EFFECT OF WIRE MESH ASSISTED SOLAR CHIMNEY ON PERFORMANCE OF SOLAR PV COOLING SETUP

ERICSON RAIDI

FACULTY OF ENGINEERING UNIVERSITY MALAYSIA SABAH

2022

EFFECT OF WIRE MESH ASSISTED SOLAR CHIMNEY ON PERFORMANCE OF SOLAR PV COOLING SETUP

ERICSON RAIDI

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF BACHELOR OF MECHANICAL ENGINEERING

FACULTY OF ENGINEERING

UNIVERSITY MALAYSIA SABAH

2022

DECLARATION

I hereby declare that this thesis, submitted to Universiti Malaysia Sabah (UMS) as partial fulfilment of the requirement for the degree of Bachelor of Mechanical Engineering, has not been submitted to any other university for any degree. I also certify that the work subscribed herein is entirely my own, except for quotation and summaries sources of which have been duly acknowledged.

15th July 2022

MOHD HAFIZZUDIN BIN ASLI SABAH

CERTIFICATION

NAME	:	MOHD HAFIZZUDIN BIN ASLI SABAH
NO. MATRIC	:	BK18110178
TITLE	:	EFFECT OF WIRE MESH ON SOLAR CHIMNEY PERFORMANCE IN A SOLAR PV COOLING SETUP
DEGREE	:	BACHELOR OF ENGINEERING
FIELD	:	MECHANICAL ENGINEERING
DATE OF VIVA	:	21st JULY 2022

CERTIFIED BY;

1. MAIN SUPERVISOR

DR. Nazrein Adrian Bin Amaludin

Signature

MAZREIN ADRIAN BIN AMALUDIN PENSYARAH KEJURUTERAAN MEKANIKAL UNIVERSITI MALAYSIA SABAH

ACKNOWLEDGEMENT

I would to express my deepest gratitude and appreciation to my dearest supervisor, **Dr. Mohd Suffian Bin Misaran @ Misran**, for all the guidance and support given to me to complete this final year project work successfully.

I also would like to express my gratitude and thanks to **Sir Jasmi** for all the guidance and help in fabricating three test rig for this project. Because of him, I manage to finish the fabrication successfully and on time.

Special thanks to all my family's members for their support mentally while carrying for this final year project. I had a great and fruitful journey during my study in UMS. I also would like to thank you to my friends, **Mohd Hafizzudin Bin Asli Sabah** and **Muhammad Aiman Bin Mat Roni** for giving me help and great guidance and support during my journey in completing my final year project.

Ericson Raidi

15 July 2022

ABSTRACT

Renewable energy is becoming more popular as an energy source as non – renewable energy sources become less prevalent. One of popular renewable energy that used is solar photovoltaic to generate electric energy. However, its efficiency reduced when its operating temperature increased with the increase of solar radiation. Therefore, a cooling system is necessary for solar PV. The aim of this study is to provide a passive cooling system using solar chimney assisted with wire mesh. In this study, it investigates the effect of wire mesh assisted solar chimney on performance of solar PV cooling in terms of power output, efficiency and temperatures of solar panel surface. The wire mesh assisted solar chimney was put at the outlet of solar chimney. Three test rigs known as configuration 1 (solar PV without cooling), configuration 2 (solar PV integrated with solar chimney as cooling), configuration 3 (solar PV integrated with solar chimney and wire mesh as cooling) were fabricated. The experimental conduction was carried out in the Faculty of Engineering, University Malaysia Sabah. The result showed that the effect of wire mesh in solar chimney has the highest increase electrical efficiency of solar PV which is 15.45% and has highest temperature reduction of solar panel surface which is 12.88%. The effect of wire mesh also showed that it can increase the flow rate of air inside the solar chimney, thus improved the ventilation of solar chimney. This is due to the higher buoyancy effect can be produced when air received more heat by restrict the flow rate at first by wire mesh. To conclude, wire mesh has helps in increasing the performance of solar PV setup cooling.

