LIFE CYCLE ASSESSEMENT OF AN INTERLOCKING COMPRESSED EARTH BRICK SYSTEM FOR GREEN BUILDING CONSTRUCTION

NURUL SHAHADAHTUL AFIZAH BT. ASMAN

THESIS SUBMITTED IN FULFILLMENT OFTHE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

PERPUSTAKAAN UMWERSITI MALAYSIA SABAH

FACULTY OF ENGINEERING UNIVERSITY MALAYSIA SABAH 2022

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

TAJUK : LIFE CYCLE ASSESSMENT OF AN INTERLOCKING COMPRESSED EARTH BRICK SYSTEM FOR GREEN BUILDING CONSTRUCTION

IJAZAH : DOKTOR FALSAFAH KEJURUTERAAN

BIDANG : KEJURUTERAAN AWAM

Saya **NURUL SHAHADAHTUL AFIZAH BT. ASMAN**, Sesi pengajian **2018-2022** mengaku membenarkan tesis Doktoral ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat Salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan untuk membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan Oleh,

ANITA BINTI ARSAD PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

NURUL SHAHADAHTUL AFIZAH BT. ASMAN DK1811007T

(Tandatangan Pustakawan)

(Prof. Madya Ir. Dr. Nurmin Bolong) Penyelia utama

Tarikh: 31 Oktober 2022

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, equations, summaries and references, which have been duly acknowledged.

2nd September 2022

Nurul Shahadahtul Afizah bt. Asman DK1811007T

CERTIFICATION

- NAME ; NURUL SHAHADAHTUL AFIZAH BT. ASMAN
- MATRIC NO : **DK1811007T**
- TITLE : LIFE CYCLE ASSESSMENT OF AN INTERLOCKING COMPRESSED EARTH BRICK SYSTEM FOR GREEN BUILDING CONSTRUCTION
- DEGREE : DOCTOR OF PHILOSOPHY IN ENGINEERING
- FIELD CIVIL ENGINEERING
- VIVA DATE : 2ND SEPTEMBER 2022

ACKNOWLEDGEMENTS

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيم

Alhamdulillah, grateful to Allah SWT. for HIS blessing and permission, from the encouragement and support from various parties throughout the start, and finally, I can complete my PhD study. Alhamdulillah, Allah has made everything smooth for me. Although the process was not as easy as I thought, especially during the final thesis writing process, for the sleepless nights, unattended eating, and writing stuck for a day, a week, or even a month. But Alhamdulillah, I managed to complete my thesis with your permission. All this will not work without You, Oh Allah the Almighty. Thank You, Allah, for all the things you've done and the prayers You've answered.

I would like to express my sincere gratitude to my supervisor, Assoc. Prof. Ir. Dr. Nurmin Bolong for the continuous support of my PhD study and research, her valuable guidance, and her thoughtful comments throughout this study. Thank you for your Dua', advice and for making my journey easier. Thank you for the Vitamin C you gave me and for constantly reminding me to take care of my health. Also, to my co-supervisor, Prof. Ir. Abdul Karim Mirasa, my deepest thanks for everything you've done, which I will always appreciate. Thank you so much for all the times you've gone out of your way to assist me.

I also would like to express my gratitude to the Ministry of Higher Education Malaysia (Mohe) through the SLAB scholarship and Universiti Malaysia Sabah (UMS) for the sponsorship and funding during my studies. Also, UMS grant (UMSGreat grant: GUG0394-2/2019) and KPT grant (Translational grant: LRSG0007-2018). PERPUSTAKAAN

My sincere thanks go to UMS Interlocking Brick team, Prof. Ir. Dr. Abdul Karim Mirasa, Assoc. Prof. Ts. Dr. Ismail Saad, Assoc. Prof. Ir. Dr. Nurmin Bolong, Dr. Hidayati Asrah, Ir. Ts Dr. Habib Musa bin Mohamad, Mr. Lim Chung Han @ Andrew, Ts. Eddy Syaizul Rizam Abdullah, Ms. Yvonne William Tonduba, and Miss Amira Ameer. I'm glad and proud to be part of such an excellent team. Also, thanks to UMS staff, Miss Kamsia Budin, Mr. Afflizailizam, Miss Nur-Afini Septiyana, Miss Dg Masliah, Mr. Hataf, Mr. Shahrani, Mr. Azwan Gakau, and Mdm. Nenny. Not to forget, Miss Victoria Asoi, thank you for your prayer and good words wishing me the best for my study every time we met. I am so grateful to have these good people around me.

