EFFECT OF ECO-PROCESSED POZZOLAN (EPP) AND CALCIUM OXIDE TO PEAT SOIL DRY DENSITY

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2022

EFFECT OF ECO-PROCESSED POZZOLAN (EPP) AND CALCIUM OXIDE TO PEAT SOIL DRY DENSITY

MOHD SUHARMIN BIN JAMES

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2022

UNIVERSITI MALAYSIA SABAH

	BORAN	G PENGESAHAN TESIS
JUDUL : _	PENGARUH KALSIUM OKSIDA (EPP) UNTUK PENSTABILAN T	A CAMPUR DENGAN POZZOLAN ECO-PROCESS FANAH GAMBUT
IJAZAH :	SARJANA MUDA DENGAN KI	EPUJIAN KEJURUTERAAN AWAM (HK01)
SAYA :	MOHD SUHARMIN BIN JAMES (Huruf Besar)	Sesi Pengajian : 2021/2022
-	u membenarkan tesis *(LPSM/Sarjana/Do engan syarat-syarat kegunaan seperti beri	ktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia kut:-
2. P 3. P t		Sabah. benarkan membuat salinan untuk tujuan pengajian sahaja. an tesis ini sebagai bahan pertukaran antara institusi pengajian
	seperti yang terma	klumat yang berdarjah keselamatan atau kepentingan Malaysia aktub di AKTA RAHSIA RASMI 1972) klumat TERHAD yang telah ditentukan oleh organisasi/badan di n dijalankan)
	TIDAK TERHAD	Disahkan oleh:
		ANITA BINTI ARSAD PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH
-	TANDATANGAN PENULIS)	(TANDATANGAN PUSTAKAWAN)
PETI	etap: KERAMAT, I SURAT 446 7, BELURAN	
	ARIKH:30 Jun 2022	(NAMA PENYELIA) TARIKH:
* *J m *-	nenyatakan sekali sebab dan tempoh tesis ini p	oktor Falsafah dan Sarjana Secara Penyelidikan atau disertai

DECLARATION

I hereby declare that this thesis, submitted to Universiti Malaysia Sabah as partial fulfilment of the requirements for the degree of Bachelor in Civil Engineering. This thesis has not been submitted to any other university for any degree. I also certify that the work described here is entirely my own, except for quotations and summaries sources of which have been duly acknowledged.

This thesis may be made available within university library and may be photocopied or loaned to other libraries for the purposes of consultation.

CERTIFICATION

- NAME : MOHD SUHARMIN BIN JAMES
- MATRIC NO. : BK18110265

:

- TITLE
 : EFFECT OF ECO-PROCESSED POZZOLAN AND CALCIUM

 OXIDE TO PEAT SOIL DRY DENSITY

 POZZOLAN (EPP) FOR PEAT SOIL STABILIZATION
- DEGREE : BACHELOR OF ENGINEERING
- FIELD : CIVIL ENGINEERING

VIVA DATE

SUPERVISOR

Ir. Ts. Dr. Habib Musa Bin Mohamad

ACKNOWLEDGEMENTS

لمُللَّه ٱلرَّحْمَد ٱلرَّحِيمِ يد

In the name of Allah, the Most Gracious and the Most Merciful,

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. Special appreciation goes to my supervisor, Ir. Ts. Dr. Habib Musa Bin Mohamad, for his supervision, enthusiastic guidance, and unending encouragement in all aspects during the completion of this thesis. His invaluable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research.

I would like to express my appreciation to the staff of Faculty of Engineering Laboratory, UMS, Mr. Julius Bin Sokodor, senior lab assistant and his colleague for their support and assisting in my laboratory work. My deepest and endless gratitude goes to both of my beloved parents James Enjap and Juraidah Laisam, my siblings, Sufiani, Sufiana, and Juraimin, for their never-ending love, prayers, support, companion, and encouragement.

Last but not least, sincere thanks to my friends under supervision of Ir. Ts. Dr. Habib Musa, Fahmie Izzudin, Syeddre Sutarno and Alistair Dylan, and to everyone, who directly or indirectly involved and contributed to this study, for their kindness and patience. Thank you very much.