ABSTRAK

Pada masa kini, tenaga boleh diperbaharui semakin popular untuk digunakan sebagai pembekal tenaga memandangkan sumber tenaga tidak boleh diperbaharui semakin berkurangan. Salah satu tenaga boleh diperbaharui yang popular yang digunakan ialah solar photovoltaic untuk menjana elektrik. Walau bagaimanapun, kecekapannya berkurangan apabila suhu operasinya meningkat dengan peningkatan sinaran suria. Oleh itu, sistem penyejukan diperlukan untuk PV solar. Matlamat kajian ini adalah untuk menyediakan sistem penyejukan pasif menggunakan cerobong solar berbantukan jaringan dawai. Dalam kajian ini, ia menyiasat kesan cerobong suria berbantu jaringan dawai terhadap prestasi penyejukan PV suria dari segi output kuasa, kecekapan dan suhu permukaan panel solar. Cerobong suria yang dibantu jaringan dawai diletakkan di saluran keluar cerobong solar. Tiga pelantar ujian yang dikenali sebagai konfigurasi 1 (PV solar tanpa penyejukan), konfigurasi 2 (PV solar disepadukan dengan cerobong solar sebagai penyejukan), konfigurasi 3 (PV solar disepadukan dengan cerobong solar dan jaringan dawai sebagai penyejukan) telah dibuat. Pengaliran eksperimen telah dijalankan di Fakulti Kejuruteraan, Universiti Malaysia Sabah. Hasil kajian menunjukkan bahawa kesan jaringan dawai dalam cerobong solar mempunyai peningkatan kecekapan elektrik PV solar yang paling tinggi iaitu 15.45% dan mempunyai pengurangan suhu permukaan panel solar tertinggi iaitu 12.88%. Kesan jaringan dawai juga menunjukkan bahawa ia boleh meningkatkan kadar aliran udara di dalam cerobong solar, sekali gus meningkatkan pengudaraan cerobong solar. Ini disebabkan oleh kesan keapungan yang lebih tinggi boleh dihasilkan apabila udara menerima lebih banyak haba dengan menyekat kadar alir pada mulanya dengan wire mesh. Sebagai kesimpulan, jaringan dawai telah membantu dalam meningkatkan prestasi penyejukan persediaan PV solar.

TABLE OF CONTENT

	page
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENT	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xvi
LIST OF APPENDIX	xvii
CHAPTER 1: INTRODUCTION	1
1.1 Overview	1
1.2 Project Background	1
1.3 Problem Statement	2
1.4 Research Objective	3
1.5 Scope of Work	3
1.6 Research Flow Chart	4
1.7 Research Contribution	5
1.8 Research Commercialization	5
1.9 Research Gantt Chart	5

CHAPTER 2: LITERATURE REVIEW	7
2.1 Overview	7
2.2 Solar Energy	7
2.3 Solar Photovoltaic (PV)	8
2.3.1 Mono – Crystalline Silicone Solar Cell	9
2.3.2 Solar Photovoltaic Principle	9
2.4 Solar PV Cooling	10
2.5 Solar Chimney	11
2.5.1 Solar Chimney Working Principle	11
2.5.2 Solar Chimney Power Plant	12
2.5.3 Factor Affecting Solar Chimney Performance	13
2.6 Solar Photovoltaic/Solar Chimney	14
2.6.1 Design	14
2.7 Wire Mesh	16
2.7.1 Effect of Wire Mesh Screen on Solar Chimney	17
2.8 Heat Sink	18
CHAPTER 3: METHODOLOGY	19
3.1 Overview	19
3.2 System Design and Modelling	19
3.2.1 Overall Design	20
3.2.2 Fin Design and Dimension	22
3.2.3 Solar Collector and Air Gap	23
3.2.4 Solar Chimney and Duct	23
3.2.5 Tilt Angle	24
3.2.6 Location of Wire Mesh	25
3.3 Fabrication of Passive Cooling System of Solar Panel	25
3.3.1 Preparation of Solar Panel	25
3.3.2 Fabrication of Rectangular Fins	26
3.3.3 Fabrication of Solar Chimney and Duct	27
3.3.4 Fabrication of Solar Collector	29
3.3.5 Complete prototype of a Passive Cooling System	of Solar PV 30
viii	UMS
142 July 1	LINIVERSITI MALAYSIA SABAH

