UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THE	
Author's full name : NELI	
Date of Birth : 19 N	IAY 1979
Title : BON FIBR	ID BEHAVIOUR OF DEFORMED STEEL REBARS IN STEEL E HIGH-STRENGTH SELF-COMPACTING CONCRETE
Academic Session : 2022	2/2023 - 1
I declare that this thesis is cl	assified as:
CONFIDENTIAL	(Contains confidential information under the Official Secret Act 1972)*
RESTRICTED	(Contains restricted information as specified by the organization where research was done)*
	l agree that my thesis to be published as online open access (full text)
 I acknowledged that follows: 	Universiti Teknologi Malaysia reserves the right as
2. The thesis is the prop	erty of Universiti Teknologi MalaysiaA SABAH
 The Library of Univers the purpose of resea 	iti Teknologi Malaysia has the right to make copies for rch only.
4. The Library has the rig	ght to make copies of the thesis for academic
exchange.	Certified by:
Chulles-	
SIGNALUSE OF STUD	ENT SIGNATURE OF SUPERVISOR
PKA 173103	prof. dr. ahmad Baharuddin B. abd. rahman
MATRIX NUMBER	NAME OF SUPERVISOR
Date: 07 NOVEMBE	R 2022 Date: 07 NOVEMBER 2022

NOTES : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction

"We hereby declare that we have read this thesis and in our opinion this thesis is sufficient in term of scope and quality for the award of the degree of Doctor of Philosophy in Civil Engineering"

Signature AHMAD BAHARUDDIN B. ABD. RAHMAN Name of Supervisor I Date 7 NOVEMBER 2022 Signature : AZLAN BIN ADNAN Name of Supervisor II 7 NOVEMBER 2022 Date Signature

Name of Supervisor II Date

: ROSLLI BIN NOOR MOHAMED: 7 NOVEMBER 2022

BAHAGIAN A – Pengesahan Kerjasama*

Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui

kerjasama anta	ra_	dengan		
Disahkan oleh:				
Tandatangan	3		Tarikh :	
Nama	:			
Jawatan (Cop rasmi)	:			

* Jika penyediaan tesis/projek melibatkan kerjasama.

BAHAGIAN B – Untuk Kegunaan Pejabat Fakulti Kejuruteraan Awam

Tesis ini telah diperiksa dan diakui oleh:

Nama dan Alamat Pemeriksa Luar 1	Dato' Prof. Ir. Dr. Wan Hamidon Bin Wan
	Badaruzzaman
TI M	Fakulti Kejuruteraan dan Alam Bina
	Universiti Kebangsaan Malaysia
	43600 UKM Bangi
	Selangor
Nama dan Alamat Pemeriksa Dalam	Prof. Madya Dr. Suhaimi Bin Abu Bakar
	Fakulti Kejuruteraan Awam
	Universiti Teknologi Malaysia
	81310 Johor Bahru, Johor
Nama Penyelia Lain (Jika ada)	

Disahkan oleh Naib Pengerusi (Akademik & Pembangunan Pelajar), Fakulti Kejuruteraan Awam

Tandatangan :		 Tarikh :	
Nama	ș.		

BOND BEHAVIOUR OF DEFORMED STEEL REBARS IN STEEL FIBRE HIGH- STRENGTH SELF-COMPACTING CONCRETE

NELLY BINTI MAJAIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2022

I declare that this thesis entitled "Bond behaviour of deformed steel rebars in steel fibre high-strength self-compacting concrete" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

> Signature Name Date

NULA NELLY BINTI MAJAIN

7 NOVEMBER 2022

DEDICATION

This thesis is dedicated to my late father, who passed away while I was studying. All this hard work is inspired by him who always taught me that through hard work I can achieve anything. It is also dedicated to my mother, who never stopped praying for me from the day I was born. I love you both with all my heart.

UNIVERSITI MALAYSIA SABAH

ACKNOWLEDGEMENT

First and foremost, I would like to thank God for giving me the strength and grace I needed to complete this thesis. I am nothing without Him.

I would like to express my sincere gratitude to my supervisor Prof. Dr. Ahmad Baharuddin Abd. Rahman for trusting me to conduct the research work and for always supporting, guiding and sharing his wisdom with me. Thank you for believing in me. I am also thankful to my co-supervisors Prof. Ir. Dr. Azlan Adnan and Assoc. Prof. Dr. Roslli Noor Mohamed for their continuous support and guidance throughout my studies.