I thank my fellow postgraduate team Yvonne, Amirah, Raihana Farahiyah, and Ariqah Ispal. Thank you for the stimulating discussions, the google meet online writing, the sleepless nights we were working together before deadlines, the lunch, teatime, any celebration we had, the motivation, the gifts, and all the fun we have had. Thank you for making our ordinary postgraduate moments became extraordinary. I am delighted and grateful for their presence throughout my PhD journey. I would like to thank Dr. Janice Lynn Ayog for introducing us to the Pomodoro online writing session thru Zoom or Google meet. The coronavirus (COVID-19) pandemic struck globally, and many things in Malaysia have had to close, including the education sector. It was challenging to remain productive during this pandemic, but this online writing session aided me in finishing my research. Also, I thank my friends, brothers, and sisters from Kolej Kediaman Tun Mustapha (KKTM), UMS. To Vicky, Juliza, Arnita, Tititana, Eliezer, Nabilahuda, Norsahirah, Jun Wei, Fardha Ayu, Ainur Amira, Marilyn, Fatima, and mdm. Aslinda Likong, thank you for our time together and for making my life at KKTM enjoyable Also, to my best friend, Dayangku Noratiqah, Masnih Mansur, Saleha Abdul Han, JayN Pawista, and Yong (my only sister and my best friend), thank you for your support. I can't wait to have our vacation together.

Ultimately, I am grateful to my parents, siblings, friends, and acquaintances who remembered me in their prayers for ultimate success. I would like to thank my beloved parents, Hamidah Asnawi and Asman Absal, for giving birth to me in the first place and supporting me spiritually throughout my life. For their continuous support and Dua'. I'll never be able to thank you enough for your endless love. Every success of mine is thanks to the prayers of both my parents. They never stop and faithfully pray for my success, which allows everything in my life to go smoothly.

Nurul Shahadahtul Afizah bt. Asman 2nd September 2022

ABSTRACT

Building construction significantly contributes to the carbon growth due to the high carbon emissions produced by buildings and their effects on climate change. Sustainable building products, materials, and construction techniques, namely green building materials selection is crucial to achieve sustainable construction. The type of building materials influences the carbon emissions of a construction project. Then contribute to the problem of pollution, where carbon dioxide is the primary pollutant that contributes to global warming's negative effects. Brick is a significant building material in the construction industry. Interlocking Compressed Earth Bricks (ICEB) has been introduced as an alternative low carbon building material replacing the conventional brick. The objective of this study is to determine the environmental impact of ICEB production using Life Cycle Assessment (LCA). Then to evaluate the environmental impacts and carbon footprint reduction of ICEB system with the conventional construction. This study also analyzes the hotspot of the energy used and CO₂ emission on material stages of residential building in Sabah. Finally, to develop a carbon calculator for ICEB manufacturing. In this study, quantification analysis using LCA is used to measure the environmental impact. The scope of this study cover cradle-to-gate system boundaries with 1 kg of functional unit and was conducted at the Interlocking Brick Teaching Factory located at the Faculty of Engineering, Universiti Malaysia Sabah. The embodied carbon was analyzed using the GaBi software. Meanwhile, the study of residential buildings involved the selected community housing project in Sabah evaluates using LCA for cradle-to-gate with 1m² of built-up area. The result shows that the embodied carbon of ICEB production is 0.202 kqCO₂eq and result on sensitivity analyses found that the GWP reduced (27%-51%) with the cement content (10% and 15%). The implementation of ICEB in building construction contributes to carbon footprint reduction 34% from the conventional construction. ICEB is suitable to be used as a low carbon footprint building material where the conventional concrete and brickwork contribute to 75% (embodied energy) and 77% (embodied carbon) from the construction process. During hotspot identification for the material stage of building life cycle, concrete, brick, and steel are the major materials contributed to environmental impact of building construction. The adoption of the ICEB system in green building construction can lower the energy consumption (2.75 GJ/m² of conventional, to a 1.3 GJ/m²), reduce the overall environmental impact (to 184 kgCO₂/m²). This study develops a carbon footprint calculator which can evaluate the environmental impact of brick manufacturing in Sabah, Malaysia for product development. Sustainable materials (such as quarry dust) are calculated using the carbon calculator with various percentage of Portland cement replacement in ICEB mix design. The incorporation of the green materials improved the environmental impact. In general, implementation of sustainable materials in ICEB design mix production and construction can potentially reduce the greenhouse gases emission and hence maximize the carbon footprint reduction.