Mohd Suharmin bin James 28th January 2022

ABSTRACT

Peat is a problematic soil and it is common problem that faced by engineers in construction. The characteristic that has been noted before which is, high moisture content, poor shear strength, great compressibility and long-term settlement. There are several past studies that showing peat soil treated using blended cement or Eco Processed Pozzolan (EPP). Normally, they will mix EPP with some chemical substance or waste material like fly ash, shredded waste tire chips, Calcium Oxide (CaO), Natrium Hydroxide (NaOH) and many others. For this research study, it focusses on stabilizing peat soil using EPP and CaO. There are three main testing that conducted in this research study, which are, Index Properties Testing and Compaction Test. For Index Properties testing, there were five (5) experiment conducted to study the index properties of disturbed peat soil which are, moisture content, fiber content, liquid limit, organic content, pH and specific gravity. Next, for the Compaction Test, using 2.5kg rammer to define optimum mixture of stabilizer that mixed with different volume, 5%, 10%, 15% and 20% of stabilizer. In this study, the expected result is to inspire and in-depth study the use of EPP material and chemical Cao as for peat soil stabilizer for better utilization problematic soil. The main finding was the mixture with the exact amount of moisture, EPP and Cao help stabilizing the soil and cured peat soil. Thus, this study confirms the idea to treat peat with EPP and Cao, enhancing the properties of peat soil and sustain the settlement over loading for period of time accordingly. 20% mixed of EPP and CaO produce the highest dry density, showing that dry density increases linearly with the amount of mixture to stabilize peat.

ABSTRAK

KESAN POZZOLAN (EPP) ECO-PROCESSED DAN KALSIUM OKSIDA KEPADA KEPADAT KERING TANAH GAMBUT

Tanah gambut adalah tanah yang bermasalah dan ia adalah masalah biasa yang dihadapi oleh jurutera dalam pembinaan. Ciri-ciri yang telah dinyatakan sebelum ini ialah, kandungan lembapan yang tinggi, kekuatan ricih yang lemah, kebolehmampatan yang hebat dan penyelesaian jangka panjang. Terdapat beberapa kajian lepas yang menunjukkan tanah gambut dirawat menggunakan simen campuran atau Eco Processed Pozzolan (EPP). Biasanya, mereka akan mencampurkan EPP dengan beberapa bahan kimia atau bahan buangan seperti abu terbang, serpihan tayar yang dicincang, Kalsium Oksida (CaO), Natrium Hidroksida (NaOH) dan lain-lain lagi. Bagi kajian penyelidikan ini, ia akan memberi tumpuan kepada penstabilan tanah gambut menggunakan EPP dan CaO. Terdapat tiga ujian utama yang dijalankan dalam kajian penyelidikan ini iaitu, Pengujian Sifat Indeks dan Ujian Pemadatan. Bagi ujian Sifat Indeks, terdapat lima (5) eksperimen yang dijalankan untuk mengkaji sifat indeks tanah gambut terganggu iaitu, kandungan lemba<mark>pan, kandun</mark>gan gentian, had cecair, kandungan organik, pH dan graviti tentu. Seterusnya, untuk Ujian Pemadatan, menggunakan rammer 4.5kg untuk menentukan campuran optimum penstabil yang akan dicampur dengan isipadu yang berbeza, 5%, 10% dan 15% penstabil. Ujian kekuatan ricih tidak bersaliran akan menggunakan ujian triaksial Disatukan Tidak Bersaliran (CU) untuk menentukan kekuatan ricih tanah gambut. Ia akan dijalankan menggunakan tiga beban berbeza, 13kPa, 25kPa dan 50kPa. Dalam kajian ini, hasil yang diharapkan adalah untuk memberi inspirasi dan kajian mendalam tentang penggunaan bahan EPP dan kimia Cao sebagai penstabil tanah gambut untuk penggunaan tanah bermasalah yang lebih baik. Penemuan utama ialah campuran dengan jumlah kelembapan yang tepat, EPP dan Cao membantu menstabilkan tanah dan mengawetkan tanah gambut. Oleh itu, kajian ini mengesahkan idea untuk merawat gambut dengan EPP dan Cao, mempertingkatkan sifat tanah gambut dan mengekalkan petempatan melebihi pemuatan untuk tempoh masa yang sewajarnya. 20% campuran EPP dan CaO menghasilkan ketumpatan kering tertinggi, menunjukkan bahawa ketumpatan kering meningkat secara linear dengan jumlah campuran untuk menstabilkan gambut..

