelle Lackman

ACKNOWLEDGEMENTS

I thank Professor Dr. Charles Santhanaraju A/L Variappan, director of the Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, for accepting me into the institute as a foreign student. I also thank Dr. Mahadimenakbar Bin Mohamed Dawood and all the staff, faculty and fellow students at ITBC. I thank especially Nellcy Joseph for her assistance with the initial Malay translation of the abstract, Ng Shean Yeaw for his advice on formatting and Alice Mathew for help with printing. I also thank all the staff at the Centre for Post-Graduate Studies (PASCA) especially Alna Tugon and Alvin Azril bin Mahat and the staff at the International Office especially Vivian Wahdi Augustine.

Foremost, I am especially grateful to my supervisor Associate Professor Dr. Henry Bernard for his expertise, careful guidance, advice, encouragement and patience throughout this Ph.D. journey. I also thank Associate Professor Dr. Ikki Matsuda, of Chubu University Academy of Emerging Sciences, Japan for his invaluable assistance and permission to include results from his comparison phenology study of the Kinabatangan and Danum Valley, currently in press.

I deeply appreciate the expertise, support, and guidance of Dr. Isabelle Lackman and Dr. Marc Ancrenaz, directors of the Kinabatangan Orangutan Conservation Programme (KOCP) for having the faith in me to grant free access to the 20-year orangutan field study dataset. I am also very appreciative of the logistical support and encouragement of the Kota Kinabalu coordinators of KOCP, Harjinder Kaur Kler and Shernytta E. Poloi and Datu Md. Ahbam Bin Abulani, the Sukau field coordinator.

I am indebted to the guidance, advice, knowledge, and companionship of all the staff of the KOCP team and the people of Sukau. Specifically, the orangutan research team, Hamisah Bte Elahan, Rusiman Bin Rukimin, Abdul Rajak Bin Saharon, Azli Bin Etin, Herman Bin Suali, Waslee Bin Maharan, Mohd. Daisah Bin Kapar, Hartiman Bin Abd. Rahman, Mohd. Faisal Bin Asmara, and Bahrani Bin Elahan. Also, Junaidi Bin Maharan, Rahadi Edwan Bin Halid, Mohd. Suhailie @Mincho Kahar and Zulirwan Takasi, formerly of the orangutan research team and Eddie Bin Ahmad and Mahathir Ratag of the KOCP-GIS team. I hope I have done justice in this analysis and synthesis of the work we have done together.

Last, but by no means least, I thank the wild orangutans of the Kinabatangan especially those who visit or live in the KOCP study site who have allowed us to learn from them. I hope this work serves to support your ongoing efforts to co-exist with human development. I also hope this work provides a good baseline for wildlife managers, future students and researchers to continue to support the efforts wild orangutans are making to adapt to change in the Kinabatangan floodplain region that both the orangutans and the people of Sukau and surrounding villages call home.

Finally, I am grateful to my parents who brought me into the world in Malaysia and most of all for the steadfast support, encouragement and patience of my husband Kenneth D. Krank.

Felicity Oram 21 August 2017

ABSTRACT

This study characterized core life history determinants, feeding ecology, local abundance variation and population trends of orangutans, Pongo pygmaeus morio, in the degraded floodplain of the Lower Kinabatangan River. This is the first longterm comprehensive analysis of wild orangutan survival in a landscape that has been highly disturbed from commercial timber extraction, and greatly fragmented by extensive nearby land conversion. The study also proposed key aspects necessary for orangutan conservation in this region. A novel measure of habituation was established based on feeding-to-resting ratios to build a dataset representative of all age-sex classes, including both more resident animals and transient visitors to the study site. Floristically, the Kinabatangan now has higher baseline fruit abundance with lower synchronous peaks and less extreme seasonality, in sharp contrast to intact primary forest at Danum Valley. Over 50% less cambium feeding activity was observed compared to Danum Valley. Therefore, orangutans in this degraded forest experience less fruit shortfall and less reliance on fall-back foods. This is indicative that sufficient habitat heterogeneity and plant diversity has been retained in this degraded floodplain region to support this large-bodied primate. Also, no correlation between feeding time on fall-back foods (leaves, cambium) and increased daytime rest was found, signifying additional rest for digestive processing of fibrous foods was not required. Mean travel time was significantly shorter than Danum Valley, although mean daily travel distance was not different. This suggests orangutans make use of the extensive vine profusion in this degraded habitat to move laterally with greater efficiency and speed than conspecifics in primary forests. A positive correlation between general forest productivity (shoot production) and unripe fruit production with orangutan abundance and a negative correlation with ripe fruit and orangutan abundance was found. Since studies have shown larger patch size (fruit per unit area) is a key predictor of orangutan movement, more transient individuals (males) likely move away at peak ripeness when resident orangutans and other more selective frugivores begin to also deplete the resource. Overall, localised population trends were stable from 2005-2016 but short-term variation, characteristic of primary floodplains, was still observed. Mean daily travel distances varied in adult male polymorphs (flanged, unflanged) and in females by reproductive status and offspring age, suggesting a possible social constraint to movement that could confound conservation efforts. Therefore, ongoing monitoring is necessary to assure continued access across human transformed landscapes is maintained. Also, further study is warranted of the role female hierarchy and adult male polymorphs play in territorial defence, resource guarding and reproduction that could potentially limit long-term viability in this now highly fragmented mixed-use landscape. These findings also highlight the importance of scientifically rigorous behavioural study if we are to have the proper tools to manage orangutans in an anthropogenic environment.