ABSTRAK

PENILAIAN KITAR HAYAT BAGI SISTEM BATA TANAH MAMPAT BERKUNCI UNTUK PEMBINAAN BANGUNAN HIJAU

Pembinaan bangunan menyumbang kepada pertumbuhan karbon disebabkan oleh pelepasan karbon yang tinggi terhasil oleh bangunan dan kesannya terhadap perubahan iklim. Produk binaan mampan, bahan dan teknik pembinaan, iaitu pemilihan bahan binaan hijau adalah penting untuk mencapai pembinaan mampan. Jenis bahan binaan mempengaruhi pelepasan karbon projek pembinaan. Kemudian menyumbang kepada masalah pencemaran, di mana karbon dioksida adalah bahan pencemar utama yang menyumbang kepada kesan negatif pemanasan global. Bata adalah bahan binaan yang penting dalam industri pembinaan. Batu Tanah mampat Berkunci (ICEB) telah diperkenalkan sebagai alternatif kepada bahan binaan rendah karbon menggantikan bata konvensional. Objektif kajian ini adalah untuk menentukan kesan alam sekitar pengeluaran ICEB menggunakan Penilaian Kitaran Hayat (LCA). Kemudian untuk menilai kesan alam sekitar dan pengurangan jejak karbon sistem ICEB dengan pembinaan konvensional. Kajian ini juga menganalisis titik panas tenaga yang digunakan dan pelepasan CO₂ pada peringkat bahan bangunan kediaman di Sabah. Akhir sekali, untuk membangunkan kalkulator karbon untuk pembuatan ICEB. Dalam kajian ini, analisis kuantifikasi menggunakan LCA digunakan untuk mengukur kesan alam sekitar. Skop kajian ini meliputi sempadan sistem cradle-to-gate dengan 1 kg unit berfungsi dan telah dijalankan di Kilang Pengajaran Interlocking Brick yang terletak di Fakulti Kejuruteraan, Universiti Malaysia Sabah. Karbon yang terkandung telah dianalisis menggunakan perisian GaBi. Sementara itu, kajian bangunan kediaman melibatkan projek perumahan komuniti yang terpilih di Sabah dinilai menggunakan LCA untuk cradle-to-gate dengan 1m² kawasan binaan. Keputusan menunjukkan bahawa jumlah karbon bagi pengeluaran ICEB ialah 0.202 kgCO2eg dan hasil analisis kepekaan mendapati GWP berkurangan (27%-51%) dengan kandungan simen (10% dan 15%). Pelaksanaan ICEB dalam pembinaan bangunan menyumbang kepada pengurangan jejak karbon sebanyak 34% daripada pembinaan konvensional. ICEB sesuai digunakan sebagai bahan binaan jejak karbon rendah di mana konkrit konvensional dan kerja bata menyumbang kepada 75% (tenaga terwujud) dan 77% (karbon terwujud) daripada proses pembinaan. Semasa pengenalpastian titik panas untuk peringkat bahan kitaran hayat bangunan, konkrit, bata dan keluli adalah bahan utama yang menyumbang kepada kesan alam sekitar pembinaan bangunan. Penggunaan sistem ICEB dalam pembinaan bangunan hijau boleh mengurangkan penggunaan tenaga (2.75 GJ/m² konvensional, kepada 1.3 GJ/m²), mengurangkan kesan keseluruhan alam sekitar (kepada 184 kgCO₂/m²). Kajian ini membangunkan kalkulator jejak karbon yang boleh menilai kesan alam sekitar pembuatan bata di Sabah, Malaysia untuk pembangunan produk. Bahan mampan (seperti habuk kuari) dikira menggunakan kalkulator karbon dengan pelbagai peratusan penggantian simen dalam reka bentuk campuran ICEB. Penggabungan bahan hijau meningkatkan kesan alam sekitar. Secara amnya, pelaksanaan bahan mampan dalam pengeluaran dan pembinaan campuran reka bentuk ICEB berpotensi mengurangkan pelepasan gas rumah hijau dan seterusnya memaksimumkan pengurangan jejak karbon.