TABLE OF CONTENT

THE INFLUENCE OF CALCIUM OXIDE MIXED DEFINED.	ERROR! BOOKMARK NOT
DECLARATION	
CERTIFICATION	
ACKNOWLEDGEMENTS	IV
ABSTRACT	v
ABSTRAK	VI
LIST OF FIGURES	x
LIST OF TABLES	ХП
LIST OF EQUATION	хш
CHAPTER 1 UNIVERSITI MALAY	SIA SABAH
1.1 Background Study	1
1.2Problem Statement	5
1.3 Objectives	7
1.4 Scope of Study	8
1.5 Expected Result	8
1.6 Significance of Study	8
1.7 Thesis Outline	10
CHAPTER 2	11
2.1 Introduction	11
2.2 Peat Soil	12
2.2.1 Index properties of Peat Soil	15
2.2.2 Distribution of Peat Soil	23
2.2.3 Problem of Peat Soil	30
23 Peat Soil Stabilization Method	31

2.3.1 Chemical Stabilizer for Peat Soil	36
2.3.2 Mechanical Test for Peat Soil Stabilization	41
2.5 Summary Chapter	47
CHAPTER 3	48
3.1 Introduction	48
3.2 Research Methodology	50
3.3 Site Location	51
3.4 Soil Preparation for Peat Sample	53
3.5 Index Properties Test of Peat Soil	54
3.5.1 Moisture Content Test for Peat Sample	55
3.5.2 Liquid Limit Test for Peat Sample	56
3.5.3 Specific Gravity Test for Peat Sample	58
3.5.4 pH Testing for Peat Sample	59
3.5.6 Fiber Content Testing for Peat Sample	60
3.5.7 Organic Content Test for Peat Sample	65
3.6 Standard Proctor Compactor for Peat Sample	66
3.8 Chapter Summary	67
CHAPTER 4 UNIVERSITI MALAYSIA SABAH	68
4.1 Introduction	68
4.2 Laboratory Testing	68
4.2.1 Moisture Content Test	69
4.2.2 Liquid Limit Test	71
4.2.3 Fiber Content Test	73
4.2.4 Specific Gravity Test	74
4.2.5 Organic Content Test	76
4.2.6 pH Value	78
4.2.7 Von Pos Testing	79
4.2.8 Compaction	80
CHAPTER 5	91
5.1 Introduction	91
5.2 Conclusion	91

F	REFERENCES	94
	5.3 Recommendation for Further Study	93
	5.2.2 Peat Behavior After Stabilized	93
		92
	5.2.1 Determination of Index Properties of Peat Sample Taken in Klias, Beauf	ort