ABSTRAK

KELIMPAHAN, PEMAKANAN DAN EKOLOGI KELAKUAN ORANGUTAN (PONGO PYGMAEUS MORIO) DI HUTAN TERFRAGMENTASI DI DATARAN BANJIR KINABATANGAN

Kajian ini memerihalkan teras penentu sejarah kehidupan, ekologi pemakanan, variasi kelimpahan tempatan dan trend populasi orangutan, Pongo pygmaeus morio, yang tinggal di dataran banjir terdegradasi di bahagian hilir Sungai Kinabatangan. Kajian ini merupakan kajian analisis komprehensif jangkamasa panjang yang pertama mengenai kemandirian orangutan liar di landskap habitat yang teruk terganggu akibat daripada ekstrasi balak, dan sangat terfragmentasi oleh perubahan guna-tanah yang meluas di kawasan yang berhampiran. Kajian ini juga mencadangkan aspek penting yang diperlukan untuk pemuliharaan orangutan di rantau ini. Satu kaedah baharu untuk mengukur habituasi telah ditubuhkan berdasarkan kepada nisbah makan-dan-berehat untuk membina wakil bagi set data semua peringkat pengkelasan umur serta jantina, termasuk kedua-dua haiwan yang lebih bermastautin dan pelawat sementara ke tapak kajian. Dari segi foristik, Kinabatangan kini mempunyai kelimpahan asas buah yang lebih tinggi dengan puncak sinkroni yang lebih rendah dan kurang kemusiman yang ketara, iaitu sangat berbeza berbanding dengan hutan primer di Lembah Danum. Lebih daripada 50% pengurangan dalam aktiviti pemakanan kambium telah diperhatikan berbanding dengan di Lembah Danum. Oleh itu, orangutan di hutan terdegradasi kurang menghadapi masalah kekurangan buah dan kurang bergantung kepada makanan sampingan. Ini bermakna keheterogenen habitat dan kepelbagaian tumbuhan telah dikekalkan di habitat yang tergredasi. Selain itu, tiada korelasi antara masa pemakanan untuk makanan sampingan (daun, kambium) dan peningkatan masa berehat pada waktu siang, dan ini menunjukkan bahawa tiada masa berehat tambahan diperlukan untuk proses pencernaan makanan berserat. Purata masa untuk aktiviti bergerak adalah jauh lebih singkat berbanding di Lembah Danum, walaupun purata jarak perjalanan harian adalah tidak berbeza. Ini mencadangkan bahawa orangutan memanfaatkan tumbuhan menjalar yang banyak terdapat di habitat terdegradasi untuk bergerak secara lateral dengan lebih cekap dan pantas berbanding dengan orangutan di habitat primer. Terdapat korelasi positif antara produktiviti hutan secara am (penghasilan pucuk) dan penghasilan buahbuahan belum matang, dengan kelimpahan orangutan. Kajian terdahulu menunjukkan bahawa saiz patch adalah peramal penting terhadap pergerakan orangutan, maka terdapat kemungkinan bahawa lebih banyak individu transien (jantan) yang berpindah keluar semasa kemuncak kematangan buah apabila orangutan residen dan haiwan frugivor selektif yang lain mula mengurangkan sumber makanan berkenaan. Secara keseluruhan, trend populasi tempatan adalah stabil daripada 2005-2016 tetapi variasi kelimpahan jangkamasa pendek, iaitu merupakan ciri-ciri dataran banjir primer masih dapat diperhatikan. Purata jarak perjalanan harjan yang beryarjasi antara individu jantan dewasa polimorf (yang mempunyai pad pipi dan tanpa pad pipi) dan antara betina dewasa, mengikut status pembiakan and usia anak, mencadangkan terdapat kemungkinan wujudnya kekangan sosial dalam pergerakan yang mungkin boleh menghalang usaha-usaha pemuliharaan. Oleh itu, pemantauan yang berterusan sangat diperlukan untuk memastikan akses di seluruh landskap yang terubah oleh manusia dapat dikekalkan. Selain itu, kajian mengenai peranan hierarki individu betina dan peranan polimorfisme yang berbeza di kalangan individu jantan yang berkaitan dengan pertahanan wilayah, pengawalan sumber dan pembiakan yang mungkin berpotensi mengehadkan kemandirian jangkamasa panjang juga adalah diperlukan. Dapatan kajian ini juga menekankan kepentingan kajian tingkah laku secara saintifik yang teliti sekiranya kita ingin mempunyai alat yang sesuai untuk mengunus orangutan di dalam persekitaran antropogenik.

vi

B

TABLE OF CONTENTS

Page

TTTL	E	
DECI	ARATION	ii
CERT	TIFICATION	
АСКІ	NOWLEGEMENTS	iv
ABST	TRACT	v
ARS	ΤΡΑΚ	vi
TADI		
IAD		VII
LIST	OF TABLES	XIV
LIST	OF FIGURES	xvii
LIST	OF ABBREVIATIONS	xxiv
LIST	OF APPENDICES	xxvi
		
CHAI	PTER 1: INTRODUCTION	1
1.1	Objectives and Context of Study	1
1.2	Goals and General Research Questions	2
1.3	Relevance of Study – Research Gap	3
1.4	Regional Relevance of Study	5
	1.4.1 Specific Printary Habital Reference Literature Exists 1.4.2 Commitment to Co-existence of Wildlife with	5
	Anthropogenic Change	5
	1.4.3 Local Habitat Change Occurred 20-30 Years Ago so Longer	6
1 5	Term Effects Can Be Measured	10
1.5	Limitations of this study and orangutan field study in general	10
	1.5.1 Indirect Methods – Abundance by Nest Survey (Chapter 4)	12
	Study	12
	1.5.2 Direct Methods – Behavioural and Ecological Sampling by	13
	Individual Based Focal Follow with 3-Minute Interval	
	Sampling (Chapter 5 and 6)	
	1.5.2(a)Specific limitations of the Behavioural and Feeding	15
16	ECOIOGY ASPECT OF THIS STUDY	18
1.0	1.6.1 Chapter 4 – Abundance, Distribution and Nest Sites	18
	,	