I am also indebted to Universiti Malaysia Sabah (UMS) for funding my Ph.D. studies and I am especially grateful to Assoc. Prof. Ts. Dr. Ismail Saad, the Dean of Faculty of Engineering, Universiti Malaysia Sabah, for his continuous support. Also, a special thank you to Prof. Ir. Dr. Abdul Karim Mirasa, the former Dean of Faculty of Engineering, Universiti Malaysia Sabah, for giving me the opportunity to pursue my Ph.D. studies.

My thanks and appreciation also goes to all the technicians of the Materials and Structure Laboratories (D04) especially to Ms. Mazlina Binti Ngah and Mr. Muhammad Anwarrasyid Bin Mohd Alwi for helping me a lot in the experimental work. Thank you to all of my postgraduate friends from D04 especially to Ir. Dr. Zuraida, Zanariah, Shariwati, Dianah, Ayun, Azie, Nadirah, Nur Fatin, Fazlin, Nur Suhadah, Annur, Azura and Chiew Shing Mei for assisting me in the experimental work and for their generosity in sharing knowledge and information. Their views and tips were useful indeed.

I also want to thank my family members especially my beloved father, the late Fabian Majain Lajini and to my mother Jovita Moinin, siblings (Genevive, Jonas, Regina, Sr. Marie Carmen and Emily), sister and brothers-in-law, nieces and nephews and also my uncles and aunties for consistently praying for me to complete my studies successfully and also for being so understanding.

I am forever thankful to the most faithful of friends in my life, Melissa Nicholas and Melissa Audrey Francis for their unending prayers, support, and encouragement. Thank you for always being there for me throughout all of my ups and downs in my study life.

Finally, I would like to thank all of my friends in GIFT UTM especially Joanne and Jason for helping me in my research work. Also, my deepest appreciation to all of my friends in Eramaju Synergy Sdn. Bhd., especially to Ir. Dr. Tom Ngui and Ir. Roland Ng for their continuous support and encouragement throughout my studies. ABSTRACT

Studies on the bond behaviour of deformed steel rebars in conventional concrete have been widely covered. However, the studies on the bond behaviour between deformed steel rebars and high-strength self-compacting concrete (HSSCC), particularly with the addition of steel fibres, are still very limited. Hence, in this research, an in-depth study was conducted to investigate the effects of steel fibres on the bond behaviour of deformed steel rebars embedded in steel fibre high-strength selfcompacting concrete (SFHSSCC). Experimental works were carried out in two phases. Phase 1 involved the design of concrete mixes and the testing of fresh and mechanical properties of the normal vibrated concrete (NVC), HSSCC and SFHSSCC. The steel fibres used in SFHSSCC were the hooked-end type with 35 mm length and an aspect ratio of 63.6. The research works in Phase 2 involved the direct pullout testing conducted according to the RILEM RC6 Part 2 standard. A total of 72 pullout specimens with a dimension of 200 mm x 200 mm x 200 mm were prepared and tested at 30 ± 2 days. A few of SFHSSCC specimens were tested at the 6 months of concrete age. The pullout specimens comprised high yield deformed steel rebars of 12, 16, and 20 mm diameters. The pullout specimens were subjected to increasing axial pullout load. The test results in Phase 1 showed the proposed design mix of self-compacting concrete managed to achieve high compressive strength of 60-80 N/mm². As compared to HSSCC, the concrete compressive strength of SFHSSCC had increased slightly, but the splitting tensile strength had increased tremendously. The results showed that SFHSSCC with 1.0% of steel fibre volume fraction was the best mix that satisfy the self-compacting and harden concrete requirements and therefore was selected for further study in Phase 2. The test results of Phase 2 showed that the effect of steel fibres in increasing bond strength between rebar and the high-strength self-compacting concrete is seen to be insignificant as the results of bond strength of rebars in HSSCC and SFHSSCC concrete showed small differences only. However, the addition of steel fibres in SFHSSCC had improved the concrete ductility very significantly. At the age of 6 months, the confinement energy of the SFHSSCC improved substantially by about 80% as compared to the confinement energy at 30 ± 2 days. Based on the stress-strain behaviour in concrete, it was observed that the SFHSSCC was able to expand significantly under large stresses with controllable strains which justifies that the presence of steel fibres had contributed to improved confinement effects to the extent that the SFHSSSCC had the ability to provide high confinement energy and good ductility. Subsequently, based on the pullout test results, two new bond strength equations are proposed to predict the bond strengths of deformed steel rebars embedded in HSSCC and SFHSSCC. Finally, it can be concluded that the presence of steel fibres in SFHSSCC could overcome the brittle failure in high strength selfcompacting concrete and significantly improves the concrete ductility, which delay the loss of bond between rebars and concrete.

