TACHEOMETRY BUILDING SURVEY: A COMPARISON BETWEEN EDM VS PHOTOGRAMMETRY

LIM HONG YI

FACULTY OF ENGINEERING UNIVERSITY MALAYSIA SABAH (UMS) 2021

BORANG PENGESAHAN TESIS
JUDUL : TACHEOMETRY BUILDING SURVEYING: A COMPARISON BETWEEN EDM AND PHOTOGRAMMETRY
IJAZAH : _SARJANA MUDA KEJURUTERAAN AWAM
SAYA : LIM HONG YI SESI PENGAJIAN : 2021/2022 (HURUF BESAR)
Mengaku membenarkan tesis *(LPSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-
 Tesis adalah hak milik Universiti Malaysia Sabah. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. Sila tandakan (/)
SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di AKTA RAHSIA RASMI 1972)
TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
Disahkan oleh:
LIM HOボG YJ (TANDATANGAN PENULIS) PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH (TANDATANGAN PUSTAKAWAN)
Alamat Tetap:
Catatan: *Potong yang tidak berkenaan. *Jika tesis ini SULIT dan TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD. *Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana Secara Penyelidikan atau disertai bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).
UNIVERSITI MALAYSIA SABA

DECLARATION

I hereby declare that this thesis, submitted to University Malaysia Sabah as partial fulfillment of the requirements for the degree of Bachelor of Civil Engineering. This thesis has not been submitted to any other university for any degree. I also certify that the work described herein is entirely my own, except for quotations and summaries sources of which have been duly acknowledged.

This thesis may be made available within university library and may be photocopied or loaned to other libraries for the purpose of consultation.

Lim Hong Yi

30 JUNE 2022

CERTIFICATION

- NAME : LIM HONG YI
- MATRIC NO : **BK18110125**
- TITLE : TACHEOMETRY BUILDING SURVEY: A COMPARISON BETWEEN EDM VS PHOTOGRAMMETRY
- DEGREE : BACHELOR'S DEGREE OF CIVIL ENGINEERING
- FIELD : CIVIL ENGINEERING

VIVA DATE :

CERTIFIED BY,

SIGNATURE

SINGLE SUPERVISION

SUPERVISOR

IR. LIM CHUNG HAN

ACKNOWLEDGEMENT

First and foremost, praises and thanks to the God for showering me with lots of blessings throughout my thesis writing. This thesis could not be completed without the support and motivation of many people. Deepest thank to my Supervisor, IR. Lim Chung Han for his great patience to guide me in this thesis. He shared his knowledge and experiences with me especially in surveying that helps me to enhance my surveying skills and knowledges.

Besides that, I would like to use this opportunity to express my thanks to my beloved family that giving me a lot of support not only in term of financial but also their understanding. I am very appreciating to everything that was given to me. In addition, I feel very grateful to have such helpfulness course mates that keep motivating and lend me a hand when I need help.

Lastly, thank you to those who, directly or indirectly, help me and share the knowledges from the beginning towards the end of my thesis writing.

ABSTRACT

Building surveying plays a vital role in a building construction project where it helps to establish the location and leveling of the building. There are several types of building surveying method such as tacheometry surveying, LIDAR surveying, theodolite surveying, plane table surveying, compass surveying, and photogrammetry surveying. Among of them, photogrammetry surveying is a method that brings a lot of benefits to the surveyor in term of speed and effectiveness. However, the accuracy of the photogrammetry surveying has been questioned by engineers. Thus, in this project, the main objective is to develop a procedure of carrying out photogrammetry surveying to create a 3D model of the library of University Malaysia Sabah (UMS), Kota Kinabalu, Sabah. On behalf of this, a tacheometry surveying will also be being conducted on the same building by using total station to do a comparison with photogrammetry survey in term of accuracy. The comparison of accuracy between both surveying methods will be done by using the principle of root mean square error and standard deviation. Lastly, the result of analysis was analyzed and found out that the horizontal distance of the 3D model from photogrammetry survey was classified as Band J while the vertical distance was classified as Band H.