- 1.6.2 Chapter 5 Key Life History Determinants and Activity 18 Budget 19
- 1.6.3 Chapter 6 Feeding Ecology
- Specific Research Questions 1.7
 - 1.7.1 Abundance, Distribution and Next sites1.7.2 Key Life History Determinants and Activity Budget

UNIVERSITI MALAYSIA SABAH

21

21

18	1.7.3 Thesis	Feeding Ec	cology	22
1.0	1110313	overnen		22
СНАР	FER 2 :	LITERATI	JRE REVIEW	24
2.1	Introdu	uction		24
2.1	Disting	uishing Cha	practeristics of the Orangutan	24
2.2	221	Asia's Only	Great Ane - Introduction	24
	2.2.1	Largest Ar	boreal Mammal	25
	2.2.3	Build Nest Restorative	s in Trees at Night - Require Fully Recumbent	27
	2.2.4	Solitary For Sociality	oragers with a Highly Diffuse Fission-Fusion	29
	2.2.5	Sexually Di Maturism)	imorphic and Polymorphic (Exhibit Adult Male Bi-	31
	2.2.6	Female Ph	ilopatry and Male Dispersal	34
	2.2.7	Longest Pe Animal	riod of 1-1 Dependency to a Single Infant of any	37
	2.2.8	Very Long Stochastic	g Slow Life History – Highly Vulnerable to Events	39
	2.2.9	Require Pri	imary Forested Habitat to Survive	40
		2.2.9(a)	Regional Differences – Floristic Diversity and Climate	40
		2.2.9(b)	Orangutan Density Variation with Floristic and Climatic Gradient	42
		2.2.9(c)	Importance of Primary Mosaic Habitats and Floodplains	43
	2.2.10	Opportunis	tic Frugivores with a Slow Metabolism	44
		2.2.10(a)	Frugivory	44
		2.2.10(b)	Geographical and Island Differences in Frugivory	45
		2.2.10(c)	Fall-Back Foods	46
		2.2.10(d)	Cambium – Jaw Strength of P. p. morio	47
		2.2.10(e)	Energy Balance and Slow Metabolism	48
		2.2.10(f)	Activity Budget and Foraging Strategies	49
		2.2.10(g)	Leaves – Key to Offset "Protein Bankruptcy"	51
		2.2.10(h)	Hind-Gut Fermentation	52
2.3	Distribu	ution, Taxor	nomy, Conservation Status, Abundance	52
	2.3.1	Prehistoric	Distribution – Climatic Effects of Distribution	52
	2.3.2	Anthropog	enic Effects on Distribution Over Time	53
	2.3.3	Conservati	on Status	55
	2.3.4	Trade		56
	2.3.5	Classical Ta	axonomy	56
	2.3.6	Modern Ta	xonomy	57
	2.3.7	Modern Dis	stribution and Abundance	60
		2.3.7(a)	Sumatran Orangutan – Pongo abelii	60
		2.3.7(b)	Bornean Orangutan – Pongo pygmaeus spp.	61
			2.3.7(b)i Northwest Bornean Orangutan – Pongo pygmaeus oygmaeus	62
			2.3.7(b)ii Central Bornean Orangutan -	562
			UNIVERSITI MA	LAYSIA SABAH

Pongo pygmaeus morio

63

UNIVERSITI MALAYSIA SABAH

2.3.7(b)iii Northeast Bornean Orangutan – Pongo pygmaeus morio

CHAPTER 3: STUDY SITE AND METHODOLOGY 64 3.1 Study Site 64 3.1.1 Study Area – Lower Kinabatangan Wildlife Sanctuary 64 (LKWS) 3.1.2. Kinabatangan Orangutan Conservation Programme (KOCP) 66 Study Site 3.1.3 Local Orangutan Population 69 Abundance and Distribution Methods – Nest Survey 3.2 70 3.2.1 Standing Crop (SCNC) and Marked Nest Count (MNC) 70 methods 73 3.2.2 Environmental Variables 3.2.3 Plot or Quadrat Nest Survey 74 3.2.4 Nest Density Calculations 75 3.2.5 Orangutan Density Calculations 77 3.2.6 Overview of Statistical Methods Used for Abundance and 77 Distribution Life History and Feeding Ecology Methods – 3-Minute Interval 79 3.3 Individual Focal Sampling 3.3.1 Standardized Methods for Focal Orangutan Study 79 3.3.2 Behavioural and Feeding Ecology Data Collection by 80 Individual Focal Follow 3.3.3 Data Collection Protocol 82 3.3.4 Activity Budget (3-Minute Interval Sampling) and Active 83 Period 3.3.4(a) Additional Data Collected 85 3.3.4(b) Feeding and Plant Part Designation 86 3.3.4(c) Travelling and Daily Travel Distance 87 88 3.3.4(d) Resting Social Activity 88 3.3.4(e) Stress/Sexual Display 89 3.3.4(f) 3.3.4(g) Nesting 90 91 3.3.4(h) Out of Sight Standardized Analysis of the Focal Dataset 91 3.4 93 3.5 Statistical Analysis of the Focal Dataset 3.6 Phenology 94 3.6.1 Calculation of Monthly and Annual Index Scores 95 3.6.2 Plant Identification 896

CHAPTER 4: RESULTS – ABUNDANCE, DISTRIBUTION AND NEST 97 SITES 97

- 4.1 Introduction
- 4.2 Evaluating Methods Nest Count and Nest Density
- 4.3 Estimated Orangutan Densities by MIC and SCNC Surveys
 - ix

