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ABSTRACT 

The genome data of two native Antarctic microbes, Pedobacter cryoconitis 
(bacterium) and Glaciozyma antarctica (yeast), highlighted the presence of specific 
proteins with unique adaptive features. However, most of these proteins were 
designated as conserved hypothetical proteins (HPs), complicating efforts to 
understand their cellular functions. Consequently, we aim to identify the structural 
features of the conserved HPs that were ideal for their function in response to 
temperature stress. We posit that proteins that respond to thermal stress may have 
unique structural flexibility and stability that allows them to function under thermal 
stress, protecting host organisms against cold denaturation and heat aggregation. 
To address, an in silica analysis of HPs was conducted, followed by an in vitro 
approach whereby all selected HPs were cloned, expressed in Escherichia coli, 
purified, and subjected to crystal screening experiment. Purified recombinant 
proteins were assessed via colorimetric ATPase and citrate synthase aggregation 
assays and quantitative PCR ( qPCR) gene expression analysis. Finally, the three­
dimensional (3D) structures of the HPs were constructed and further refined for 
comparative structure analysis and function relationship clarification. Twelve P.

cryoconitis and four G. antarctica conserved HPs with significant thermal stress 
response functions that met crystallisation criteria were identified through in silica 
analysis. All target genes were successfully amplified and cloned in vitro. Three P. 
cryoconitis (PcbgSHPl, Pcbg5HP2, and Pcbg5HP12) recombinant proteins were 
overexpressed in the soluble forms at 16°C and subsequently purified using a two­
step purification process. Three recombinant proteins from G. antarctica (GaHP2, 
GaHP3, and GaHP4) were overexpressed in soluble forms at 20°C, but only GaHP2 
and GaHP3 were successfully purified. The ATPase assay showed protein activity at 
4°C and 25°C for PcbgSHPl, Pcbg5HP2, Pcbg5HP12, GaHP2, and GaHP3, which 
thus clarified that protein activity is maintained at low and moderate temperatures. 
Meanwhile, lower citrate synthase aggregation at 43°C in the presence of either 
PcbgSHPl or GaHP2 suggested the characteristics of chaperone-like activity. The 
qPCR analysis revealed that these genes were expressed constitutively when cells 
were exposed to temperatures below or above their optimal growth temperature, 
indicating their involvement in cellular processes associated with thermal stress. 
Initial crystal formation was observed when purified Pcbg5HP2 proteins were 
incubated at 4°C, and reagent optimization revealed the formation of a plate­
shaped crystal in reagent 0.2 M potassium sodium tartrate tetrahydrate, 30% 
PEG/Ion, pH 7.4. This clarified the crystallisation potential of the HPs as predicted 
by bioinformatics analysis. Furthermore, comparative structural analysis 
demonstrated that the HPs exhibited cold-adapted traits, most notably increased 
flexibility in their 3D structures compared to their mesophilic or thermophilic 
counterparts. Concurrently, the presence of a disulphide bridge and aromatic 
clusters was attributed to PcbgSHPl and GaHP2's unusual protein stability and 
chaperone activity. Thus, this demonstrated that the HPs examined in this study 
adopted strategies to maintain a balance between molecular stability and structural 
flexibility, which contributed to their flexibility and ability to retain protein activities 
in an extreme environment. Conclusively, this study has established the structure­
function relationships of the HPs produced by P. cryoconitis and G. antarctica and 
provided crucial experimental evidence indicating their importance in thermal stress 
response. 
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ABSTRAK 