ABSTRAK

KAJIAN BINAAN TACHEOMETRI: PERBANDINGAN ANTARA EDM VS FOTOGRAMETRI

Ukur bangunan memainkan peranan yang sangat penting dalam projek pembinaan. Ukur bangunan digunakan untuk menetapkan lokasi dan menyemak kerataan bangunan. Terdapat pelbagai jenis kaedah ukur bangunan seperti takeometri, LIDAR, teodolit, meja satah , kompas dan fotogrametri. Antaranya, kaedah ukur jenis fotogrametri merupakan kaedah yang membawa banyak faedah kepada juruukur dari segi kelajuan dan keberkesanan. Walau bagaimanapun, ketepatan kaedah ukur jenis fotogrametri telah dipersoalkan oleh jurutera. Justeru, dalam projek ini, objektif utama adalah untuk mengeluarkan satu prosedur untuk menjalankan kaedah ukur jenis fotogrametri untuk mencipta satu model 3D perpustakaan Universiti Malaysia Sabah (UMS), Kota Kinabalu, Sabah. Dengan ini, kaedah ukur jenis tacheometri juga akan dijalankan dengan bangunan yang sama dengan mengunakan stesen total untuk membuat satu perbandingan dengn kaedah ukur jenis fotogrametri dari segi ketepatan. Perbandingan ketepatan antara kedua-dua kaedah ukur akan dilakukan dengan menggunakan kaedah punca min kuasa dua. Akhir sekali, hasil analisis dianalisis dan mendapati bahawa jarak mendatar model 3D dari tinjauan fotogrammetri diklasifikasikan sebagai Band J manakala jarak menegak diklasifikasikan sebagai Band H.

LIST OF CONTENT

LIST OF TABLES	1 - 2
LIST OF CHARTS	2 - 3
LIST OF FIGURES	3 - 6
LIST OF SYMBOLS	7
LIST OF ABBRECIATIONS	8
CHAPTER 1: INTRODUCTION	
1.1 BACKGROUND OF STUDY	
1.1.1 HISTORY EVIDENCE OF SURVEYING	9 - 10
1.1.2 SURVEYING	11
1.1.3 CIVIL SURVEYING	11 - 13
1.1.4 CREATION AND EVOLUTION OF SURVEY INSTRUMENT	14 - 23
1.1.5 METHOD OF SURVEYING IN CIVIL ENGINEERING	24 - 27
1.2 PROBLEM STATEMENT	28
1.3 OBJECTIVES OF STUDY	28
1.4 SCOPE OF WORK	29
1.5 SIGNIFICANCE OF STUDY	30
CHAPTER 2: LITERATURE REVIEW	
2.1 BUILDING INFORMATION MODELLING (BIM)	31 - 32
2.2 TACHEOMETRY SURVEYING	32
2.2.1 METHOD OF MEASUREMENT	32 - 33
2.2.2 ERROR OF EDM	34 - 35

PAGE

ς

2.3 PHOTOGRAMMETRY SURVEYING	36
2.3.1 TYPES OF PHOTOGRAMMETRY	36 - 37
2.3.2 COMMON SOFTWARE FOR PHOTOGRAMMETRY	38 - 39
2.3.3 CAMERA CALIBRATION	39 - 40
2.3.4 IMPACT TOWARDS THE ACCURACY OF PHOTOGRAMMETRY	41 - 43
2.3.5 ACCURACY OF PHOTOGRAMMETRY: CASE STUDY	43 - 47
2.4 MEASUREMENT OF ACCURACY	47 - 48
2.5 SURVEY ACCURACY BANDING	48 - 49
CHAPTER 3: RESEARCH METHODOLOGY	
3.1 FLOWCHART OF METHODOLOGY	51 - 52
3.2 SURVEYING USING EDM METHOD	
3.2.1 APPARATUS	53 - 55
3.2.2 SOFTWARE	55 - 56
3.2.3 PROCEDURE	56 - 59
3.3 SURVEYING USING PHOTOGRAMMETRY METHOD	
3.3.1 APPARATUS	60 - 61
3.3.2 SOFTWARE	62
3.3.3 IMAGE ACQUISITION PLAN	62 - 63
3.3.4 OVERALL PROCEDURE	64 - 65
3.4 COMPARISON PROCESS	66
3.5 3D MODEL OF BEAR DOLL	67