	Compared (O1)	
4.4	Population Trends – Regression (O2)	105
4.5	Population Trend – Time Series Analysis (O2)	111
4.6	Population Trend – Forecasting Models (O2)	117
4.7	Abundance Variation with Co-variants of Food Plant Availability, May 2012 to August 2015 (Q3)	123
4.8	Mean Inter-Annual Abundance Variation with Unripe and Ripe Fruit Feeding Activity from All Surveys (SCNC+MNC) from 2005-2015 (O3)	132
4.9	Intra- and Inter-Annual Trends of Abundance and Fruit Feeding Activity by MNC Surveys from 2013-2015 (O3)	134
4.10	Distribution – Nest Sites by Forest Subtype (04)	135
4.11	Correlation of Abundance and Nest Sites by Forest Subtype (Q4)	141
4.12	Correlation of Abundance and Nests by Forest Subtype with Co- variates of Rainfall	142
4.13	Distribution – Nest sites by Tree Genus/Species	146
4.14	Discussion	151
	4.14.1 Abundance Variation (Q1)	152
	4.14.1(a) Abundance Variation – MNC Versus SCNC (Q1)	154
	4.14.2 Population Trends (Q2) between 2005 and 2016	155
	4.14.2(a) Population Trends (Q2) 2001-2016	157
	4.15.3 Correlations of Abundance with Plant Productivity and Fruit Feeding Activity (Q3)	158
	4.15.4 Nest Sites by Forest (Q4) – Summary of Results	161
	4.15.5 Nest Sites by Tree Species (Q5)	162
CHAF	PTER 5: RESULTS - KEY LIFE HISTORY PARAMETERS AND	166
	ACTIVITY BUDGET	
5 1	Introduction	166
5.2	Quantifying Habituation – Observation Interval Feeding to Resting	167
5.2	Ratios (Q1)	107
	5.2.1 Incomplete Habituation	168
	5.2.2 Definitive Measure of Unhabituated Animals	170
	5.2.3 Quantifying Habituation by Age-Sex Class	172
	5.2.3(a) Females and Sub-adults	172
	5.2.3(b) Adult Unflanged Males	172
	5.2.3(c) Adult Flanged Males	174
5.3	Composition of the Habituated Focal Dataset 2005-2015 (Q1) 5.3.1 Orangutan identification and physical changes with development	180 181
5.4	Results – Mean Daily Travel Distance (O2)	184
	5.4.1 Mean Daily Travel Distance by Age-Sex Class	184
	5.4.2 Mean Daily Travel Distance by Year	188
5.5	Results – Active Period (O3)	194
5.5	5.5.1 Active Period by Age-Sex Class	195
	5.5.2 Active Period by Year	196_
5.6	5.5.3 Start and End Time Results – Activity Budget (Q4)	197 198

Х

UNIVERSITI MALAYSIA SABAH

5

	5.6.1	Activity Bud	get by Age-Sex	Class		199	
	5.6.2	Activity Bud	get by Year			205	
5.7	Discus	sion – Chapte	er Conclusions			207	
	5.7.1	Summary St	atements			207	
	5.7.2	Habituation	(Q1)			211	
	5.7.3	Daily Travel	Distance Comp	pared to Primary Hal	bitat (Q2)	214	
		5.7.3(a)	Comparisons Travel Distance	of Adult Female te by Species and Su	Mean Daily ubspecies	216	
		5.7.3(b)	Mean Daily Tr this Study – In	ravel Distance of Fe mplications for Cons	males from ervation	219	
	×	5.7.3(c)	Mean Daily Females Com	Fravel Distance of bared	Males and	221	
		5.7.3(d)	Daily Travel D	istance of Male Sub	classes	223	
	5.7.4	Discussion -	Active Period	(Q3)		224	
		5.7.4(a)	Age-Sex Class Length	s Differences in Ad	tive Period	226	
		5.7.4(b)	Start and End	Time		228	
		5.7.4(c)	Active Period	Conclusion		229	
	5.7.5	Discussion -	- Activity Budg	et (Q4)		229	
		5.7.5(a)	Feeding and F	Resting - P. p. morid)	230	
		5.7.5(b)	Travelling - P	p. morio		234	
	5.7.6	Feeding and Class	Travelling Acti	vity in Total Minutes	by Age-Sex	236	
		5.7.6(a)	Activity Budge between Field	t Comparisons by Ag Sites	je-Sex Class	240	
			5.7.6(a)(i)	Unflanged Males Adult Females	and Parous	240	
			5.7.6(a)(ii)	Flanged Males		240	
			5.7.6(a)(iii)	Immature Female	S	240	
СПУВ.	TED 6.			01067		244	
СПАР	IER O.	RESULTS -	FEEDING EC	OLUGI		277	
61	Introdu	uction				244	
6.2	Relativ	e Percentage	by Plant Part (onsumed from 200	5-2015 (01)	245	
012	6.2.1	Feeding Tim	e per Plant Par	t by Number of Foca	al Davs	246	
6.3	Phenol	oav Study. 2	012-2015			248	
	6.3.1	No Evidence	of MAST Fruiti	ng		257	
	6.3.2	Feeding Acti	vity Compared	to Phenology		260	
6.4	Feedin	g Trends Ove	er Time (Q2)	57		265	
	6.4.1	By interval -	(1) 2005-2009	and (2) 2010-2015	5	265	
	6.4.2	Analysis of [Dataset by Year	and by Age-sex Cla	ISS	267	
	6.4.3	By Year - To	otal Fruit, 2005	-2015		269	
	6.4.4	By Year - Ri	pe Fruit, 2005-	2015		270	
	6.4.5	By Year - U	nripe Fruit, 200	5-2015		272	
	6.4.6	By Year – Le	eaves, 2005-20	15		273	
	6.4.7	By Year – Ca	ambium, 2005-	2015		275	
	6.4.8	By Year – Fl	owers, 2005-20)15		279	
6.5	Associa	ations Betwee	en Feeding Tim	es by Plant Part (Q1		281	1
6.6	Diet Co 6.6.1	omposition by Age-sex Clas	v Age-sex Class ss – Fruit	(Q3)	UN	286 287	
			XI	A B A H	UNIVERSITI M	ALAYSIA SABA	Н

