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ABSTRACT 

An investigation into the potential use of crushed sandstone 
aggregates in high performance concrete (HPC) has been carried out. 
A suitable mix design of HPC has been developed using crushed 
sandstone coarse and fine aggregates. The engineering properties of 
both fresh and hardened HPC have been obtained by conducting 
tests on slump, air content, fresh concrete density, compressive 
strength, flexural strength and modulus of elasticity. The long-term 
compressive strength performance of HPC has been studied. The 
flexural behaviour such as ultimate load capacity, deflection and 
crack width at service load, deflection and curvature ductility, and 
position of neutral axis have been determined on prototype 
reinforced HPC beams at two points load. The durability performance 
of hardened concrete has been conducted by doing the sorptivity, 
absorption and permeable pore voids, rapid chloride penetration test, 
chloride diffusion by 90-day salt ponding and, wet and dry cycle. In 
this investigation three types of curing conditions have been 
employed to see the effect of curing on strength and durability. The 
most satisfactory performance in engineering properties on HPC is 
observed in full water curing. Combination of silica fume and fly ash 
as partial replacement of cement with crushed sandstone aggregates 
found to synergistic effects on workability, strength and durability on 
HPC. This investigation concludes that locally available sandstone 
aggregates can be used in HPC production. In future, the prospect 
for resource utilization of marginal quality sandstone aggregates in 
HPC can be explored further. 
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ABSTRAK 

KAJIAN KE ATAS KONKRIT BERKEKUATAN TINGGI 

MENGGUNAKAN AGREGAT BATU PASIR 

Satu penyiasatan telah dijalankan ke atas potensi penggunaan 
agregat batu pasir hancur dalam Konkrit Prestasi Tinggi {HPC). 
Rekabentuk campuran HPC yang bersesuaian telah dibentuk dengan 
menggunakan agregat batu pasir hancur kasar dan ha/us/ sifat-sifat 
kejuruteraan kedua-dua HPC segar dan keras te/ah diperolehi dengan 
melakukan ujian ke atas runtuhan kandungan udara/ ketumpatan 
knokrit segar, kekuatan mampatan kekuatan lenturan dan modulus 
keelastikan. Prestasi kekuatan Jangka panjang HPC telah dikaji. Sifat 
kelenturan seperti kapasiti beban akhir, pembengkokan dan 
keretakan keluasan pada beban seNi� pembengkokan dan 
kemu/uran kelengkungan/ dan posisi paksi neutral telah ditentukan ke 
atas protaip rasuk HPC bertetulang pada beban dua titik. Prestasi 
ketahanlasakan konkrit keras telah di/akukan dengan menjalankan 
ujian ''sorptivity� penyerapan dan liang kosong telap/ ujian 
penusukan klorida cepaC resapan klorida pada 90 hari perendaman 
garam dan kitar basah dan kering. Dalam penyiasatan ini, tiga Jenis 
keadaan pengawetan telah digunakan untuk melihat kesan 
pengawetan ke atas kekuatan dan ketahanlasakan. Prestasi yang 
paling memuaskan dalam sifat kejuruteraan telah diperhatikan pada 
HPC yang diawetkan dalam pengawetan air sepenuhnya. Kombinasi 
fume silika dan debu terbang sebagai pengganti separa simen 
bersama agregat batu pasir hancur didapati mempunyai kesan sinergi 
ke atas kebolehkeljaan kekuatan dan ketahanlasakan ke atas HPC 
Penyiasatan ini menyimpulkan bahawa agregat batu pasir hancur 
tempatan boleh digunakan untuk penghasilan HPC Pada masa 
hadapan prospek penggunaan sumber agregat batu pasir yang 
berkualiti margin boleh diterokai dengan /ebin lanjut dalam HPC 
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CHAPTER 1 

INTRODUCTION-HIGH PERFORMANCE CONCRETE AND AGGREGATES 

1.1. High Performance Concrete 

High performance Concrete (HPC) is known as a high technology construction 

material, proving to be very cost effective, reliable, and having long term durability in 

natural environment. The study of HPC has been an extremely active research area in 

recent years. The definition of HPC is based on establishing value of workability, 

strength and durability. Broadly speaking, HPC is defined as "concrete made with 

appropriate materials combined according to a selected mix design and properly 

mixed, transported, placed, consolidated, and cured so that the resulting concrete 

will give excellent performance in the structure in which it will be exposed, and with 

the loads to which it will be subjected for its design life" (Forster, 1994a). 