ABSTRAK

Kajian mengenai kelakuan ikatan tetulang keluli berbunga dalam konkrit konvensional telah dilaksanakan dengan meluas. Bagaimanapun, kajian mengenai sifat ikatan antara tetulang keluli berbunga dan konkrit kekuatan tinggi terpadat sendiri (HSSCC), terutamanya dengan penambahan gentian keluli, masih sangat terhad. Oleh itu, dalam penyelidikan ini, kajian lebih mendalam telah dilakukan untuk menyelidik kesan gentian keluli terhadap sifat ikatan tetulang keluli berbunga yang tertanam dalam konkrit kekuatan tinggi terpadat sendiri dengan gentian keluli (SFHSSCC). Keria-keria ujikaji dijalankan dalam dua fasa. Fasa 1 melibatkan reka bentuk campuran konkrit dan uijan sifat konkrit segar dan mekanikal bagi konkrit bergetar normal (NVC), HSSCC dan SFHSSCC. Gentian keluli yang digunakan dalam SFHSSCC adalah jenis hujung bercangkuk dengan panjang 35 mm dan nisbah aspek 63.6. Kerja penyelidikan Fasa 2 melibatkan ujian tarik-keluar langsung yang dijalankan mengikut piawaian RILEM RC6 Bahagian 2. Sejumlah 72 spesimen tarik-keluar dengan dimensi 200 mm x 200 mm x 200 mm telah disediakan dan diuji pada 30 ± 2 hari. Beberapa spesimen SFHSSCC juga telah diuji pada umur konkrit 6 bulan. Spesimen tarik-keluar menggunakan tetulang keluli berbunga alahan tinggi berdiameter 12, 16, dan 20 mm. Spesimen tarik-keluar dikenakan beban tegangan paksi yang meningkat. Keputusan ujian Fasa 1 menunjukkan reka bentuk campuran konkrit terpadat sendiri yang dicadangkan dapat mencapai kekuatan mampatan tinggi di antara 60-80 N/mm². Berbanding dengan HSSCC, kekuatan mampatan konkrit SFHSSCC meningkat sedikit, tetapi kekuatan tegangan pecah meningkat dengan sangat tinggi. Keputusan menunjukkan SFHSSCC dengan 1.0% pecahan isipadu gentian keluli adalah campuran terbaik yang memenuhi keperluan konkrit terpadat sendiri dan konkrit keras dan telah dipilih untuk kajian lanjut di Fasa 2. Keputusan ujian Fasa 2 menunjukkan kesan gentian keluli dalam peningkatan kekuatan ikatan di antara tetulang keluli dengan konkrit kekuatan tinggi terpadat sendiri dilihat tidak ketara kerana hasil kekuatan ikatan tetulang keluli dalam konkrit HSSCC dan SFHSSCC menunjukkan perbezaan yang sedikit. Bagaimanapun, penambahan gentian keluli dalam SFHSSCC telah meningkatkan kemuluran konkrit SFHSSCC dengan sangat ketara. Pada umur 6 bulan, tenaga pengurungan SFHSSCC meningkat dengan ketara sehingga 80% berbanding tenaga pengurungan pada 30 ± 2 hari. Berdasarkan penyelidikan sifat tegasan-terikan dalam konkrit, telah diperhatikan bahawa SFHSSCC dapat mengembang dengan ketara di bawah tegasan yang besar dengan terikan terkawal yang membuktikan bahawa kehadiran gentian keluli telah menyumbang kepada kesan pengurungan yang lebih baik sehingga SFHSSSCC mempunyai keupayaan untuk memberikan tenaga pengurungan yang tinggi dan kelakuan mulur yang baik. Seterusnya, berdasarkan keputusan ujian tarik keluar, dua persamaan kekuatan ikatan baharu telah dicadangkan untuk meramalkan kekuatan ikatan tetulang keluli berbunga yang tertanam dalam HSSCC dan SFHSSCC. Akhirnya, dapat disimpulkan bahawa kehadiran gentian keluli dalam SFHSSCC dapat mengatasi kegagalan rapuh dalam konkrit kekuatan tinggi terpadat sendiri serta meningkatkan kemuluran konkrit dengan ketara, yang melambatkan kegagalan ikatan di antara tetulang keluli dan konkrit.