PENCIRIAN STRUKTUR DAN FUNGSI PROTEIN HIPOTETIK TERPULIHARA 
YANG BERKAITAN DENGAN TINDAK BALAS TERHADAP HABA DALAM 

Pedobacter cryoconitis SGS DAN Glaciozyma antarctica PI12 

Data genom dua mikroorganisma Antartika
,. Pedobacter cryoconitis (bakteria) dan 

Glaciozyma antarctica (yis},. mengandungi protein dengan ciri penyesuaian unik. 
Namun,. sebahagian besar protein ini dikategorikan sebagai protein hipotetik (HP) 
terpulihara,. yang merumitkan pemahaman tentang fungsinya. O/eh itu,. kajian ini 
bertujuan untuk menentukan ciri struktur HP terpu/ihara yang berkaitan dengan 
fungsinya. Hipotesis kajian ada/ah protein ini mungkin mempunyai fleksibiliti dan 
kestabilan struktur tersendiri yang membo/ehkan ia terus berfungsi dan melindungi 
organisma perumah daripada suhu melampau. Analisis in silica telah dijalankan

,. 

kemudian analisis in vitro di mana semua HP yang dipilih telah diklon
,. diekspres 

da/am Escherichia coli
,. ditulenkan,. dan digunakan untuk eksperimen penghabluran. 

Protein rekombinan yang telah ditulenkan
,. 

diuji melalui ujian kolorimetrik A TPase 
dan pengagregatan sitrat sintase

,. serta analisis kuantitatif ekspresi gen PCR 
(qPCR). Pada akhirnya

,. 
struktur tiga dimensi (3D) HP dibina dan dimurnikan untuk 

perbandingan struktur dan penentuan fungsi. Dua be/as HP daripada P. cryoconitis 
dan empat HP daripada G. antarctica dengan fungsi berkaitan perubahan haba dan 
sesuai untuk penghabluran telah ditentukan melalui analisis in silica. Semua gen 
sasaran berjaya diamplifikasi dan diklon secara in vitro. Tiga protein rekombinan P. 
cryoconitis (PcbgSHPl,. Pcbg5HP2,. dan Pcbg5HP12) telah diekspreskan secara larut 
pada l 6°C dan ditulenkan melalui purifikasi dua peringkat. Tiga protein rekombinan 
G. antarctica (GaHP2,. GaHP3

,. dan GaHP4) berjaya diekspreskan dalam bentuk larut
pada 20°C,. tetapi hanya GaHP2 dan GaHP3 berjaya ditulenkan. Ujian A TPase
menunjukkan aktiviti protein PcbgSHPl,. Pcbg5HP2,. 

Pcbg5HP12,. 
GaHP2

,. dan GaHPJ
pada 4 °C dan 25°C lni menunjukkan protein tersebut kekal aktif pada suhu rendah
dan sederhana. Agregasi sitrat sintase yang /ebih rendah pada 43°C dengan
kehadiran PcbgSHPl atau GaHP2 pula menunjukkan sifat seperti pengantar.
Analisis qPCR menunjukkan gen-gen tersebut diekspres secara berterusan apabila
se/ terdedah kepada suhu di bawah atau di atas suhu pertumbuhan optimum,. 

Justeru mengesahkan ia terlibat dalam proses tindak balas terhadap perubahan
haba. Pembentukan hablur dikesan pada protein tu/en Pcbg5HP2 pada suhu
inkubasi 4 °C Seterusnya pembentukan hablur berbentuk plat dihasilkan dengan
optimasi bahan uji 0.2 M kalium natrium tartrat tetrahidrat,. 30% PEG/Ion

,. 
pH 7 4.

Ini mengesahkan potensi penghabluran HP yang dirama/kan o/eh analisis
bioinformatik. Analisis struktur HP menunjukkan ciri-ciri penyesuaian pada suhu
sejuk,. terutamanya fleksibiliti yang tinggi pada struktur 3D berbanding protein
mesofilik atau termofilik. Kewujudan ikatan disu/fida dan kelompok aromatik pula
boleh dikaitkan dengan kestabilan dan aktiviti chaperon bagi PcbgSHPl dan GaHP2.
Ini menunjukkan bahawa HP-HP dalam kajian ini menggunakan strategi kestabilan
mo/eku/ dan f/eksibiliti struktur,. yang menyumbang kepada f/eksibiliti dan
keupayaan mereka untuk mengeka/kan aktiviti da/am persekitaran ekstrim. Kajian
ini telah menye/esaikan hubungan antara struktur dan fungsi HP-HP yang dihasi/kan
oleh P. cryoconitis dan G. antarctica dan menghasilkan data eksperimen yang
menunjukkan kepentingannya dalam tindak ba/as terhadap perubahan haba.
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Antarctica is a fascinating region with a diverse range of climatic extremes and is 