FRPUSTAKAAN

LIST OF CONTENTS

тіті	LE		Page i
DEC			ii
CER	TIFICATION		iii
ACK	NOWLEDGEMENTS		iv
ABS	TRACT		vi
ABS	TRAK		vii
LIS	r of contents		viii
LIS	T OF TABLES		xiii
LIS	r of figures		xvi
LIST	OF ABBREVIATIONS		xix
LIST	T OF SYMBOLS	UNIVERSITI MALAYSIA SABAH	xxi
LIST	T OF APPENDICES		xxiii
СНА	PTER 1: INTRODUCTION		
1.1	Research Background		1
1.2	Research Problem		4
1.3	Research Questions		6
1.4	Research Objectives		7
1.5	Scope of Research		7
1.6	Research Significant		9
1.7	Thesis Layout		11

PERPUSTAKAAN

CHAPTER 2: LITERATURE REVIEW

2.1	Introd	Introduction				
2.2	Life Cy	cle Assessment	13			
	2.2.1	Goal and scope Definition	15			
	2.2.2	Life Cycle Inventory (LCI)	17			
	2.2.3	Life Cycle Impact Assessment (LCIA)	19			
	2.2.4	Interpretation	21			
2.3	LCA To	ools and Database	22			
	2.3.1	GaBi Education Software	27			
	2.3.2	ICE Database	29			
2.4	ICEB f	or Green Building Construction	31			
	2.4.1	Masonry Construction	32			
	2.4.2	ICEB for Green Building Construction	41			
2.5	LCA st	UNIVERSITI MALAYSIA SABAH	50			
	2.5.1	Goal and Scope for Brick Manufacturing	52			
	2.5.2	Inventories (LCI) of Brick Manufacturing	54			
	2.5.3	Impact Assessment (LCIA) of Brick Manufacturing	57			
	2.5.4	Interpretation	60			
2.6	LCA o	f Building	61			
	2.6.1	Goal and Scope of Building Life Cycle	62			
	2.6.2	Building Life Cycle Inventories (LCI)	68			
	2.6.3	Environmental Impact of Building from LCA Research	69			

PERPUSIAAN

2.7	7 Building Life Cycle Phase				
	2.7.1	Assembly Phase	73		
	2.7.2	Use Phase	76		
	2.7.3	Demolition	78		
2.8	Malays	sian towards Sustainability	81		
2.9	Summary				