	6.6.1(a) Summary of Fruit Feeding by Age-sex Class	291
	6.6.2 Age-sex Class – Leaves	292
	6.6.3 Age-sex Class – Cambium	293
	6.6.4 Age-sex Class – Flowers	294
6./	Resting Time and Leaf Consumption (Q5)	296
6.8	Resting Time and Cambium Consumption (Q5)	301
6.9	Top Ten Plant Genera Used as Food Sources by Year 2010-2015 (Q6)	304
6.10	Relative Time Spent Feeding on Lianas or Vines Versus Trees (Q7)	310
6.11	Key Lianas and Vines Used as Food Sources (Q7)	311
6.12	Top Ten Genera Uses as Fruit Sources by Year, 2005-2015 (Q6)	314
6.13	Discussion – Chapter Conclusion	318
	6.13.1 Summary Statements	318
	6.13.2 Degraded Versus Primary Habitat	320
	6.13.3 Vines and Lianas (Q7)	321
	6.13.4 Previous Study at KOCP (2000-2006) (Q4)	323
	6.13.5 Fruit (Q1-Q3)	323
	6.13.5(a) Fruit Consumption in this Study Overall (Q1)	323
	6.13.5(b) Ripe Fruit Versus Unripe Fruit (Q1-Q3)	324
	6.13.5(c) Fruit Feeding Differences by Age-Sex Class – Contest Competition (Q3)	325
	6.13.5(d) Species/Subspecies and Habitat Comparisons from Scientific Literature (Q4) – Fruit	326
	6.13.6 Fall-back foods – Flowers, Cambium, Leaves (Q1-Q3)	329
	6.13.6(a) Flowers (Q1-Q3)	329
	6.13.6(b) Species/Subspecies and Habitat Comparisons	330
	from Scientific Literature (Q4) – Flowers	
	6.13.6(c) Cambium (Q1-Q3)	330
	6.13.6(d) Species/Subspecies and Habitat Comparisons	332
	from Scientific Literature (Q4) – Cambium	
	6.13.6(e) Leaves (Q1-Q3)	333
	6.13.6(f) Species/Subspecies and Habitat Comparisons from Scientific Literature (Q4) – Leaves	334
	6.13.7 Association of Fall-Back Foods and Active Period Rest (Q5)	335
	6.13.8 Most Important Genera (Q6)	336
СНАР	TER 7: SYNTHESIS AND CONCLUSION	342
7.1	Introduction	342
7.2	Abundance, Distribution and Nest Sites (Chapter 4)	343
	7.2.1 Census Estimates and Population Viability Models – What Do They Mean?	345
	7.2.2 Benefit of Long-Term Regular Monitoring	349
	7.2.3 Seasonal Variation and Density Constraints	350
	7.2.4 Dynamic Nature of Floodplains	351
	7.2.5 Ongoing Monitoring on the Ground Is Essential for Conservation	352
	7.2.6 Provision for the Inactive Period	354
7.3	Behavioural and Feeding Ecology – Rigorous Vetted Focal Dataset	356

xii

7.4	Key Li	fe History Parameters and Activity Budget (Chapter 5)	357
7.5.	Feedir	ng Ecology (Chapter 6)	360
	7.5.1	Synopsis of Previous Feeding Ecology Studies	362
	7.5.2	Finding of this Study – Fruit	363
	7.5.3	More Fruit Is Available in this Degraded Habitat than Primary MASTing Forest	365
	7.5.4	Fruit – Competition for Resources	366
	7.5.5	Flowers	369
	7.5.6	Cambium	369
	7.5.7	Leaves	372
	7.5.8	Liem's Paradox – Dietary Flexibility Rather than Frugivory Is Key	374
	7.5.9	Plant Diversity	376
	7.5.10	Observer Bias in Leaf Feeding	376
	7.5.11	Degraded Habitat + Mosaic Habitat = High Leaf Quality	378
	7.5.12	Dependence on Vines (Q7)	379
	7.5.13	Habitat Suitability – Overcoming Biases	380
7.6	Conclu	ision and Recommendations	381
REFE	RENCES	S	386

REFERENCES

APPENDICES

432

LIST OF TABLES

		Page
Table 2.1:	Developmental life stages of wild orangutans	38
Table 3.1:	Ethological activity budget codes or ethogram definitions	85
Table 3.2:	Classification of age-sex class categories	87
Table 4.1:	A comparison of animal abundance results by survey method and methods of deriving nest densities – May 2005-Nov 2010	99
Table 4.2:	Summary table of overall mean orangutan abundance measured in the KOCP study site by MKST – May 2005-May 2016	100
Table 4.3:	Summary of regression results of orangutan abundance (OU density) over time (consecutive survey number from May 2005 to May 2016) and by survey method	106
Table 4.4:	Details of the best fit ARIMA	120
Table 4.5:	Abundance forecasts for 50 more iterations in the same interval pattern of surveys for MNC (n = 4 9) SCNC (n = 15) and the SCNC* (n = 9)	123
Table 4.6:	Table of Spearman's correlation coefficients (Rs) of orangutan abundance and all plant parts and between plant parts	125
Table 4.7:	Summary results of simple linear regression of orangutan abundance by MNC from May 2012 to August 2015 (n = 17) by plant part	126
Table 4.8:	The top 20 generalised additive models (gam) of orangutan abundance by food availability from concurrent phenology study sorted by lowest Generalised Cross Variation index (GCV)	130
Table 4.9:	Summary table by component forest subtype	137
Table 4.10:	Summary of ranks by relative percent	138
Table 4.11:	Mean abundance from primary (undisturbed) habitat	153
Table 5.1:	Comparison of relative percentage of Feeding to Resting over the observation time interval between 0550-1830 from the 5-year period 2009 to 2013	171