CHAPTER 4: RESULT AND DISCUSSION

4.1 OVERVIEW

APPENDIX	110 - 114
REFERENCE	105 – 109
5.2 RECOMMENDATION	104
5.1 CONCLUSION	103
CHAPTER 5: CONCLUSION	
4.6 DISCUSSION	96 - 102
4.5.2 COMPARISON OF VERTICAL DISTANCE	91 - 96
4.5.1 COMPARISON OF HORIZONTAL DISTANCE	85 - 90
4.5 COMPARISON OF DATA (OBJECTIVE THREE)	
4.4 TOPOGRAPHIC SURVEY USING EDM (OBJECTIVE TWO)	78 - 84
4.3 PHOTOGRAMMETRY SURVEY (OBJECTIVE ONE)	70 - 78
4.2 SELECTED BUILDING	68 - 70

LIST OF TABLES

TABLE		PAGE
TABLE 1.1	TYPES OF SURVEYING	12 - 13
TABLE 1.2	CREATION AND EVOLUATION OF SURVEYING INSTRUMENT	17 - 18
TABLE 1.3	HISTORY OF CAMERA	20 - 22
TABLE 1.4	HISTORY OF DRONE	23
TABLE 1.5	METHOD OS SURVEYING	24 - 27
TABLE 2.1	ERROR DUE TO MISALIGNMENT OF PRISM	34
TABLE 2.2	ERROR DUE TO TEMPERATURE	35
TABLE 2.3	COMPARISON BETWEEN PHOTOGRAMMETRY SOFTWARE	38 - 39
TABLE 2.4	CALIBRATION OF CAMERA OF SMARTPHONE POCO X3	40
TABLE 2.5	RESULT OF COMPARISON BETWEEN TAPE MEASUREMENT AND MODEL MEASUREMENT	44
TABLE 2.6	RESULT OF COMPARISON BETWEEN TAPE MEASUREMENT , SEMI-AUTOMATIC PHOTOGRAMMETRY AND AUTOMATIC PHOTOGRAMMETRY	46
TABLE 2.7	RESULF OF THE ACCURACY OF 3D MODEL (COMBINATION OF LIDAR AND PHOTOGRAMMETRY)	47
TABLE 2.8	SURVEY DETAIL ACCURACY BAND TABLE	48
TABLE 4.1	HORIZONTAL DISTANCE BETWEEN THE SELECTED POINTS	74 - 76
TABLE 4.2	HEIGHT FOR EACH SELECTED POINTS	76 - 78
		MS

TABLE 4.3	HORIZONTAL DISTANCE BETWEEN THE SELECTED POINTS	80 - 82
TABLE 4.4	VERTICAL DISTANCE OF THE SELECTED POINTS	82 - 84
TABLE 4.5	COMPARISON OF HORIZONTAL DISTANCE	85 - 87
TABLE 4.6	COMPARISON OF VERTICAL DISTANCE	91 - 93

LIST OF CHARTS

CHART		PAGE	
CHART 2.1	IMPACT TOWARDS THE ACCURACY OF PHOTOGRAMMETRY	41	
CHART 2.2	GAUSSIAN DISTRIBUTION	48	
CHART 3.1	FLOWCHART OF METHODOLOGY	51	
CHART 3.2	DETAIL PROCEDURE IN PIX4D MAPPER	64	
CHART 3.3	DETAIL PROCEDURE IN AUTODESK RECAP	65	
CHART 3.4	DETAIL PROCEDURE IN AUTODESK REVIT	65	
CHART 4.1	DEVELOPED PROCEDURE FOR PHOTOGRAMMETRY SURVEY	70	
CHART 4.2	HORIZONTAL DISTANCE OF EACH CONTINUOUS POINTS	88	
CHART 4.2	REGRESSION ANALYSIS (HORIZONTAL DISTANCE)	89	
CHART 4.4	NORMAL DISTRIBUTION GRAPH OF DIFFERENCE BETWEEN THE MEASURED HORIZONTAL DISTANCE BY EDM AND PHOTOGRAMMETRY	89	
CHART 4.5	VERTICAL DISTANCE OF POINTS BY EDM AND PHOTOGRAMMETRY	94	