generally considered the centre of the Earth's climate and marine circulation 

systems (Convey & Peck, 2019). Two previously discovered and characterised 

native Antarctic microbes, Pedobacter cryoconitis and G/aciozyma antarctica, have 

generated research interest due to their exceptional capacity to thrive in the 

extreme Antarctic ecosystem (Margesin et al., 2003; Turchetti et al., 2011). 

According to past studies, the facultatively psychrophilic P. cryoconitis culture can 

grow at temperatures ranging from 1 to 25 °C (Wong et al., 2011). Meanwhile, the 

psychrophilic yeast G. antarctica has been observed to be temperature tolerant 

between -12°C and 20°C (Boo et al., 2013; Soon et al., 2018). 

As a means of surviving and adapting to the Antarctic climate, these 

extremophiles produce a wide range of biologically important proteins, particularly 

those involved in the thermal stress response (Song et al., 2017; Yusof et al., 2016; 

Wong et al., 2011). Many interesting discoveries about P. cryoconitis have been 

made regarding genes encoding resista,:,ce to cold stress and heavy metals, as well 

as industrially valuable enzymes (Lee et al., 2016). Meanwhile, genomic analysis of 

G. antarctica revealed numerous protein-coding genes associated with cold

tolerance, such as antifreeze proteins and fatty acid desaturases (Firdaus-Raih et 

al., 2018). However, despite the availability of whole genome sequences for both 

microorganisms, no detailed description of their stress response mechanisms has 

been documented (Wong et al., 2013, 2019). This problem is complicated by the 

fact that 35% of the protein-coding genes in P. cryoconitis (Lee et al., 2016) and 



37% of the protein-coding genes in G. antarctica (Firdaus-Raih et al., 2018) were 

classified as hypothetical proteins (HPs). Furthermore, 82 of the 319 transcripts 

that are currently unique to G. antarctica have been identified as having unknown 

functions (Bharudin et al., 2018; Wong et al., 2019). These functionally unknown 

proteins may be involved in significant aspects of this microorganism's biological 

function. Previous research has demonstrated that a set of proteins with unknown 

functions is vital in the physiological regulation and cold adaptation of psychrophilic 

microorganisms (Koh et al., 2017; Teoh et al., 2021). Similarly, recent research 

suggested that the HPs in P. cryoconitis and G. antarctica were important in the 

early stages of cold and freeze stress, though these findings have yet to be 

validated (Soon et al., 2018; Wong et al., 2019). This presents an opportunity for 

new discoveries to be made in order to gain a better understanding of their 

distinctive properties for adaptation mechanisms. 

Proteins are versatile macromolecules that are required for the cellular 

adaptation system to function properly. Although psychrophiles share basic cold­

adaptation strategies, different species have been shown to adopt different 

approaches for tolerating and surviving thermal stressors (Boo et al., 2013; Collins 

& Margesin, 2019; Firdaus-Raih et al., 2018). As every protein is unique, 

characterization at the physiological and biochemical level is critical for unravelling 

their molecular mechanisms and realising their full biotechnological potential. 

Several discoveries have been made primarily as a result of structural biology 

research, including drug design, vaccine development, and the discovery of 

industrially important enzymes (Eisenstein et al., 2000; Maveyraud & Mourey, 

2020; Muhammed & Aki-Valcin, 2019). More specifically, structural and functional 

analysis of HPs from a variety of pathogenic species has resulted in a greater 

understanding of disease mechanisms, diagnostics, symptom treatment, and 

vaccine development (Islam et al., 2015; Sen & Verma, 2020). By elucidating the 

structure and function of the HPs, researchers will gain knowledge about new 

protein pathways and cascades, allowing us to better understand the protein 

mosaic and determine protein-protein interactions. 