CHAPTER 3: METHODOLOGY

3.1	Introduction			
3.2	Embodied Energy and Carbon Emission of ICEB production			
	3.2.1	ICEB Production Goal and Scope Definition	96	
	3.2.2	LCI for ICEB Production	102	
	3.2.3	Impact Assessment (LCIA) of ICEB Production	104	
3.3	Enviror	mental Impacts of Selected Residential Building in Sabah	106	
	3.3.1	Case Study: Community House	107	
	3.3.2	Goal and Scope of Building Life Cycle	114	
	3.3.3	Building Life Cycle Inventory (LCI)	114	
	3.3.4	Building Life Cycle Impact Assessment	120	
	3.3.5	Interpretation	122	
3.4	Carbon	Calculator for ICEB Production	122	
	3.4.1	Data Collection	123	
	3.4.2	Preparation the Database of Energy and Carbon Inventory	124	
	3.4.3	Calculation	125	

х

V LSIGUS

CHAPTER 4: ENVIRONMENTAL IMPACT OF INTERLOCKING COMPRESSED EARTH BRICK PRODUCTION

4.1	Introduction	129
4.2	Life Cycle Inventory (LCI) Analysis of ICEB	130
4.3	Environmental Impact Performance of ICEB	133
4.4	Interpretation (Sensitivity Analysis and Data Validation)	136
4.5	Conclusion	140

СНА	PTER 5: ENVIRONMENTAL IMPACTS OF ICEB SYSTEM RESIDENTIAL BUILDING IN SABAH	ON				
5.1	Introduction					
5.2	Inventories Analysis of Assembly Stage	143				
	5.2.1 Material Stage	143				
	5.2.2 Construction Stage UNIVERSITI MALAYSIA SABAH	147				
5.3	Building Life Cycle Impact Assessment	148				
	5.3.1 Environmental Impact and Carbon Footprint Reduction	148				
	5.3.2 Hotspot for Material Stage	151				
5.4	Interpretation	155				
5.5	Conclusion	156				

CHAPTER 6: CARBON CALCULATOR FOR ICEB PRODUCTION

6.1	Introduction	158
6.2	Calculation Tool Design	159

	6.2.1	Database of Carbon Inventory	159	
	6.2.2	Calculation Model and Tool Implementation	159	
6.3	3 ICEB Carbon Calculator			
	6.3.1	Case Scenario	163	
	6.3.2	Data Validation	166	
6.4	Conclu	sion	167	

CHAPTER 7: CONCLUSION AND RECOMMENDATION

7.1	Introduction	169
7.2	Conclusion	170
7.3	Limitations of The Research	171
7.4	Future Research and Recommendation	171
REF	ERENCES UNIVERSITI MALAYSIA SABAH	173
APP	ENDICES	185

PERPUSTAXAAN

LIST OF TABLES

			Page
Table 2.1	:	Example of Impact Categories, Characterization Models	21
		Factors and Units	
Table 2.2	3	LCA Tools and Software used in Life Cycle Assessment	24
Table 2.3	:	LCA Tools used in Previous Study for Brick Product and Building Construction	25
Table 2.4	:	Life Cycle Assessment Material/Product Carbon Factor Databases	26
Table 2.5	:	Statistics on The Average Carbon Footprint Calculation Method of All Data Collected	29
Table 2.6	:	Properties Comparison of FCB And ICEB	42
Table 2.7	:	Comparison of FCB And ICEB	47
Table 2.8	:	Previous LCA Research on Brick with Numerous Functional Units and Boundaries	53
Table 2.9		Data Inventory (input) for the production of 1 kg of clay brid	ck 56
Table 2.10	ATND	Data Inventory (Output) for the production of 1 kg of clay brick	56
Table 2.11		Energy and Carbon Emission of Brick Production	58
Table 2.12	:	Life Cycle Stages of a Building	63
Table 2.13	;	Description of the unit process for the building LCA	64
Table 2.14	1	Summary of Inconsistencies of Life Cycle Carbon Emissions Studies	65
Table 2.15		Previous LCA Research on Buildings with Numerous Functional Units and Boundaries	66
Table 2.16	:	Categories of Service Life for Buildings	67
Table 2.17	1	Previous Studies on Energy and Carbon Emission for Residential Building (50 Years of Service Life)	71
Table 2.18	:	Environmental Impact on Material Stage of Building from Previous Study	75
Table 2.19	1	Total Energy on Operational Phase of Building Life Cycle	77
Table 2.20	:	Percentage of Recycling Rate for Demolishing Building Material	80