LIST OF FIGURES

FIGURE 1.1: DISTRIBUTION OF LOWLAND PEATLANDS IN MALAYSIA	2
FIGURE 1.2: DISTRIBUTION OF PEATLAND IN SABAH	4
FIGURE 1.3: (I) & (II): SETTLEMENT ON PEAT SOIL IN PARIT NIPAH JOHOR	7
FIGURE 2.1: PEAT SOIL	15
FIGURE 2.2: PEATMAP	27
FIGURE 2.3: DISTRIBUTION OF LOWLAND PEATLAND IN MALAYSIA	28
FIGURE 2.4: LIQUID LIMIT OF STABILIZED PEAT	40
FIGURE 2.5: PLASTIC LIMIT OF STABILIZED PEAT	40
FIGURE 2.6: EFFECT OF WATER CONTENT ON THE DRY UNIT WEIGHT DURING	ì
COMPACTION OF A SOIL	42
FIGURE 2.7: EFFECT OF WATER CONTENT ON SOIL A) STRENGTH, AND B)	
HYDRAULIC CONDUCTIVITY	43
FIGURE 2.8: PROCTOR MOLDS AND RAMMERS (ASTM/AASHTO)	44
FIGURE 2.9: COMPACTION TEST RESULTS ON TREATED AND UNTREATED PEAT	Г 45
FIGURE 2.10: COMPACTION TEST RESULT ON TREATED AND UNTREATED PEAT	Г
SOIL	46
FIGURE 3.1: FLOWCHART OF RESEARCH	49
FIGURE 3.2: LOCATION OF KLIAS PENINSULAR, SABAH, MALAYSIA	51
FIGURE 3.3: LIQUID LIMIT APPARATUS	57
FIGURE 3.4: PH METER APPARATUS	59
FIGURE 3.5: BALANCE MACHINE	60
FIGURE 3.6: HOT PLATE	61
FIGURE 3.7: MUFFLE FURNACE	62
FIGURE 3.8: HOT AIR OVEN	63
FIGURE 3.9: MATERIAL USED IN FIBER CONTENT TEST	64
FIGURE 3.10: COMPACTION TEST APPARATUS	66
FIGURE 4.1 PEAT SAMPLE FOR MOISTURE CONTENT TEST	69
FIGURE 4.2 GRAPH FOR AVERAGE PENETRATION WITH MOISTURE CONTENT	72
FIGURE 4.3 FIBER CONTENT TEST	73
FIGURE 4.4 SPECIFIC GRAVITY TEST	74
FIGURE 4.5 LOSS OF IGNITION PROCESS	76
FIGURE 4.6 VON POS TESTING	79

FIGURE 4.7: GRAPH MOISTURE CONTENT VS DRY DENSITY (UNTREATED PEAT)81
FIGURE 4.8: MOISTURE CONTENT VS DRY DENSITY (5%)	83
FIGURE 4.9: GRAPH MOISTURE CONTENT VS DRY DENSITY (10%)	85
FIGURE 4.10: GRAPH MOISTURE CONTENT VS DRY DENSITY (15%)	86
FIGURE 4.11: GRAPH MOISTURE CONTENT VS DRY DENSITY (20%)	88
FIGURE 4.12: GRAPH MOISTURE CONTENT VS DRY DENSITY (5%, 10%, 15%,	
20%)	88

LIST OF TABLES

TABLE 1.1: DISTRIBUTION OF PEAT IN MALAYSIA	3
TABLE 2.1: LEVEL OF PEAT HUMIFICATION	14
TABLE 2.2: CHEMICAL AND PHYSICAL PROPERTIES OF PEAT SOIL	16
TABLE 2.3: PEAT BASIC PHYSICAL PROPERTIES	17
TABLE 2.4: TABULATED OF PEAT SOIL PROPERTIES	18
TABLE 2.5: SUMMARY OF DEFINITION AND SIGNIFICANT OF INDEX PROPERTIE	ΞS
	22
TABLE 2.6: GLOBAL DISTRIBUTION RESOURCES OF ORGANIC SOILS AND THEI	R
DISTRIBUTION	24
TABLE 2.7: RELATIVE IMPORTANCE AND REGIONAL DISTRIBUTION OF TROPIC	AL
ORGANIC SOILS	27
TABLE 2.8: TABLE 8: DISTRIBUTION OF PEAT IN MALAYSIA	29
TABLE 2.9: METHOD OF SOIL STABILIZING	32
TABLE 2.10: TYPE OF LIMESTONE	38
TABLE 4.1: MOISTURE CONTENT OF PEAT SAMPLE	70
TABLE 4.2: PENETRATION DATA	71
TABLE 4.3: MOISTURE CONTENT DATA	72
TABLE 4.4: SPECIFIC GRAVITY TEST RESULT	75
TABLE 4.5: LOSS OF IGNITION RESULT	76
TABLE 4.6: PH RESULT	78
TABLE 4.7: UNTREATED PEAT	80
TABLE 4.8: MOISTURE CONTENT UNTREATED PEAT	80
TABLE 4.9: 5 % FROM 2KG OF PEAT SOIL, 100G (50G CAO AND 50G OF EPP)	82
TABLE 4.10: MOISTURE CONTENT OF STABILIZED PEAT	82
TABLE 4.11: 10 % FROM 2KG OF PEAT SOIL, 100G (50G CAO AND 50G OF EPP	83
TABLE 4.12: MOISTURE CONTENT OF STABILIZED PEAT	84
TABLE 4.13: 15 % FROM 2KG OF PEAT SOIL, 100G (50G CAO AND 50G OF EPP)	85
TABLE 4.14: MOISTURE CONTENT OF STABILIZED PEAT	86
TABLE 4.15: 20 % FROM 2KG OF PEAT SOIL, 100G (50G CAO AND 50G OF EPP)	87
TABLE 4.16: MOISTURE CONTENT OF STABILIZED PEAT	87