TABLE OF CONTENTS

TITLE

PAGE

9

LARATION	iii
ICATION	iv
NOWLEDGEMENT	v
ГКАСТ	vi
ſRAK	vii
LE OF CONTENTS	viii
OF TABLES	xiii
OF FIGURES	XV
OF ABBREVIATIONS	xxi
OF SYMBOLS	xxii
OF APPENDICES	xxiv
INTRODUCTION	1
Introduction	1
Problem Statement	3
Objectives of the Study	5
Scope of Study	5
Significance of Study	6
Outline of the Thesis	6
	LARATION ICATION NOWLEDGEMENT TRACT TRAK LE OF CONTENTS OF TABLES OF FIGURES OF ABBREVIATIONS OF ABBREVIATIONS OF APPENDICES INTRODUCTION Introduction Problem Statement Objectives of the Study Scope of Study Significance of Study Outline of the Thesis

CHAPTER 2 LITERATURE REVIEW

2.1	Introd	uction		9
2.2	SCC			10
	2.2.1	Background	of SCC	10
	2.2.2	Practical Ap	plications of SCC	11
	2.2.3	Characterist	ics of SCC	13
	2.2.4	SCC Mix De	esign	14
		2.2.4.1 Ba	asic Mix Design of SCC	16

		2.2.4.2 Mechanical Properties of SCC	16
	2.3	SFSCC	17
		2.3.1 Background of SFSCC	18
		2.3.2 Types of Steel Fibres	19
		2.3.3 SFSCC in the Fresh State	20
		2.3.4 Mechanical Properties of SFSCC	22
		2.3.4.1 Compressive Strength Test	23
		2.3.4.2 Splitting Tensile Strength	23
		2.3.5 Steel Fibres Mechanism in Concrete	24
		2.3.5.1 Steel Fibre Confinement and Ductility	24
	2.4	Bond of Reinforcing Rebar in Concrete	25
		2.4.1 Bond Mechanism	26
		2.4.2 Factor Influencing Bond Behaviour	29
		2.4.3 Confinement Effects on Bond Behaviour	33
		2.4.4 Pullout Tests to Investigate Bond Behaviour and Performance	35
		2.4.5 Previous Study on Bond between Reinforcing Rebar and Concrete	40
		2.4.6 Existing Analytical Bond Models	54
	2.5	Summary	58
СНАРТЕ	CR 3	RESEARCH METHODOLOGY	61
	3.1	Introduction	61
	3.2	Constituent Materials	65
		3.2.1 Cement	65
		3.2.2 Fly Ash	65
		3.2.3 Fine and Coarse Aggregate	66
		3.2.4 Water	68
		3.2.5 Superplasticiser	68
		3.2.6 Steel Fibres	69
		3.2.7 Deformed Steel Rebars	70
	3.3	Mix Design and Casting Procedure	74

	3.4	Specimen Details and Preparation	78
		3.4.1 Specimen Detail for Mechanical Properties Testing	79
		3.4.2 Specimen Detail for Direct Pullout Testing	80
	3.5	Phase 1: Fresh Properties and Mechanical Properties Testing	90
		3.5.1 Fresh Properties Testing	90
		3.5.1.1 Slump Test	90
		3.5.1.2 Slump Flow Test	91
		3.5.1.3 V-Funnel Test	92
		3.5.1.4 L-Box Test	93
		3.5.2 Mechanical Properties Testing	94
		3.5.2.1 Compressive Strength Test	94
		3.5.2.2 Splitting Tensile Strength	95
	3.6	Phase 2: Bond Test - Pullout Test	97
		3.6.1 Loading Rate Determination	97
		3.6.2 Strain Gauges Installation on Pullout Specimen	99
		3.6.3 Pullout Test	100
		3.6.4 Concrete Coring Sampling	103
	3.7	Summary	105
СНАРТЕ	R 4	FRESH AND MECHANICAL PROPERTIES OF CONCRETE	107
	4.1	Introduction	107
	4.2	Fresh Properties of Concrete	107
		4.2.1 Slump Test	108
		4.2.2 Slump Flow	109
		4.2.3 V-Funnel	111
		4.2.4 L-Box	113
	4.3	Mechanical Properties of Concrete	114
		4.3.1 Concrete Compressive Strength	115
		4.3.2 Splitting Tensile Strength	117
	4.4	Confirmation of Concrete Mix Design	120