PERPUSITARY

Table 2.21	:	Policies and Key Practices Related to Environmental	81
		Concerns in Malaysia Plan (MP)	
Table 2.22	:	Summarized Previous Study on Different Type of Brick Used	87
Table 2.23	:	Summary Comparison Results of Embodied Studies and	89
		Carbon Emission for Building Life Cycle	
Table 3.1	:	Characteristic of ICEB	98
Table 3.2	:	Data Collection for Interlocking Brick Factory Operation for	103
		One Tonne of Bricks	
Table 3.3	:	Classification of LCIA used in the study	105
Table 3.4	:	Basic Parameter of Case Study Residential Houses	113
Table 3.5	:	Density of The Building Materials	116
Table 3.6	:	Sample Data Collected for Interlocking Brick Manufacturing	124
		from UMS Interlocking Brick factory	
Table 3.7	:	Databases - Values of Embodied Energy Factor (EEF) and	125
		Carbon Factor (ECF)	
Table 3.8		Machinery Power Rate	125
Table 3.9		Suggested Embodied Energy (EEFs) and Embodied	128
		Carbon Factors (ECFs) for Building Materials	
Table 3.10	E.	Embodied Energy (EEFs) and Embodied Carbon Factors	128
		(ECFs) for Water and Electricity MALAYSIA SABAH	
Table 4.1	:	Data Inventory for the Production of 1 kg of ICEB	130
Table 4.2	-	Global Warming Potential (kgCO ₂ -eq) of ICEB Production	138
		using Calculations Method	
Table 4.3	:	Carbon Emission of Brick Production from Cradle-to-gate for	139
		1 kg of Functional Unit – Comparative Data	
Table 5.1	:	Data Inventory for the Materials used extracted from	144
		Bill of Quantities (BQ)	
Table 5.2	:	Weightage of Materials used for the Material Stage per 1 m^2	144
		of Built-up Area	
Table 5.3	:	Amount of Different Building Materials for Construction Phase	e 147
		of Building Life Cycle	
Table 5.4	:	Comparison of LCIA on Conventional Building and ICEB	149
		Building	

PERPUSTANAAN

Table 5.5	:	Summary Results on Embodied Energy and Carbon	152
Table 5.6	:	Comparison Results of Embodied Energy and Carbon Studies	155
Table 6.1	:	Data input scenario with Different Design Mixtures of	164
		alternative materials the ICEB	

LIST OF FIGURES

			Page
Figure 1.1	:	Structure of The Thesis	11
Figure 2.1	4	Generic Life Cycle Assessment (LCA) Process	15
Figure 2.2	:	Life Cycle of a Product	16
Figure 2.3	1	Process Flow of Inventory Analysis	17
Figure 2.4	:	Life Cycle Inventory Flow	18
Figure 2.5	:	Elements of the LCIA phase	20
Figure 2.6		GaBi Edu Software	28
Figure 2.7	:	ICE Method Diagram	30
Figure 2.8	;	Prehistoric Architecture of Masonry	33
Figure 2.9	:	Masonry heritage building, Al-Formosa in Malaysia	35
Figure 2.10	:	Different Arrangements for Brick Masonry	39
Figure 2.11	2	English Bond in Brick Masonry	40
Figure 2.12	://5	Flemish Bond in Brick Masonry	40
Figure 2.13		Interlocking Compressed Earth Brick (ICEB) Types.	43
Figure 2.14	IN.	Specification of the ICEB's sides	44
Figure 2.15	E.	The general concept for ICEB construction system	45
Figure 2.16	:	Stacking Method of Brick RSITI MALAYSIA SABAH	48
Figure 2.17	:	Stacking Method of ICEB Construction (Stretcher Bond)	49
Figure 2.18	:	Life Cycle of Conventional Clay Brick	52
Figure 2.19	:	Inputs and Outputs for The production of One Tonne of Bricks	55
Figure 2.20	:	Display of Modular Information for The Different Stages of The Building Assessment	63
Figure 2.21	:	Building Life Cycle	73
Figure 3.1	:	Overall Research Methodology Flowchart with	94
		corresponding description in the bracket.	
Figure 3.2	:	Location of Study Area	95
Figure 3.3	3	UMS Interlocking Brick Teaching Factory Located at Faculty	y 97
		of Engineering, Universiti Malaysia Sabah	
Figure 3.4	;	Dimension of ICEB	98