YSIA viii 4 B

3.3.6 Cost Material and Equipment	32
3.4 Thermocouple Installation	33
3.5 Circuit Design System	36
3.6 Experimental Setup and Operation	37
3.7 Monitoring Instruments	38
3.7.1 Pyranometer	38
3.7.2 Thermocouples and Data Logger	38
3.7.3 Multimeter	40
3.7.4 Thermal Camera	41
3.7.5 Hot Wire Anemometer	41
3.8 Procedure of Experimental Investigation	42
3.8.1 Voltage and Current Measurement	43
3.8.2 Velocity and Temperature of Air Measurement	44
3.8.3 Thermal Image Capture	45
3.9 Mathematical Equation	45
3.9.1 Validation	45
3.9.2 Linear Interpolation Method	46
CHAPTER 4: RESULT AND DISCUSSION	47
4.1 Overview	47
4.2 Solar Radiation versus Time	48
4.3 Electrical Characteristics of Solar Panel versus Solar Radiation	51
4.3.1 Power Output versus Solar Radiation	51
4.3.2 Efficiency of Solar Panel	55
4.4 Temperature of Solar PV versus Solar Radiation	58
4.4.1 Distribution of Temperature on Surface of Solar PV	61
4.5 Temperature of Solar Absorber versus Solar Radiation	63
4.6 Difference between Solar Chimney only and Solar Chimney	65
Integrated with Wire Mesh as Cooling	
4.6.1 Temperature of Air in Solar Collector and Solar Chimney	65
Versus Solar Radiation	
4.6.2 Mass Flow rate of Air versus Solar Radiation	67
4.6.3 Temperature before and after Wire Mesh	⁶⁹ /C

A B A B

/

APPENDIX	85
REFERENCES	76
5.2 Future Works	74
5.1 Conclusions	73
CHAPTER 5: CONCLUSIONS	73
Study	
Cooling Techniques of Solar Photovoltaic (PV) based on previous	
4.7 Difference in Temperature and Electrical Parameters with various	71

LIST OF TABLES

Page

Table 1.1: Gantt Chart for Semester 1 Session 2021/2022	5
Table 1.2: Gantt Chart for Semester 2 Session 2021/2022	6
Table 3.1: Solar Panel Specification	26
Table 3.2: Cost of Materials and Equipment	33
Table 4.1: Distribution of Solar Radiation	50
Table 4.2: Comparison of Voltage Open Circuit with each Solar Panel	53
Table 4.3: Comparison of Cooling Technique of Solar PV	72

LIST OF FIGURES

	Page
Figure 1.1: Flow Chart for General Methodology	4
Figure 2.1: P-N junction in photovoltaic cell	9
Figure 2.2: Principle working of PV cell	10
Figure 2.3: Solar Chimney in house	12
Figure 2.4: Solar Chimney with solar PV Technology	13
Figure 2.5: Model 1	14
Figure 2.6: Model 2	15
Figure 2.7: Four different location of PV panels in a Solar Chimney	16
Figure 2.8: Cold Inflow at the exit of Chimney	17
Figure 2.9: The Airflow across five layers of wire mesh screen	18
Figure 3.1: Dimension for first Test Rig (Configuration 1)	20
Figure 3.2: Complete Assembly of a second Test Rig (Configuration 2)	21
Figure 3.3: Complete Design of Third Test Rig (Configuration 3)	22
Figure 3.4: Fins Attached at the back of Solar Panel	23
Figure 3.5: Solar Collector	23
Figure 3.6: Solar Chimney and its Duct	24
Figure 3.7: Duct Design and Dimension	24
Figure 3.8: Wire Mesh Location on Solar Chimney	25
Figure 3.9: Front View of the back side of solar panel	27
Figure 3.10: Top View of the back side of solar panel	27
Figure 3.11: Cylindrical Chimney and Duct	28
Figure 3.12: Wire Mesh location	29