CHART 4.6	REGRESSION ANALYSIS (VERTICAL DISTANCE)	95
CHART 4.7	NORMAL DISTRIBUTION GRAPH OF DIFFERENCE OF	95
	VERTICAL DISTANCE BETWEEN EDM AND	
	PHOTOGRAMMETRY	

LIST OF FIGURES

FIGURE		PAGE	
FIGURE 1.1	PHYRAMID OF GIZA	9	
FIGURE 1.2	MOSUL MESOPOTANIA IRAQ	10	
FIGURE 1.3	SCRIBE DJESERKARESENEB CARRYING OUT A SURVEY OF THE CROPS	10	
FIGURE 1.4	MAYA'S CUBIT	14	
FIGURE 1.5	TRIANGULAR LEVEL	15	
FIGURE 1.6	HAN DYNASTY MAGNETIC COMPASS	15	
FIGURE 1.7	THE GROME- ANCIENT ROMAN EARTHMOVING TOOL	16	
FIGURE 1.8	PLANE TABLE	17	
FIGURE 1.9	THEODOLITE	19	
FIGURE 1.10	TOTAL STATION	19	
FIGURE 1.11	DAGUERREOTYPE	20	
FIGURE 1.12	FIRST HAND-HELD CAMERA	21	
FIGURE 1.13	KOTAK CAMERA	21	

FIGURE 1.14	LEICA CAMERA	21
FIGURE 1.15	POLAROID CAMERA	22
FIGURE 1.16	DIGITAL CAMERA	22
FIGURE 2.1	3D MODEL OF DEPARTMENT OF CIVIL ENGINEERING	43
FIGURE 2.2	3D MODEL OF BARUTANA	45
FIGURE 2.3	BEAUFORT CASTLE	45
FIGURE 3.1	TOTAL STATION (1)	53
FIGURE 3.2	TOTAL STATION (2)	53
FIGURE 3.3	OPTICAL SURVEY PRISM (1)	54
FIGURE 3.4	OPTICAL SURVEY PRISM (2)	54
FIGURE 3.5	LASER DISTANCE METER	55
FIGURE 3.6	AUTODESK REVIT 2021	55
FIGURE 3.7	CHECKING ERROR OF TOTAL STATION	57
FIGURE 3.8	REMOTE ELEVATION MEASUREMENT (REM)	58
FIGURE 3.9	OFFSET SURVEY	59
FIGURE 3.10	CANON EOS 600D	60
FIGURE 3.11	DJI MAVIC AIR 2	61
FIGURE 3.12	SOFTWARE OF PHOTOGRAMMERY	62
FIGURE 3.13	TECHNIQUE IN TAKING PHOTO OF EXTERIOR BUILDING	63
FIGURE 3.14	TECHNIQUE IN TAKING PHOTO OG EXTERIOR BUILDING (EABLE VIEW)	63

FIGURE 3.15 3D MODEL OF BEAR DOLL

67

FIGURE 4.1	DISTANCE OF MAIN CAMPUS LIBRARY FROM KOTA KINABALU TOWN	69
FIGURE 4.2	BUILDING OF LIBRARY UNIVERSITY MALAYSIA SABAH	69
FIGURE 4.3	3D MODEL OF LIBRARY UMS GENERATED IN PIX4D MAPPER	71
FIGURE 4.4	QUALITY CHECK OF THIS MODEL FROM PIX4D MAPPER	71
FIGURE 4.5	THE CAMERA POSITION	72
FIGURE 4.6	ORIENTATION UNCERTAINTIES	72
FIGURE 4.7	POINT CLOUD OF THE BUILDING IN AUTODESK REVIT 2023	73
FIGURE 4.8	BOUNDARIES OF BUILDINGS	73
FIGURE 4.9	POSITION OF TRANSFER POINTS, SELECTED POINTS	79
	AND SHOOTING DIRECTION	
FIGURE 4.10	BOUNDARIES OF BUILDINGS WITH NUMBERING OF EACH	79
	SELECTED POINTS	
FIGURE 4.11	3DMODEL OF LIBRARY UMS IN AUTODESK REVIT	79
FIGURE 4.12	BUILDING PARTS THAT BLOCKED BY OBSTCLES (1)	97
FIGURE 4.13	BUILDING PARTS THAT BLOCKED BY OBSTCLES (2)	97
FIGURE 4.14	BUILDING PARTS THAT BLOCKED BY OBSTCLES (3)	98
FIGURE 4.15	IRREGULAR SURFACE OF THE CONNECTION BETWEEN UPPERWALL TO THE ROOF (1)	98
FIGURE 4.16	IRREGULAR SURFACE OF THE CONNECTION BETWEEN UPPERWALL TO THE ROOF (2)	98
FIGURE 4.17	3D model created with different angle and height (1)	99
FIGURE 4.18	3D model created with different angle and height (2)	99
FIGURE 4.19	3D model created with different angle and height (3)	99 A SABAH