With the development of HPC, the strength and durability of concrete has 

improved largely. Although HPC offers many advantages, due to the restriction of the 

manufacturing process and the availability of quality raw materials, the development 

of HPC is still limited. 

In high-rise buildings and bridges, the stiffness of the structure is of interest 

to structural engineers. On certain projects the minimum modulus of elasticity has 

been specified as a means of increasing the stiffness of the structure. The modulus 

of elasticity is affected significantly by the properties of aggregates and mix 

proportion (Balbakki et al., 1991). The highest possible of modulus can be obtained 



through the use of good quality coarse and fine aggregate from the same source 

(Kosmatka et. al., 2002). 

According to Neville (1997), the aggregate with low modulus of elasticity is 

more beneficial with respect to HPC. There is a growing interest in substituting 

alternative materials in concrete and HPC. Hence, the innovative technological 

developments in the field of waste materials derived from industrial by-products have 

increased to improve the HPC properties. 

1.2. Function of Aggregates 

Aggregates both coarse and fine are considered to be inert fillers for concrete to 

reduce the amount of cement required. The characteristics of aggregate play the 

substantial role in the fresh and hardened properties of concrete as it occupies about 

50 to 80% of total concrete volume. It is commonly accepted that the properties of 

aggregates used in HPC have great influence on the mechanical properties and 

durability (Aitcin, 2003). In general, the coarse aggregate used in HPC should be 

hard, dense, non-reactive and durable. The fine aggregate should be free from 

organic impurities, clay or silt and relatively coarser sand with fineness modulus in 

the range 2.5 -3.2 is recommended (Nawy, 2001). A higher degree of fine and 

coarse aggregate packing requires less water and thus increasing the concrete 

quality. 

1.3. Crushed Stone Sand 

Due to depletion of river sand in the use of concrete and environmental pressure on 

solid waste disposal, the use of crushed stone sand, commonly known as quarry dust 

(solid waste) is considered a viable alternative to river sand in concrete. Crushed 

2 



stone sand is a fine material formed during the process of conversion of rock into 

aggregate and has particle size ranging from 4 mm to dust size ( < 0.075 mm). The 

crushed stone sand is a material of high quality. The fine particles and irregular 

shape of the crushed stone sand has harsh effects on the workability and finishability 

of concrete. These harsh effects have given crushed stone sand a poor reputation in 

the construction industry. However, recent studies have shown that this crushed 

stone sand can be used to produce concrete with higher compressive and flexural 

strengths (Bonavetti et. al., 1994, Celik et. al., 1996). 

The crushed stone sand based on its quality, can replace 15 to 60 % of total 

fine aggregate in concrete (Mannan et. al., 2001, Mulu et al., 2003). The use of 

crushed stone sand is desirable from the social and environmental view point. It also 

needs to be economically and technically viable. 

1.4. Importance of Study 

Due to the increased level of construction in Malaysia in the forthcoming years, it is 

expected that fine aggregate suitable for use in concrete will become scarce or not 

economical to produce. As sources of quality concrete aggregate become depleted, 

the use of more marginal aggregates will mean an increased use of reactive 

aggregates in concrete. 

In Sabah, Malaysia, the average annual production of stone aggregates 

including river pebbles is about 12 million tonnes. Crushed sandstone aggregate is 

about 6.5 million tonnes of total aggregates, which is more than 54 %. During the 

crushing process at the quarry, about 22 % of the particle has the size 3 mm to dust 

3 



which is known as crushed sandstone sand (Hisam et. al./ 2002). Sandstone sand 

consists of about 85% sand sized material and 15 % of silt and clay. 

In places where there is a scarcity of suitable materials for HPC the economic 

considerations may necessitate experimenting with suitable locally occurring 

substitute materials. But some aggregates can cause detrimental effect on durability 

performance of the concrete. Sandstone is a reactive material, which has detrimental 

effect on concrete durability. One of the major concerns with such aggregate is the 

alkali-silica reaction. This has raised the concern now when the concrete industry is 

forced to develop durable concrete with local available sources. 