Figure 3.13: Solar Collector	30
Figure 3.14: The casing made up of plywood with thickness of 12 mm	30
Figure 3.15: Test Rig (Configuration 1)	31
Figure 3.16: Test Rig (Configuration 2)	31
Figure 3.17: Test Rig (Configuration 3)	32
Figure 3.18: Data Logger and Thermocouples	34
Figure 3.19: Location of Thermocouple at solar collector	34
Figure 3.20: Position of thermocouple at the inlet of Solar PV	35
Figure 3.21: Position of thermocouple at the outlet of Solar PV	35
Figure 3.22: Position of thermocouple at around Test Rig	35
Figure 3.23: Simple Circuit System	36
Figure 3.24: Variable Rheostat	36
Figure 3.25: Simple Circuit System	37
Figure 3.26: Experimental Setup	37
Figure 3.27: Digital Solar Power Meter/Pyranometer (SM-206)	38
Figure 3.28: Cole-Parmer Data Logger (18200-80)	39
Figure 3.29: Temperature Monitoring Interface, TraceDAQ Software	40
Figure 3.30: UNI-T Digital Multimeter UT123	40
Figure 3.31: XL 830 L Digital Multimeter	41
Figure 3.32: FLIR C2 Compact Thermal Imaging Camera	41
Figure 3.33: Hot Wire Anemometer GM 8903	42
Figure 3.34: Experimental Setup	43
Figure 3.35: Circuit System	43
Figure 3.36: Schematic diagram for measurement point for	44
second test Rig	

Figure 3.37: Schematic diagram for measurement point for	45
Third test rig	
Figure 4.1: Solar Radiation against Time on 27 th June 2022	48
Figure 4.2: Solar Radiation against Time on 28 th June 2022	49
Figure 4.3: Solar Radiation against Time on 29 th June 2022	49
Figure 4.4: Comparison of power output on 27 th June 2022	51
Figure 4.5: Comparison of power output on 28^{th} June 2022	52
Figure 4.6: Comparison of power output on 29 th June 2022	52
Figure 4.7: Comparison of Solar PV Efficiency on 27 th June 2022	55
Figure 4.8: Comparison of Solar PV Efficiency on 28 th June 2022	56
Figure 4.9: Comparison of Solar PV Efficiency on 29 th June 2022	56
Figure 4.10: Comparison of Solar PV temperature on 27 th June 2022	58
Figure 4.11: Comparison of Solar PV temperature on 28 th June 2022	59
Figure 4.12: Comparison of Solar PV temperature on 29 th June 2022	59
Figure 4.13: Temperature Distribution on Surface of Solar PV	61
without cooling	
Figure 4.14: Temperature Distribution on Surface of Solar PV	61
Integrated with Solar Chimney as cooling	
Figure 4.15: Temperature Distribution on Surface of Solar PV	62
Integrated with Solar Chimney and wire mesh as cooling	
Figure 4.16: Temperature of Solar absorber against Solar Radiation	63
On 27 th June 2022	
Figure 4.17: Temperature of Solar absorber against Solar Radiation	64
On 27 th June 2022	
Figure 4.18: Temperature of Solar absorber against Solar Radiation	64
On 27 th June 2022	

Figure 4.19: Comparison of Air Temperature in solar collector and

Solar o	chimney on 27 th June 2022	
Figure 4.20: Comp	arison of Air Temperature in solar collector and	66
Solar o	chimney on 28 th June 2022	
Figure 4.21: Comp	arison of Air Temperature in solar collector and	66
Solar o	chimney on 29 th June 2022	
Figure 4.22: Comp	arison of air flow rate against Solar radiation	68
On 27	^{7th} June 2022	
Figure 4.23: Comp	arison of air flow rate against Solar radiation	68
On 27	^{7th} June 2022	
Figure 4.24: Comp	arison of air flow rate against Solar radiation	69
On 27	^{7th} June 2022	
Figure 4.25: Comp	arison of air temperature against solar radiation	70
on 27	th June 2022	
Figure 4.26: Comp	arison of air temperature against solar radiation	70
on 27	th June 2022	
Figure 4.27: Comp	arison of air temperature against solar radiation	71
on 27	th June 2022	