FIGURE 4.20	3D model created with different angle and height (4)	99
FIGURE 4.21	FAILED 3D MODEL	100
FIGURE 4.22	ERROR DUE TO THE GAP BETWEEN THE WALL AND PRISM	101
FIGURE 4.23	COORDINATE OF THE TOTAL STATION	101

LIST OF SYMBOLS

Н	HEIGHT
mm	MILLIMETER
km	KILOMETER
m	METER
o	DEGREE
σ	SIGMA
Х	ERROR
Ν	NUMBER OF ERROR
μ	MEAN OF ERROR

LIST OF ABBREVITIONS

- EDM ELECTRONIC DISTANCE MEASUREMENT
- UAV UNMANNED AERIAL VEHICLE
- BIM BUILDING INFORMATION MODELLING
- RICS ROYAL INSTITUTION OF CHARTERED SURVEYORS
- LIDAR LIGHT DETECTION AND RANGING
- AEC ARCHITECTURE, ENGINEERING AND CONSTRUCTION
- RMSE ROOT MEAN SQUARE ERRORS
- NGS NATIONAL GEODETIC SURVEY
- DSLR DIGITAL SINGLE-LENS REFLEX CAMERA
- REM REMOTE ELEVATION MEASUREMENT
- GSD GROUND SAMPLING DISTANCE
- RCP AUTOCAD RECAP

CHAPTER 1

INTRODUCTION

1.1 Background of Study

1.1.1 History Evidence of Surveying

Figure 1.1: Pyramids of Giza Source: National Geographic

Surveying is most likely to have originated in ancient Egypt. The Great Pyramid of Khufu at Giza, which is 755 feet (230 meters) long and 481 feet (147 meters) high, was erected in 2700 BCE. Its near-perfect squareness and north–south orientation attest to the ancient Egyptians' surveying prowess.

Figure 1.2: Mosul Mesopotania Iraq Air View of River Tigris Mosul Sources: Shutterstock

Besides that, the rich valleys and plains of the Tigris, Euphrates, and Nile rivers have evidence of some type of border surveying dating back to 1400 BCE. Sumerian clay tablets provide land measuring data as well as city and agricultural area designs. Land plot boundaries have been protected by preserving boundary stones. (John Brock, 2019)

Figure 1.3: Scribe Djeserkareseneb carrying out a survey of the crops Source: OsirisNet 2001

On the side of a tomb at Thebes (1400 BCE), a picture of land measurement depicts head and rear chainmen measuring a grainfield with what seems to be a rope with knots or markings at uniform intervals. Many people are seen. According to their clothes, two of them are of great status, most likely a land supervisor and a border stone inspector. (John F. 2005)

1.1.2 Surveying

The practice, profession, art, and science of identifying the terrestrial or threedimensional locations of points, as well as the distances and angles between them, is known as surveying or land surveying. A land surveyor is a person who works in the field of land surveying. They are working on the points that are usually found on the Earth's surface and are frequently used to create maps and boundaries for ownership, locations, such as the designed positions of structural components for construction or the surface location of subsurface features, or other government or civil law-mandated purposes, such as property sales. Geodesy, geometry, trigonometry, regression analysis, physics, engineering, metrology, computer languages, and the law are all worked by surveyors.