Table 5.2:	Focal study subjects used in this study based on the criteria noted above over the 11-year period between 2005 to 2015	183
Table 5.3:	Summary mean daily travel distance in metres by age-sex class	185
Table 5.4:	Active period by age-sex class in minutes	195
Table 5.5:	Activity budget means normalised to a 12-hour day following Morrogh-Bernard et al. (2009) from 2005 to 2015	199
Table 5.6:	Summary table of Kruskal-Wallis and Post Hoc Dunn tests with Bonferroni adjustment of activity budget behaviours by age-sex class	202
Table 5.7:	Mean daily feeding time and mean daily traveling time in minutes overall and by age-sex class	204
Table 5.8:	Summary table of Kruskal-Wallis results of activity budget behaviours by year	205
Table 5.9:	Table of post-hoc Dunn tests with Bonferroni adjustment by year for stress behaviours	206
Table 5.10:	Comparison of adult female mean daily travel distances by species, subspecies and habitat	218
Table 5.11:	Active period comparisons by age-sex class in literature	228
Table 5.12:	Overall mean activity budget values as compared to other species, subspecies	232
Table 5.13:	A summary table of the differences in mean feeding and travelling minutes from Vogel et al. 2017 with respect to this KOCP study	237
Table 5.14:	Mean daily feeding time and mean daily traveling time in minutes overall and by age-sex class	239
Table 5.15:	Activity budget comparisons by age-sex class across field sites	243
Table 6.1:	Feeding time by component plant part with respect to number of annual counts and number of focal days	247
Table 6.2:	Trees in phenology plots 1-4	255
Table 6.3:	Summary of the top ten genera by focal feeding activity time from 2010-2015	306

Table 6.4:	Overall rank by genus of the top tem food plant sources over the survey period 2010–2015	309
Table 6.5:	List of all vines species sourced for food from 2010-2015 ordered by relative percent of total feeding time overall	311
Table 6.6:	Summary of the top five vine or liana genera consumed by orangutans locally	313
Table 6.7:	Top vine species by rank sum overall 2010-2015	313
Table 6.8:	Summary of the top ten fruit feeding genera used by focal orangutan study subjects for each year from 2010-2015	314
Table 6.9:	The top fruit genera consumed by overall rank based on yearly rank sum of all fruit feeding activity	317
Table 6.10:	Overall summary plant genera consumed 2010-2015	340
Table 6.11:	Comparison of diet composition (relative percentage of feeding time by plant part or food item) from this study compared to published values (Morrogh-Bernard et al. 2009)	341

LIST OF FIGURES

		Page
Figure 1.1:	Map of Sabah indicating the location (inside the box) of the protected fragmented forest network of the Lower Kinabatangan Wildlife Sanctuary (LKWS) in the alluvial floodplain near the mouth of the Kinabatangan River, Sabah's longest river (560km)	f 7
Figure 1.2:	Map of lots 1-7 of the Lower Kinabatangan Wildlife Sanctuary (LWKS) from Abai to Batu Puteh	10
Figure 2.1:	Protein levels of plants consumed by orangutans <i>P. p. wurmbii</i> in Gunung Palung	51
Figure 2.2:	Phenotypic variation by species and subspecies in flangmales	ged 59
Figure 2.3:	Geographical separation of modern orangutans by spe and subspecies	cies 61
Figure 2.4:	Maps detailing density estimates and rate of decline ov the past 10-years, island wide for Pongo pygmaeus	ver 63
Figure 3.1:	Insert map depicting the Kinabatangan Wildlife Sanctu Virgin Forest reserves along the lower reaches of the Kinabatangan River	ary, 65
Figure 3.2:	Map showing Kinabatangan Orangutan Conservation Programme (KOCP) intensive study site	66
Figure 3.3:	Map of the KOCP study site showing the configuration transects surveyed from 2005-2016	of 72
Figure 3.4:	Plot transect locations.	75
Figure 4.1:	Boxplot of orangutan abundance by survey type	101
Figure 4.2:	Histograms of orangutan abundance (ind./km2) by frequency (count) for all survey methods	102
Figure 4.3:	Line graph of mean orangutan densities (individuals/ki from all nest surveys conducted in the KOCP study site from May 2005 to May 2016	m2) 103
Figure 4.4:	Radial plots of highest and lowest animal density value between May 2005 to May 2016 xvii	INTERNAL