LIST OF SYMBOLS

Poutput	-	Power Output
P _{input}	-	Power Input
V_m	-	Maximum Voltage
I_m	-	Maximum Current
η_{pv}	-	Efficiency of Solar Panel
Ι	-	Solar Radiance

LIST OF APPENDIX

		page
Appendix A	Raw Result of Configuration 1, Configuration 2	85
	Configuration 3 on 27 th June 2022	
Appendix B	Raw Result of Configuration 1, Configuration 2	87
	Configuration 3 on 28 th June 2022	
Appendix C	Raw Result of Configuration 1, Configuration 2	89
	Configuration 3 on 28 th June 2022	
Appendix D	Detail Dimension of prototypes	91
Appendix E	Calculation mass flow rate of air	94

CHAPTER 1

INTRODUCTION

1.1 Overview

Background and principles of the cooling system of solar photovoltaic (PV) was explained in section 1.1. Problem statement, research objectives, scope of work, general research methodology, research contribution and research commercialization was discussed on section 1.2 to section 1.8.

1.2 Research Background

A rapid growth of populations increases the dependency of electricity. A big uses of fossil fuels for the electricity power generation while its sources lessen each decade and emitting hazardous emissions lead to global warming and bad health impacts. New alternative which is using renewable energy such as solar, hydropower, wind etc. By using renewable energy, we can reduce our reliance on fossil fuels, thus prevent greenhouse effect which mainly causes by electricity generation (Jonathan et al., 2019). To improve the energy efficiency, solar chimney is use to provide good ventilation and control temperature. Solar chimney is a system of passive solar cooling and heating which take part in natural processes such as convection, conduction and radiation (Donev et al., 2021). Solar chimney required no external energy to operate while maintaining its functionality. The material of the solar chimney is black or dark to maximize the absorbing heat from the radiations and to minimize the reflection of the sunlight.

The process of the heating is rather simple, the air inside the solar chimney will heated when solar radiation transfer heat to the body of the chimney. As the air inside is heated, it will flow in upward direction. The hot air that flows out from the

chimney will then replace by cold air by convection process (Bernards et al., 2003).

Solar photovoltaic (PV) system is one of renewable energy that largely use to generate electrical energy nowadays. The efficiency of the solar PV is about 15% - 20% (Saleem et al., 2019). Therefore, it is crucial to maintain the efficiency as possible. The efficiency will gradually decrease when the operational temperature increased (Lupu et al., 2018). The reason that the surface of the PV panel is overheating due to high ambient temperature and excessive solar radiation (Moharram et al., 2013). The excessive temperature decreases the efficiency of PV panel. The solar cells temperature increases while the maximum power output is decreasing. The normal operating temperature for PV panel is 35 °C while its maximum allowable operating temperature (MAT) is 45 °C. There are many ways to cool the PV panels such as Hybrid Photovoltaic/Thermal (PV/T) solar system. Its system comprise of solar PV panels and a cooling system. The cooling agent are air or water which is circulated around photovoltaic panels to cool the solar cells. Thus, the purpose of this project is to design a cooling system for solar PV using solar chimney which is quite low cost and required little maintenance.

1.3 Problem Statement

The solar PV performance decreased when its surface or the solar cell overheated. Hence, cooling system is compulsory to maintain its efficiency and prevent fast damage on solar PV itself. Therefore, solar chimney is taking part in cooling system of the solar PV. Other than that, cold inflow, cross wind and hot air recirculation decrease the performance of the solar chimney (Chu et al., 2011). The side wall can lessen the influence of the cross wind on the solar chimney, but cold inflow or flow reversal effects still present in the chimney, as can be observed in the solar chimney, according to the study (Mizanur et al., 2018). The wire mesh screen assisted chimney, which can greatly reduce cold inflow, recover draught loss, and increase air flow rate in the chimney (Chu et al., 2011) in 2011. The same approach will be applied to the solar chimney ventilation system, with the goal of determining the impact of wire mesh screens on solar chimney performance.