1.1.3 Civil Surveying

Civil engineering is a difficult field to master. Apart from military engineering, it is the second-oldest engineering subject with a wide range of features. It is a type of engineering that entails analyzing and documenting information about a specific region of land. (Philip Kosky,2013) These findings can subsequently be utilized to aid in the planning and for the success of construction projects range from infrastructure to residential and commercial buildings. In civil engineering, surveying is used to discover the three-dimensional connections between various sites. Engineers will use the information such as lengths and angles between points and lines to determine how to develop plans for public buildings, residences, roads, bridges, and other types of construction and infrastructure projects. Engineers will measure the points on the earth's surface, or they may also be found the points in space. Civil surveying incorporates components of other disciplines, such as mathematics, geography, and law, since complicated, accurate spatial connections and boundary lines are so important to this process. Civil surveying also necessitates the use of specialized equipment and satellite-

based GPS data. For precise measurements, high-precision electromechanical and optical equipment is also required.

Civil survey is beneficial in a wide range including:

- Planning new construction projects
- Creating topographical or marine navigational maps
- Planning paths for roads, railways, power lines, water supply lines and others
- Identifying the boundaries of properties
- Determining land ownership
- Identifying the location of existing infrastructure
- Creating 3D modeling of structure
- Charting navigational routes

There a several types of civil engineering surveys which is construction surveying, deformation surveying, geological surveying, hydrographic surveying, and topographic surveying.

Construction Surveying	Construction surveying is important for evaluating the
	layout of buildings, roads, electricity lines, gas mains,
	and other infrastructure in the vicinity of possible
	construction sites. By analyzing the data, the planning
	of a construction projects will be easier.
Deformation Surveying	Deformation surveying is used to determine if a
	geographical or man-made feature is changing shape,
	such as a road, foundation, shoreline, or river.
	Engineers record the three-dimensional coordinates of
	specific sites in deformation surveying. They will re-
	record the coordinates after some time to see if both
	data have any differences in term of magnitude. A

Table 1.1: Types of Surveying

	comparison of the two data sets can tell whether there
	has been any deformation or displacement.
Geological Surveying	Rivers, valleys, mountains, and other physical elements
	of the terrain are all mapped out via geological
	surveying. For geological surveying, satellite data is
	crucial, and engineers commonly use the satellite data
	or aerial images to aid them in their job.
Hydrographic Surveying	Hydrographic surveying focuses on determining the
	location of coasts. The Coast Guard and marine rescue
	operations are working on the navigational maps that is
	created by hydrographic surveying. It does help the
	conservationists in the management of the coastal
	resources.
Topographic Surveying	Topographic surveying examines a landscape's form
	and physical characteristics. Engineers measure the
	elevation of various geographical locations and then
	construct contour lines to show areas of similar
	elevation. These data may subsequently be used to
	develop topographical maps and analyze topography for
	future construction or infrastructure projects.

1.1.4 Creation and evolution of Survey Instruments

Surveying and mapping instruments have progressed from the compass and chain, through transits and tapes, to optical-reading theodolites, electronic distance measuring equipment, aerial photogrammetry, and finally to high-speed computers, the global positioning system, robotic total station instruments, digital photogrammetry, and satellite remote sensing systems. (Paul R. Wolf, 2002)

a. Ancient Surveying Instrument

Figure 1.4: Maya's Cubit (18th Dyn., Louvre Museum, N 1538) Source: Photo courtesy of Alain Guilleux

In Ancient Egypt, surveying is very important in establishing the boundaries to check for ownership of the fields. Egyptians uses Cubit Rod for distance measuring. Cubit Rod is a type of rod that made up from wood, slate, or stone with markings to show the subdivisions. The units that is used in Cubit Rod are Digits, Palm and Cubit. Cubit is based on the length from the bent elbow to the tips of the fingers; Palm is based on the width of the palm of the hand; Digits is based on the width of a human fingers. The measurement was set as four Digits are equal to one Palm while seven Palms are equal to one Cubit. As 100 Cubit are joined together, it comes out with another Rods named Cord. (Fr. Monnier,2016)

