A robust computational investigation on C60 fullerene nanostructure as a novel sensor to detect SCN⁻

ABSTRACT

This study explored on the adsorption properties and electronic structure of SCN⁻ via density functional theory analysis on the exterior surfaces of C₆₀ and CNTs using B3LYP functional and 6-31G^{**} standard basis set. Then adsorption of SCN⁻ through nitrogen atom on the C60 fullerene is electrostatic (-48.02 kJ mol⁻1) in comparison with the C₅₉Al fullerene that shows covalently attached to fullerene surface (-389.10 kJ mol⁻1). Our calculations demonstrate that the SCN⁻ adsorption on the pristine and Al-doped single-walled CNTs are -173.13 and -334.43 kJ mol⁻1, indicating that the SCN⁻ can be chemically bonded on the surface of Al-doped CNTs. Moreover, the adsorption of SCN⁻ on the C₆₀ surface is weaker in comparison with C₅₉B, C₅₉Al, and C₅₉Ga systems but its electronic sensitivity improved in comparison with those of C₅₉B, C₅₉Al, and C₅₉Ga fullerenes. The evaluation of adsorption energy, energy gap, and dipole moment demonstrates that the pure fullerene can be exploited in the design practice as an SCN⁻ sensor and C₅₉Al can be used for SCN⁻ removal applications