LIST OF EQUATION

Derivation from Calcium Carbonate to Calcium Oxide + Carbon Dioxide	36
Derivation of Calcium Oxide + Water become Calcium Hydroxide	36
Moisture Content	64
Specific Gravity (Gas Jar Method)	67
Specific Gravity (Specific Bottle Method)	67
Skempton's Pore Pressure Parameter	77
Fiber Content	69
Soil Specific Gravity	72
Bulk Density	79
Dry Density	79

LIST OF ABREVIATION

	ASTM	American Society for Testing and Materials
	BS	British Standard
	С	Carbon
	CaCo ₃	Calcium Carbonate
	CaO	Calcium Oxide
	СаОН	Calcium Hydroxide
	cm	centi metre
	CO ₂	Carbon Dioxide
	CD	Consolidated Drained
	Cu	Copper
	CU	Consolidated Undrained
	Gs	Specific Gravity
	Gt	GigatonneSITI MALAYSIA SABAH
	LL	Liquid Limit
	LOI	Loss of Ignition
	POFA	Palm Oil Fuel Ash
	ha	Hectares
	EPP	Eco Processed Pozzolan
	kPa	kilopascal
	К	Potassium
	b	Boron
	H ₂ O	Water
	H ₂ SO ₄	Sulphuric Acid

- UU Unconsolidated Undrained
- Wc Moisture Content

CHAPTER 1

INTRODUCTION

1.1 Background Study

All soils with organic matter content greater than 20% are called organic soils. Peat is part or all of the decayed remains of dead plants that have accumulated under water for tens of thousands to thousands of years. Due to various factors such as source fiber, temperature and humidity, the content of peat soil varies from place to place. Peat soil is organic soil with an organic content of more than 75% (Huat, 2004). Peat is a mixture of fragmented organic matter formed in wetlands under appropriate climatic and topographical conditions. It comes from vegetation that has undergone chemical changes and fossilization (Edil *et al.*1981). The soil is usually used for the construction of dams, dikes and other soil structures. Foundation improvement is a fast-growing area, because good sites that can be built are increasingly limited (Boobathiraja *et al.*2014). Therefore, soil is a key component of the construction industry. Soft soil has high water content and low workability, which will increase the cost and duration of soft soil projects (Belal *et al.*2014). It is known that soft soil has low strength, high compressibility, and the known water content almost reaches its liquid limit (Khalid *et al.*2014).

Peat soil is originally problematic and belongs to high organic soil according to Deboucha *et al.* (2008). Due to its abnormally high-water level, peat will deform greatly under applied load. High content and organic nature are also one of peat soil characteristics. Compared with mineral soils with similar water content, peat also has very high strength. In order to build a safe, stable and usable road, road engineers must overcome these engineering problems and find suitable solutions to build roads on peat soil stated by Razali *et al* (2013). Peat is affected by instability issues, such as local subsidence and the development of sliding damage. Even in the case of a moderate increase in load, it will withstand a very large one-time and long-term settlement. Peat soil is a problematic soil, which will become more complicated during the construction process, for example buildings and roads also stated by Razali *et al* (2013).