1.5	Summary
1.5	Summury

CHAPTER	15	BOND REBA SELF-	BEHAVIOUR OF DEFORMED STEEL RS IN STEEL FIBRE HIGH-STRENGTH COMPACTING CONCRETE	123
	5.1	Introdu	uction	123
	5.2	Pullout	Test Results	123
	5.3	Mode	of Failure	129
		5.3.1	Effects of Rebar Size on Mode of Failures	133
		5.3.2	Effects of Concrete Cover on Mode of Failures	142
		5.3.3	Effects of R ebar Embedment Length on Mode of Failures	151
	5.4	Bond S	Stress-Slip Relationship	159
		5.4.1	Effects of Concrete Compressive Strength on Bond Strength and Mode of Failure	165
		5.4.2	Effects of Concrete Tensile Strength on Bond Strength and Mode of Failure	167
		5.4.3	Normalised Bond Strength	169
		5.4.4	Top-Bar Effect on Uniformity of Bond	172
	C	5.4.5	Effect of Specimen Shape on Bond Strength	176
	5.5	Summa	ary ONIVERSITI MALATSIA SABAT	182
СНАРТЕВ	8 6	CONF REINI COMI BEHA	INEMENT EFFECTS OF STEEL FIBRE FORCED HIGH-STRENGTH SELF- PACTING CONCRETE ON BOND VIOUR	185
	6.1	Introdu	action	185
	6.2	Steel F	ibre Confinement Mechanism	185
	6.3	Effects Behavi	of Steel Fibre Confinement on Bond our	191
		6.3.1	SFHSSCC Confinement Energy	195
	6.4	Stress- in Pul Confin	Strain of Concrete and Deformed Steel Rebars llout Specimens and the Relationship to ement	199
	6.5	Theore	tical Analysis of Predicted Bond Strength	209
		6.5.1	Experimental Data for Theoretical Analysis	209

	6.5.2 Evaluation of Existing Bond Strength Equations	212
	6.5.3 Proposed Bond Strength Equation from Pullout Failure	220
	6.5.4 Proposed Equation to Estimate Bond Strength Due to Premature Splitting and Rebar Yielding Failures	223
	6.5.5 Recommended Bond Equations	228
6.6	Summary	229
CHAPTER 7	CONCLUSIONS AND RECOMMENDATIONS	233
7.1	Introduction	233
7.2	Conclusions	233
	7.2.1 Fresh and Mechanical Properties of Concrete	233
	7.2.2 Bond Behaviour and Performance of Deformed Steel Rebars in HSSCC and SFHSSCC	235
	7.2.3 Effects of steel fibre confinement on the bond behaviour of deformed steel rebars in SFHSSCC	236
	7.2.4 Recommendation of Bond Strength Equations	238
7.3	Recommendation for Future Research	238
REFERENCES		241
LIST OF PUBLI	CATIONS	263

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Requirements of SCC (EFNARC, 2002)	14
Table 2.2	Typical range of SCC mix composition (European Project, 2005)	16
Table 2.3	Factors influencing bond behaviour	31
Table 2.4	Method of concrete confinement and testing	36
Table 2.5	Previous study on bond of rebar in NVC and SFRC	41
Table 2.6	Bond of reinforcing rebar in SCC/HSSCC	46
Table 2.7	Bond of reinforcing rebar in SFSCC/SFHSSCC	51
Table 2.8	Previous study on analytical bond models	55
Table 3.1	Results of sieve analysis for fine aggregate	67
Table 3.2	Properties of hooked-end steel fibre	70
Table 3.3	Measured dimension of deformed steel rebar	71
Table 3.4	Mechanical properties of deformed steel rebars	74
Table 3.5	NVC, HSSCC and SFHSSCC materials compositions (1 m ³ volume)	75
Table 3.6	HSSCC and SFHSSCC mixtures mixing process	77
Table 3.7	Nos. of specimens for mechanical properties testing	79
Table 3.8	Concrete batches for pullout specimens and nos. of samplings for mechanical properties testing	81
Table 3.9	Pullout specimens prepared for loading rate testing	82
Table 3.10	Pullout specimens of plain HSSCC	83
Table 3.11	Pullout specimens of SFHSSCC	84
Table 3.12	Pullout specimens of NVC	85
Table 4.1	Test results of fresh concrete of NVC, HSSCC and SFHSSCC	108
Table 4.2	Slump flow test results	109
Table 4 3	Mechanical properties test results	115