The three-dimensional (3D) protein structures that mediate biochemical 

interactions must be evaluated to understand biological processes at the system 
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level (Hauri et al., 2019). For structural determination experiments, a high level of 

soluble protein amenable to downstream processing is required. Heterologous 

expression Implementing a suitable expression host, such as Escherichia coli, is one 

of the most effective strategies to optimise the production of high-quality pure 

proteins (Ahmad et al., 2018). Subsequent protein purification is then accomplished 

by a fast protein liquid chromatography (FPLC) system through the two-step 

purification of recombinant proteins via nickel affinity chromatography followed by 

size exclusion chromatography (SEC) (Kim et al., 2015). Due to the capability of X­

ray crystallography to provide extremely detailed structural information, it has 

become indispensable in protein structure determination (Maveyraud & Maurey, 

2020). However, crystallisation is a difficult process with a low success rate, and 

not all proteins crystallise (Holcomb et al., 2017). In the absence of an 

experimentally determined structure, comparative or homology modelling can 

generate a useful 3D model of a protein that is linked to at least one known protein 

structure. To achieve this ambitious target, expensive and time-consuming 

structural determination experiments are complemented with theoretical 

approaches. Bioinformatics aids in the prediction of structures from genomic data 

and comparative structural modelling. Recent advances in omics technologies have 

provided an excellent insight into the molecular basis behind cold adaptation 

processes, enabling the theoretical assessment of several physicochemical 

parameters to identify the function and composition of previously uncharacterized 

proteins (Li et al., 2011; Naqvi et al., 2015). Thus, by combining structural 

knowledge of proteins with functional annotation tools, previously uncharacterized 

proteins can be elucidated (Jez, 2017). 

The present study was designed to evaluate the conserved HPs associated 

with thermal stress responses in P. cryoconitis and G. antarctica in order to 

establish a better understanding of their adaptation mechanisms. While gene 

sequences provide important information, they are devoid of information on 

uncharacterized proteins, making it challenging to determine functionally significant 

sequences. Moreover, there is a limited number of studies addressing the 

properties of thermal stress proteins produced by psychrophilic microorganisms 

(Song et al., 2017; Wong et al., 2019). To date, there are no reports that focus on 

the functional and structural analysis of conserved HPs in P. cryoconitis and G. 
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roadblocks in the study of HPs, such as the limitation of publicly available public 

databases and the costly and labour-intensive experimental procedures for 

structure determination. The findings of this work will provide a new perspective 

and scientific approach to understand how proteins behave in terms of flexibility, 

stability, and dynamic conformations under thermal stress. 

1.3 Research Questions 

As mentioned, the following research questions arise: 

1. Do the hypothetical proteins found in the genomes of P. cryoconitis and G.

antarctica play an important role in thermal adaptation?

2. How are the hypothetical proteins different from other known proteins?

3. Do the hypothetical proteins acquire certain characteristics in the structure

that allow them to function at extreme temperatures?

1.4 Research Objectives 

The purpose of this research is to elucidate the function and structure of HPs 

involved in the thermal stress response in P. cryoconitis and G. antarctica, as well 

as to understand the relationship between protein molecular architecture and 

function under cold-adapted conditions. To accomplish these goals, molecular 

biology techniques will be integrated with omics technology. The scope of the study 

comprises the in silica analysis of existing genomic data and the collection of in 

vitro experimental data for protein characterization. In an attempt to achieve the 

research target, the main objectives are: 

1 To screen for conserved hypothetical proteins related to thermal stress. 

2 To conduct in vitro analysis of the selected hypothetical proteins and resolve 

their functions. 

3 To determine the relationship between the protein's molecular structure and 

its function. 
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1.5 Expected Outcome 

The conserved HPs that respond to thermal stress may have specific structural 

attributes that contribute to their flexibility and stability. This enhanced their 

capacity to maintain their activities under thermal stress, thus protecting host 

organisms against cold denaturation and heat aggregation. The results of this 

research will add to our understanding of the cold-adapted protein's structural and 

functional properties, thus revealing its real potential for biotechnological 

applications. 
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