Malaysia has about 2.6 Million Hectares of peatlands, of which about 70% (1.6 Mil. a) are located in Sarawak. Tropical peatland forest is a unique dual ecosystem rain forests and peatlands. Its topography is greatly affected by hydrological conditions, which in turn determines the vegetation structure and species composition and type of peat. Tropical peatland forests are divided into six (6) phased communities and three (3) main forest types, namely mixed peat swamp forest (PC1), Alan Forest (PC2 and PC3) and Padang Alan Forest (PC4). The following describes their formation and development control factors, characteristics and classification. Some insights on conservation and sustainable development. It also provides regulations for the use of peat in Malaysia. So far, the tropical peatland in Malaysia is still a largely unknown ecosystem and one of the under-researched environments in the world. Hydrology is the main factor that affects the formation and function of peatland ecosystems by affecting forest types and nutrient flow, referring to Meiling (2016).

UNIVERSITI MALAYSIA SABAH

Figure 1.1: Distribution of Lowland Peatlands in Malaysia

(Source: Department of Agriculture Malaysia 2002; Department of Irrigation and Drainage Sarawak 2014)

However, from an engineering standpoint, the characteristics and behaviors of Sabah peat soil are similar to other tropical peat soils found in Sarawak and Peninsular Malaysia. Even when treated to a moderate load, peat causes major challenges in building due to its long-term consolidation settlements (Duraisamy *et al.*2007).

State	Area (ha)
Sarawak	1,657,600
Johor	228,960
Pahang	219,561
Selangor	194,300
Perak	107,500
Terengganu	81,245
Sabah	UNIVERSITI MALAYSIA SABAH
Kelantan	7,400
Negeri Sembilan	6,300
Total	2,588,866

Table 1.1: Distribution of Peat in Malaysia

(Source: Mutalib et al. 1991)

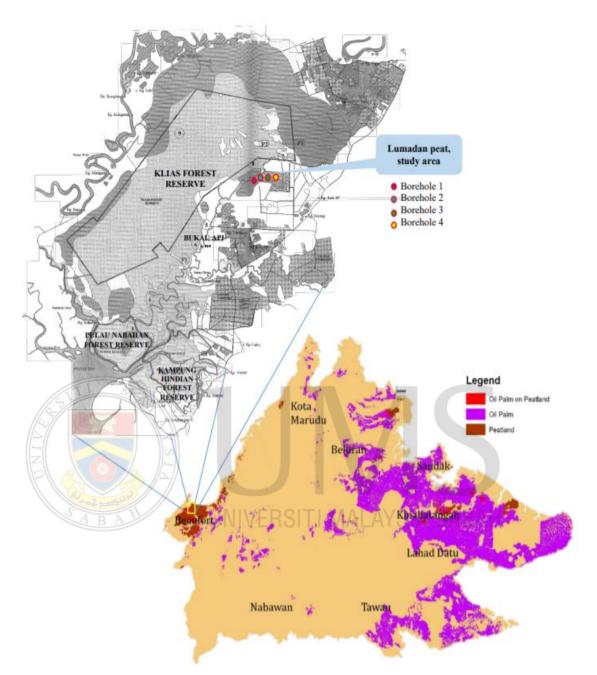


Figure 1.2: Distribution of Peatland in Sabah

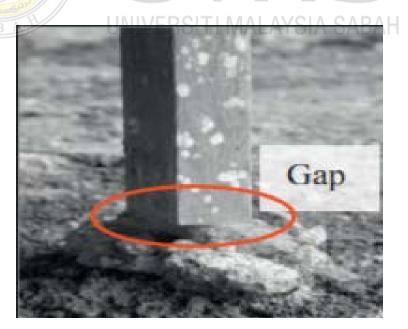
(Source: Robert et al. (1998); Hamzah and Rashid (2015)

Figure 1.2 showing distribution of Peatland in Sabah. For this research, it focusing in Klias, Beaufort in order to make study about peat soil.

