Characterization of Potential Cellulose from *Hylocereus Polyrhizus* (Dragon Fruit) peel: A Study on Physicochemical and Thermal Properties

ABSTRACT

The strict environmental regulations to overcome the drawbacks of consumption and disposal of nonrenewable synthetic materials have motivated this investigation. The physical, chemical, morphological, and thermal properties of *Hylocereus Polyrhizus* peel (HPP) powder obtained from the raw materials were examined in this study. The physical properties analyzes of *Hylocereus Polyrhizus* peel (HPP) powder discovered that the moisture content, density, and water holding capacity were 9.70%, 0.45 g/cm³, and 98.60%, respectively. Meanwhile, the chemical composition analysis of Hylocereus Polyrhizus peel (HPP) powder revealed that the powder was significantly high in cellulose contents (34.35%) from other biopeel wastes. The crystallinity index of *Hylocereus Polyrhizus* peel (HPP) powder was 32.76%, according to further X-ray diffraction (XRD) analysis. The thermal stability of *Hylocereus Polyrhizus* peel (HPP) powder was examined using thermogravimetric analysis (TGA) and found thermally stable at 204°C. The morphological study via scanning electron microscopy (SEM) showed a shriveled and irregular geometry surface. *Hylocereus Polyrhizus* peel (HPP) powder demonstrated the peak in the range representing the major functional groups responsible for pectin's properties. Thus, the findings revealed that the *Hylocereus Polyrhizus* peel (HPP) powder has the potential for the development of biodegradable and renewable materials.