Figure 4.5:	Scatterplots of orangutan abundance (density) expressed as individuals/km2 by consecutive survey number from May 2005 (#1) to May (2016) (#65)	105
Figure 4.6:	Diagnostic plots of linear regression of MNC dataset and SCNC dataset	107
Figure 4.7:	Locally weighted regression smoothing (LOWESS or LOESS) model of orangutan abundance over time	108
Figure 4.8:	Generalised additive model (gam) of orangutan abundance over time	109
Figure 4.9:	Gam model results of MNC surveys from December 2005 to December 2015 (n = 47) for the regression – OUden ~ (s(#days no rain offset 1 month)+tot rain per month offset one month)	111
Figure 4.10:	Locally weighted regression smoothing (LOWESS or LOESS) regression of the SCNC dataset as a time series.	113
Figure 4.11:	Locally weighted regression smoothing (LOWESS or LOESS) regression of the MNC dataset as a time series	114
Figure 4.12:	Diagnostic plots of auto correlation ACF and partial auto correlation (PACF) functions for MNC (A) and the SCNC (B) time series data frames	115
Figure 4.13:	Locally weighted regression smoothing (LOWESS) regression of the SCNC – Distance time series of the single 2001 survey and 9 surveys from 2005-2011 dataset	116
Figure 4.14:	LOWESS plot of abundance measurements as a time series data frame	117
Figure 4.15:	Forecasts of the best ARIMA model (2,0,2) by AIC based on 49 MNC surveys from Dec 2005 to May 2016	121
Figure 4.16:	Best ARIMA model for SCNC – MKST surveys	122
Figure 4.17:	A generalised additive model (gam) regression (non- parametric nonlinear) of orangutan abundance over time (consecutive survey number) of the subset of 17 MNC surveys used for analysis in this section	124
Figure 4.18:	Diagnostic plots of the multiple regression of orangutan abundance	127
Figure 4.19:	Generalised additive model (gam) regression of orangutan abundance by plant availability in the study interval xviii	128

Figure 4.20:	Gam model visualizations of the lowest GSV model	131
Figure 4.21:	Mean annual abundance (bar graph) compared to mean annual relative percentage of ripe fruit and unripe fruit feeding activity	132
Figure 4.22:	Histograms of mean annual unripe and ripe fruit feeding activity from 2005-2015	133
Figure 4.23:	Scatterplot with linear regression of orangutan abundance by MNC surveys and the relative percentage of ripe (left) and unripe fruit (right) feeding activity	135
Figure 4.24:	Relative Number of nests per kilometre of transect length for each forest subtype surveyed for all MNC surveys	139
Figure 4.25:	Relative Number of nests per kilometre of transect length for each forest subtype surveyed for all SCNC surveys	140
Figure 4.26:	Gam regression of orangutan abundance from MNC surveys ($n = 49$) by normalised number of nests detected per kilometre of respective forest subtype surveyed	142
Figure 4.27:	Gam regression of the number of nests per kilometre of sub-habitat surveyed in each MNC survey by total rainfall in the month of nest survey and in the month prior to survey	144
Figure 4.28:	Best fit Generalised linear model (gam) of orangutan abundance by MNC by total rainfall	145
Figure 4.29:	Relative percentage of all nests by the top 25 tree genera	148
Figure 4.30:	Relative percentage of all nests by the top 25 tree families	149
Figure 4.31:	The top 6 most frequently used trees selected for nests by year	150
Figure 4.32:	The top trees by year 2005-2015 showing the dominance of <i>Eusideroxylon zwageri</i> and <i>Neolamarckia cadamba</i>	151
Figure 5.1:	Annual pooled core activities of relative percentage of Feeding (F), Resting (R) and Travelling (T) as measured from 0550 to 1830 (mean observation interval) for focal subjects ranked in the field as A. "unhabituated" and B. "habituated" each year from 2000 to 2015	169
Figure 5.2:	Photographic examples of unflanged males	174
Figure 5.3:	Photographic examples of dominant flanged males (dFL)	177

xix

В

Figure 5.4:	Photographic examples of transient flanged males (tFL	178
Figure 5.5:	Young or partially flanged males	179
Figure 5.6:	Example of sub-adult male changes with age	182
Figure 5.7:	Boxplot of daily travel distances of focal follow subjects by broad age-sex class categories	186
Figure 5.8:	Boxplot of mean daily travel distances of all age-sex class habituated focal follow subjects by year	188
Figure 5.9:	Mean daily travel distance by year and by age-sex class	191
Figure 5.10:	Change in resident females mean daily travel distance when focal study subjects over time and stage of development	192
Figure 5.11:	Resident female Maria and daughter Manis	193
Figure 5.12:	Resident female Juliana and daughter Felicity	193
Figure 5.13:	Resident female Jenny and daughter Malatus	193
Figure 5.14:	Resident female Manja	194
Figure 5.15:	Boxplot indicating active period in minutes by age-sex class and results of Post-hoc Tukey HSD tests	196
Figure 5.16:	Boxplot indicating active period in minutes by survey year	197
Figure 5.17:	Active period start and end times for all 1090 focal follow days in this dataset	198
Figure 5.18:	Mean activity budget overall and by age-sex class subgroups from 2005 to 2015	200
Figure 5.19:	Mean activity budget by year from 2005 to 2015, standardized as relative percentages of a 12-hour day as per Morrogh-Bernard et al. (2009)	207
Figure 5.20:	Female core home range overlap within the KOCP study site 2000-2010	220
Figure 6.1:	Relative percentage of rainfall compared to the mean by year from 2012 to 2015	249
Figure 6.2:	Relative percentage of rainfall compared to the mean by month in 2013	250