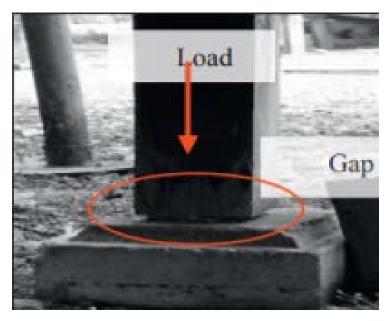
Eco Process Pozzolan (EPP) is made by calcining Spent Bleaching Earth (SBE), which is a by-product of the edible oil manufacturing process. According to Asrah *et al.*

(2020). It is recently used as a blended cement and the pretreatment method of palm oil generates SBE as waste material in the refinery plant. Cement stabilization is the most common stabilization methods adopted for soil treatment.

Chemical stabilization is a major category of soil stabilization, which involves the use of chemical reagents to trigger reactions in the soil to change its geotechnical engineering characteristic, which is stated by James *et al.* (2016). In this study, chemical stabilizer that used is Calcium Oxide (CaO). CaO naturally an absorbent. For instance, at room temperature, CaO will spontaneously absorb carbon dioxide from the atmosphere, thereby reversing the reaction. It also absorbs water, converts itself into calcium hydroxide and releases heat in the process. The bubbling that accompanies the reaction is the source of its name "quick" or live lime. There is no study before using Cao as stabilizer. The only calcium used for stabilizer before is Calcium Hydroxide (CaOH).


Soil compaction is the process by which the soil is subjected to mechanical stress and is densified. Soil consists of solid particles and voids filled with water and air. This means that according to Mintek Resources (2020), soil compaction is used to compact the soil by reducing the void space or air volume between soil particles. This test usually conducted in lab using the compactor equipment. The soil will be compacted and the strength will be tested. In other words, soil compaction occurs when soil particles are pressed together to reduce the space between them. The resulting highly compacted soil has very little space and has a higher unit weight than non-compacted soil.

1.2Problem Statement


Engineering structures are mostly built-in direct contact with the ground, and the response between soil and structure is called soil-engineering structure interaction. Due to the high-water content (>100%), high compressibility (0.9-1.5) and low shear strength (5-20 kPa) values, peat is considered to be unsuitable for supporting the foundation in its natural state. Peat also contains high organic matter (>75%), large deformation, high compressibility, and high creep amplitude and rate. Settlement is the norm phenomenon in peat soil (Bakar *et al.* 2013).

Due to the engineering characteristics of peat with high water content (over 100%), high compressibility (0.9 to 1.5) and low strength (usually 5 to 20 kPa), peat road construction poses great challenges to road builders. In order to build a safe, stable and usable road, road engineers must overcome these engineering problems and find suitable solutions to build roads on peat soil. The challenges faced by engineers in peat road construction include possibility of limited accessibility and stability issues (Zainorabidin *et al.* 2003). Building construction on peat soil also facing the same problems.

For example, Figure 1.3 below showing Pillars supporting houses built on peat soil. This figure was taken during an on-site investigation in Bali Nipah, Johor in 2011. According to the author's observation, most of the columns here are facing the same problem. It is risky for residents. The figure also shows the load distribution in the column due to the interaction of the soil structure. The gap between the column and the footing can be clearly seen. This is due to the low bearing capacity and the settlement of peat soil to support the load from the superstructure (Bakar *et al.*2013).

(I)

(11)

Figure 1.3: (I) & (II): Settlement on Peat Soil in Parit Nipah Johor (Source: Bakar, 2011)

Peat soil is problematic soil as every engineer tried to avoid from doing work involving this type of soil. Many problems may happen as the main cause is peat soil such as development of slip failure, local sinking and long-term settlement when load increases. Stabilizing seems the way to solve this problem. CaO and EPP is the chemical substance that be used as stabilizer in order to improve the shear strength and soft condition especially for very low hydraulic conductivity soils.

1.3 Objectives

The study's goal is to anticipate the capabilities of CaO and EPP as peat soil stabilization materials and improvement techniques, as well as the methods' consequences. However, the study's more precise objectives, as listed below, have to be met:

- (i) To identify the index properties of peat soil.
- (ii) To determine the effect of Calcium Oxide and EPP to the moisture content of peat soil
- (iii) To investigate the behavior of dry density of peat mixed with Calcium Oxide and EPP