Figure 3.5	1	Life Cycle System Boundary of ICEB (Cradle-To-Gate).	100
		The Use Phase and End-Of-Life Phase of ICEB is not Include	d
		in this Study.	
Figure 3.6	;	Site where the clay soil has been excavated to produce the	101
		ICEB	
Figure 3.7	;	Lorry used for Materials Transportation to The Factory	102
Figure 3.8	1	LCA Methodology Framework for Environmental Impact	107
		on Residential Building in Sabah	
Figure 3.9	;	Community House Construction in Tawau	109
Figure 3.10	1	Newly Constructed Community Houses Project by UMS using	j 110
		ICEB Construction System	
Figure 3.11	:	ICEB used as a building material for wall system in	111
		building construction	
Figure 3.12	:	Floor Plan of The Building for Conventional Construction	112
Figure 3.13	:	Floor Plan of The Building using ICEB Construction	113
Figure 3.14	://	Earth Work and Land Clearing	119
Figure 3.15		Conceptual Plan for Development of Carbon Calculator	123
Figure 4.1	IN	ICEB Production – Inputs and Output for One kilogram of	131
		Bricks (a) Raw Materials (Input) (b) Manufacturing	
Figure 4.2	:	ICEB Production Plans as simulated in GaBi Software	132
Figure 4.3	:	Input and Output of ICEB Manufacturing using GaBi	133
		Software	
Figure 4.4	:	GaBi Analysis - Environmental Impacts Category on	135
		Global Warming Potential for 1 kg of ICEB Production (ReCil	Pe)
Figure 4.5	:	Global warming potential (GWP) generated by the raw	135
		materials and energy consumptions	
Figure 4.6	:	Results of Sensitivity Analysis for Global Warming Potential	137
Figure 5.1	:	Weightage of Materials used for the Material Stage	145
Figure 5.2	:	Carbon Footprint Reduction of FCB and ICEB Building.	150
Figure 5.3	:	Comparison of Embodied Energy of Building Materials	153
Figure 5.4	:	Comparison of Embodied Carbon of Building Materials	153
Figure 6.1	:	Flowchart of Basic Modelling Structure	159
Figure 6.2	:	ICEB Carbon Calculator Main Tabs	160

PERPUSTAKAAN

Figure 6.3	:	Database Tab Snapshot	161
Figure 6.4	:	Snapshot of Carbon Calculator Develop in This Study using	162
Figure 6.5	:	Embodied Carbon with Different Design Mixtures of	165
		alternative materials the ICEB	
Figure 6.6	:	Embodied Carbon with Different Design Mixtures of	165
		alternative materials the ICEB	
Figure 6.7	:	Comparison of GaBi LCA Software and Carbon Calculator for	167