1.4 Research Objectives

The objectives of this project:

- 1. Study the effect of wire mesh screen on solar chimney in a solar pv setup.
- 2. To study the effect of solar chimney on solar pv cooling.
- 3. To compare the efficiency of solar panel without solar chimney, with solar chimney and with solar chimney and wire mesh

1.5 Scope of works

Scope of work is established as a way to regulate the flow of this project. The scope of work in this study includes:

- i. Studying and reviewing past research papers that is related to solar pv cooling, solar chimney and wire mesh as guide for any considerations for the project.
- ii. Planning of a solar PV cooling assisted solar chimney prototype which includes the material selections for the body part of solar pv cooling system.
- iii. Using SOLIDWORK software to design the systems.
- iv. Planning and fabricating solar pv cooling system
- v. Conducting the experiment, to determine the solar output power, solar panel efficiency for three configurations which is solar pv only, solar pv with solar chimney as cooling system and the combination of solar chimney and wire mesh screen.
- vi. Making documentation of this project

1.6 General Research Methodology

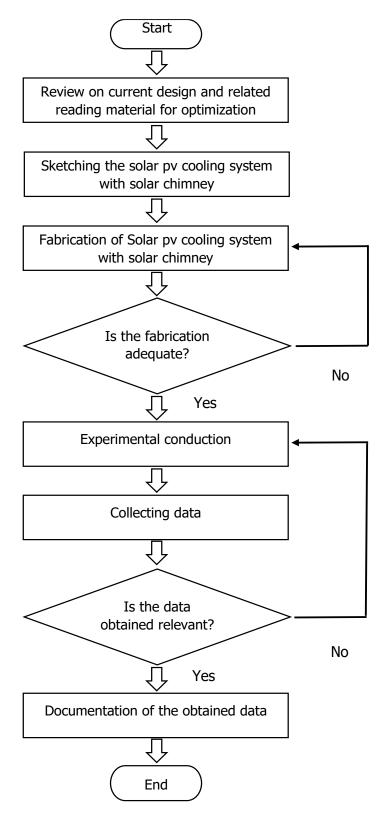


Figure 1.1: Flow Chart for general methodology

1.7 Research Contribution

This project can make some contribution to increase the efficiency of solar pv by installing passive cooling system which is simple, easy to fabricate and low cost. The implementation of solar chimney as solar pv cooling system may be use widely as it is simple yet increasing the solar output power and easy to install it even in every house. The optimization of this implementation would increase the usage of solar panel system as a renewable energy worldwide.

1.8 Research Commercialization

Since the implementation of solar chimney in solar PV cooling which required no auxiliary energy, it is low cost in making and operating it, it is also required less maintenance. The government of Malaysia already started to implement solar energy as one of their sources of electricity energy generation and with the introduction of solar chimney in solar PV cooling, its reduce the amount of cost to build the solar PV system while maintaining the efficiency of photovoltaic cells.

1.9 Research Gantt Chart

No.	Item	Week													
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	First Project Briefing														
2	Project Proposal														
3	Proposal submission														
4	Literature review														
5	Writing of the project progress report														
6	Editing of the project progress report														
7	Submission project report report progress														
8	Project 1 presentation														

Table 1.1: Gantt Chart for Semester 1 Session 2021/2022

No.	Item		Week													
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	Discussion with															
	supervisor															
2	Testing and															
	experimental															
3	Data analysis															
4	Modification and															
	optimization															
5	Retest and															
	Analysis															
6	Verification of															
	result															
7	Writing and															
	editing final															
	report															
8	Final report															
	submission															
9	Project 2															
	presentation															
10	Thesis correction															
11	Submission hard															
	bound thesis															

Table 1.2: Gantt Chart for Semester 2 Session 2021/2022