Figure 6.3:	Summary of annual phenology results by plant part 2012- 2015	251
Figure 6.4:	Summary of monthly phenology results by broad plant part category 2012-2015	252
Figure 6.5:	Summary of monthly phenology results for flowers, ripe fruits and unripe fruits category 2012-2015	253
Figure 6.6:	Phenology comparison of fruit in KOCP study site (top panel), primary forest (Danum Valley and degraded in riverine forest in the lower Kinabatangan (Menanggul))	259
Figure 6.7:	Mean fruit feeding time pooled for all focal animal observations by year and the relative proportion of ripe and unripe fruit as a function of total fruit feeding activity in the complete dataset ($n = 78$, 1085 focal days)	261
Figure 6.8:	Summary of annual phenology results by plant part category 2013-2015	262
Figure 6.9:	Summary of monthly phenology results by broad plant part category 2012-2015 with total number of focal follow days per month superimposed	263
Figure 6.10:	Summary of monthly phenology results by fruit part category 2012-2015 with total number of focal follow days per month superimposed	264
Figure 6.11:	Boxplot of total fruit feeding activity by survey year (A) for the complete dataset ($n = 78$) and (B) the truncated dataset ($n = 67$) with outliers removed	270
Figure 6.12:	Relative percentage of total fruit feeding time time pooled for all focal animal observations by year and the relative proportion of ripe and unripe fruit as a function of total fruit feeding activity in the truncated dataset ($n = 67$ 1030 focal days)	270
Figure 6.13:	Boxplots of the relative percentage of ripe fruit feeding time by year (A) and the ripe fruit feeding time (B) of the truncated dataset dataset (n = 67) over the survey period from 2005-2015	271
Figure 6.14:	Box plot of the relative percentage of leaf feeding time by survey year for the complete dataset $n = 78$	274
Figure 6.15:	Boxplot (A) and scatterplot (B) by year of the relative percentage of cambium feeding activity per survey year for the complete dataset n = 78 xxi	276 AS LAYSIA SABAH

A B A /

Figure 6.16:	Boxplot of the relative percentage of cambium feeding activity per survey year for the truncated dataset $n = 73$	277
Figure 6.17:	Boxplot of cambium feeding activity per survey year for the complete dataset for the dataset with both outliers and zero values removed	278
Figure 6.18:	Mean annual feeding activity by relative percentage of all plant parts	279
Figure 6.19:	Boxplot of the relative percentage of flower feeding time by survey year	280
Figure 6.20:	Plot the mean flower feeding activity and percentage of focal subjects who consumed flowers per year	281
Figure 6.21:	Scatterplot of the complete dataset ($n = 78$) showing the relative percent of ripe fruit feeding time by the relative percent of unripe fruit feeding time	282
Figure 6.22:	Scatterplot of the relative percentage of total fruit feeding time as a function of leaf feeding time for all pooled individual focal follows by survey year for the complete dataset ($n = 78$, 1054 focal days)	283
Figure 6.23:	Scatter plot of the relative percentage of unripe (A) and ripe (B) fruit feeding time as a function of leaf feeding time for the complete dataset ($n = 78$, 1054 focal days)	284
Figure 6.24:	Scatterplot of the relative percent of cambium feeding time as compared to total fruit feeding time $(n = 78)$	285
Figure 6.25:	Mean diet composition overall and by age-sex class over the 11-year study period	287
Figure 6.26:	Boxplot of total fruit feeding time by age-sex class of the complete dataset ($n=78$)	288
Figure 6.27:	Boxplot of unripe fruit feeding time by age-sex class of the complete dataset $(n=78)$	289
Figure 6.28:	Boxplot of ripe fruit feeding by age-sex class	289
Figure 6.29:	Boxplot of ripe fruit feeding by broader age-sex class categories of the complete dataset $(n=78)$	291
Figure 6.30:	Boxplot of the relative percent of leaf feeding time by age-sex class ($n=78$)	293
Figure 6.31:	Boxplot of cambium feeding time by age-sex class of the complete dataset (n=78) xxii	294 S

UNIVERSITI MALAYSIA SABAH

ABAH

Figure 6.32:	Boxplots of flower feeding time by age-sex class of the dataset with young or partially flanged males removed (yFL) (n=74)	296
Figure 6.33:	Boxplot of flower feeding time of immature animals (subF and subM) and adult females NAF and PAF) only $(n=52)$	296
Figure 6.34:	Probability distribution (histogram) of resting activity as a function of all activity within the active period for all 78 annual counts on 30 individuals over the 11-year study period	297
Figure 6.35:	Probability distribution (histogram) of leaf feeding activity as a function of all feeding activity in the active period	298
Figure 6.36:	Scatterplot of resting activity by leaf feeding activity of the complete dataset ($n=78$)	299
Figure 6.37:	Scatterplot by age-sex class of resting activity by leaf feeding activity of the truncated dataset (0% leaf feeding removed) $n = 71$ on 25 individuals	300
Figure 6.38:	Probability distribution (histogram) of cambium feeding activity as a function of all feeding activity in the active period	302
Figure 6.39:	Scatterplot of relative resting activity by cambium feeding activity of the complete dataset	303
Figure 6.40:	Scatterplot by age-sex class of the relative % of resting activity counts by the relative % of cambium feeding activity ($n = 65$)	304
Figure 6.41:	The relative percentage of feeding activity time (3-minute interval scans) by component source (trees, vines or other plant part) for each survey year from 2010 to 2015	310

LIST OF ABBREVIATIONS

ASL/asl	-	Above sea level
CI	-	Confidence interval
CITES	-	Convention on International Trade in Endangered Species
D	-	Difficult to Determine or Out of Sight behaviour
DF	-	Dry forest
dFL	-	Dominant flanged males
Dou	-	Orangutan density
F	-	Feeding behavior
F:R	-	Feeding to resting ratio
FBF	-	Fall-back foods
FLO	-	Flowers
FR	-	Total fruit (ripe fruit + unripe fruit)
ENSO	-	El Niño-Southern Oscillation
ESW	_	Effective strip width
Hab	-	Habituated
IUCN	-	International Union for Conservation of Nature
L	-	Leaves
kg	-	Kilograms
km	_	Kilometres
km ²	-	Square kilometres
КОСР	-	Kinabatangan Orangutan Conservation Programme
LKWS	_	Lower Kinabatangan Wildlife Sanctuary
m	_	Metres
ML	-	Mature leaves
MKST	-	Modified Kelker trip transect
mm	-	Milimetres
MNC	-	Marked nest count
NAF	-	Nulliparous adult females
N _N	_	Nest density
N	-	Nesting behavior
0	-	Other behavior
PAF	-	Parous adult female

xxiv