LIST OF ABBREVIATIONS

BQ	-	Bill of Quantities
BEES	-	The Building for Environmental and Economic
		Sustainability
BS		British Standard
CE	•	Carbon Emission
EOL	-	End-of-life
EC	-	Embodied Carbon
EC	-	Embodied Carbon Factor
EE	-	Embodied Energy
EEF	-	Embodied Carbon Factor
FCB	-	Fired Clay Brick
FKJ	-	Faculty of Engineering
FU	SIL	Functional Unit
ICE	-22	Inventory of Carbon and Energy
IBS		Industrialized Building System
GBI	Araz Later	Green Building Index
GDP	SA BA	Gross Domestic Product MALAYSIA SABAH
GHG	-	Greenhouse Gas
GWP		Global Warming Potential
IBS	-	Industrialized Building System
ICEB	-	Interlocking Compressed Earth Brick
ICEBS	-	Interlocking Compressed Earth Brick System
ISO	-	International Organization for Standardization
JKR	-	Jabatan Kerja Raya (Public Works Department)
KASA	-	Kementerian Alam Sekitar dan Air
		(Ministry of Environment and Water)
LCA	-	Life Cycle Assessment
LCI	•	Life Cycle Inventories
LCIA	-	Life Cycle Impact Assessment
MGTC		Malaysian Green Technology and Climate Change
		Centre

PERPUSTAVAAN

OPC	-	Ordinary Portland Cement
PC	-	Portland Cement
QD	-	Quarry Dust
RB	-	Residential Building
RC	-	Reinforced Concrete
SB	-	System Boundary
UMS	-	Universiti Malaysia Sabah

LIST OF SYMBOLS

%	-	Percentage
α ⁱ j	-	Material Emission factor for material j
β	-	Electricity Emission Factor
γ	1	Transportation Emission Factor
ρ	+	Density
CO2	-	Carbon Dioxide
d	Ä	Distance for transportation from raw material extraction to brick manufacturing
EE	-	Total embodied energy of building (MJ)
GJ	-	GigaJoule
h	S.	Hour
kg		Kilogram
kg/m³	-	Kilogram of carbon dioxide equivalent per metre square
kgCO ₂ /m ²		Kilogram of carbon dioxide equivalent per metre square
kgCO₂ eq	4	Kilogram Carbon Dioxide Equivalent
kt	-	Kiloton
kWh	-	kilowatt hour
kt	-	Kilotonne
М	-	Material quantity
m²		Meter Square
m ⁱ j		Mass of raw material j
M _{PR} ⁱ j	-	Machinery Power rate for machine j
СМ	-	MegaJoule

min	-	Minutes
N/mm ²	÷.	Newton per square milimeter
т	۰.	Transportation of one tonne of materials over one Kilometer distance
t ⁱ j	-	Machinery usage time duration for machine j
tkm	-	Tonne-kilometre
v	-	Volume
Q _{mat}	-	Carbon emission of raw materials
Qmachi	-	Carbon emission of machinery used during production
Qtrans	-	Carbon emission from transportation
QT	-	Total carbon emission of ICEB production
v	-	Material Volume (m ³)

UNIVERSITI MALAYSIA SABAH

LIST OF APPENDICES

			Page
Appendix A	:	Quantity Of Materials (BQ)	185
Appendix B	:	Test on ICEB (Physical and Mechanical Properties)	192
Appendix C	:	UMS Interlocking Brick Project	193
Appendix D	:	Electricity Baseline's emission factor for Malaysia	196
Appendix E	:	Production of Brick	197
Appendix F	:	Database for Cement Manufacturing (GaBi)	199
Appendix G	:	LCA Results using GaBi and Data Validation for GWP of	200
		ICEB Production using different LCIA Method	
Appendix H	:	Summary of Materials used in Case Study Building	204
Appendix I	:	Embodied Energy and Carbon of Material	206
Appendix J	:	Embodied Energy and Carbon of Material per Built-up Area	208
Appendix K	:	Energy and Carbon Emission for Construction Stage	209
Appendix L	: /	Example Calculations for Environmental Impact on One	211
		Kilogram (1 kg) of Brick Production	
Appendix M	IN	Example Carbon Calculations for ICEB	212
Appendix N	1:	Example Calculations for Environmental Impact of	212
		Building Life Cycle UNIVERSITI MALAYSIA SABAH	
Appendix O		Environmental Impact on the production of ICEB for	214
		Each Scenario	
Appendix P	ţ.	Data Input and Output for ICEB Calculator	214
Appendix Q	;	List of Publications and Conference	214