1.5. Alkali-Silica Reaction 

Alkali-silica reaction (ASR) occurs either in mortar or concrete. ASR is a deleterious 

chemical reaction between hydroxyl (OW) ions associated with alkalis (sodium and 

potassium) present in cement or other sources and certain reactive siliceous 

components that may present in aggregates, producing the gel. When this alkali­

silica gel absorbs moisture, it expands, and eventually produces cracks in aggregate 

particles as well as in the cement paste in concrete (Prezzi et. al./ 1997). It causes 

serviceability problem in concrete structures. The following three conditions must be 

satisfied for expansive ASR to occur: 

1. A reactive form of silica or silicate must be present in the aggregate.

2. Sufficient alkali, sodium (Na) and/or potassium (K), mainly from cement, must be

available.

3. Sufficient moisture, i.e., not less than 80% relative humidity (RH) in the pore

structure of the concrete or mortar, is required.
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1.5.1. Reactive Aggregate 

It is the form of silica that determines whether a siliceous aggregate is reactive or 

not. Many of the coarse aggregates used in construction are siliceous in composition, 

i.e., high in silica (SiO2) content. However, they are not necessarily reactive. Certain

reactive aggregates do not exhibit maximum expansion unless the aggregate is 

present in critical range. 

The proportion of reactive aggregate particles that produces maximum 

expansion for a given alkali content and water-binder ratio (w/b) in concrete is 

known as the pessimum proportion. For example, 3% opal (reactive mineral) in 

aggregate shows maximum expansion. With parameters such as alkali content, w/b, 

etc. being constant, the difference in expansion of different potentially reactive 

aggregates mainly depends on (i) inherent reactivity of their constituent mineral 

phases or rock types, (ii) grain size of the reactive particle, and (iii) proportion of 

these reactive phases within the reactive aggregate. 

Not all aggregates that are susceptible to ASR, however, show the pessimum 

effect. Aggregates without this pessimum effect exhibit increasing expansion as a 

function of the amount of reactive particles present in the aggregate. Fine aggregate 

is more susceptible to ASR because of its higher surface area. Figure 1.1 shows the 

different forms of silica and their reactivity 
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Crysta Iii ne 
e.g., Quartz

Usually non 
reactive, but 

strain quartz can 
be reactive 

Crypto-crysta II ine 
i.e., extremely fine

crysta 11 i ne, 
e.g., Chalcedony

Reactive 

Figure 1.1: Forms of Silica and Their Reactivity 

1.5.2. Petrography of Sandstone Aggregate 

Amorphous or 
glossy 

i.e., non-crystalline,
e.g., Opal

Highly reactive 

Petrography is a comparatively quick way to predict aggregate reactivity based on 

microscopic examination of aggregate samples. Mineral properties in aggregate 

determine aggregate reactivity. Photomicroscope image of sandstone aggregate is 

shown in Figure 1.2. A petrographical, mineralogical and textural description of the 

different sources of Kata Kinabalu quarried sandstone aggregate has the following 

characteristics (Felix, 1989). Thin-section studies showed that the sandstone 

consisted of 70 % quartz, 8 % chert, 15 % feldspar and less than 10 % rock 

fragments including sedimentary, metamorphic and igneous rock. The chemical 

compositions of sandstone aggregate are shown in Table 3.3, Chapter 3. It contains 

mainly silica 82 % and aluminum 9 % and all other compositions are marginal. The 

sandstones are poorly sorted, that is, grain of various sizes occurred together (0.03 

to 3 mm). The frame work is dominated by quartz grains which are generally 

rounded to subrounded. 
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a - Silica; b - Feldspar; c - Rock fragments (Chert, igneous and metamorphic rock) 

Figure 1.2: Photomicroscope Image of Sandstone Aggregate 

The interstitial matrix consists of silt-sized quartz, mica, and probably also 

sub-microscopic clay minerals at grain interfaces. Internal porosity of sandstone is 

clearly enhanced adjacent to mica. In general, the sandstone is held together by 

phyllosilicate minerals (clay and altered rock fragments) due to local compaction and 

rarely by chemical cement, and it is relatively soft and friable. Coarser granularity and 

better crystallinity suggest that sandstone is less liable to silica dissolution. For the 

case of late or slow alkali-silica reaction with sandstones contains stained quartz and 

metamorphosed sediments such as phyllite, causes swelling of aggregate particles. 

This is the most common form of ASR, and there is a lack of literature on reactive 

mechanism, considered still under investigation. 
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