Table 5. 1	Pullout test results of specimens with 12 mm diameter deformed steel rebars	125
Table 5. 2	Pullout test results of specimens with 16 mm diameter deformed steel rebars	126
Table 5.3	Pullout test results of specimens with 20 mm diameter deformed steel rebars	127
Table 5.4	Percentage difference of the normalised bond strength of the top and bottom rebars in HSSCC, SFHSSCC and NVC	174
Table 5.5	Pullout results for Normal Vibrated Concrete (NVC)	179
Table 6. 1	Confinement energy of HSSCC and SFHSSCC pullout specimens with 35 mm thickness of concrete cover	198
Table 6. 2	Pullout specimens installed with concrete and steel strain gauges	200
Table 6.3	Proposed bond strength equations by various researchers	210
Table 6.4	Experimental data of pullout failure specimens used as input data for all equations in Table 6.3	212
Table 6.5	Comparison of predicted bond strength versus experimental bond strength by Orangun <i>et al.</i> , Kemp, Chapman and Shah, Harajli, Bae, Hadi, Desnerck <i>et al.</i> , Aslani and Nejadi, Pop and Chu and Kwan	213
Table 6.6	Predicted bond strength versus experimental bond strength using Equation 6.11	221
Table 6. 7	Experimental data of premature splitting and rebar yielding failure specimens used as input data to modify Equation 6.11	225
Table 6.8	Predicted bond strength versus experimental bond strength using Equation 6. 12	226
Table 6.9	Recommended bond strength equations by the author	229

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
Figure 1.1	Super high-rise building, Burj Khalifa, Dubai constructed using SCC material (Baker et al., 2009)	2
Figure 2.1	Construction of bridges using SCC (a) Towers of the Shin- Kiba Ohashi bridge, (b) Anchorage 4A of Akashi-Kaikyo	12
Figure 2.2	Construction of high-rise buildings using SCC (a) Burj Khalifa under construction (Baker <i>et al.</i> , 2009) (b) World Financial Centre Shanghai, China under construction (Katz and Robertson, 2008)	12
Figure 2.3	Comparison of mix proportions between SCC and conventional concrete (Okamura and Ouchi, 2003)	15
Figure 2.4	Types of steel fibres (a,b,c) (Manufacturer Remix Steel Fibres Co., Ltd., Hebei Province, China), (d) (Abdallah <i>et al.</i> , 2018).	20
Figure 2.5	Reinforcing rebar and concrete interaction (Reinhardt and Balázs, 1995)	26
Figure 2.6	Bond stresses and radial stresses exerted at the concrete and rebar interface (Garcia-Taengua <i>et al.</i> , 2016)	27
Figure 2.7	Modes of bond failure: (a) pullout, (b) splitting induced pullout (c) splitting failure (FIB, 2000)	27
Figure 2.8	Local bond stress versus slip for plain rebar and deformed steel rebars (FIB, 2000)	28
Figure 2.9	Failure in concrete specimens with and without confinement (Yeih et al., 1997)	34
Figure 2.10	Pullout test according to RILEM RC6 (a) Testing setup (b) Specimen view from bottom (c) Details of pullout specimen (Carvalho <i>et al.</i> , 2017)	40
Figure 2.11	Pullout specimens: Unconfined and confined with fibres (Hameed et al., 2013)	44
Figure 2.12	Mechanism of fibres crack arrest (Harajli et al., 1995)	44
Figure 3.1	Overview of research methodology framework	62
Figure 3.2	Detailed methodology for Phase 1	63
Figure 3.3	Detailed methodology for Phase 2	64

Table 5.1	Pullout test results of specimens with 12 mm diameter deformed steel rebars	125
Table 5.2	Pullout test results of specimens with 16 mm diameter deformed steel rebars	126
Table 5.3	Pullout test results of specimens with 20 mm diameter deformed steel rebars	127
Table 5.4	Percentage difference of the normalised bond strength of the top and bottom rebars in HSSCC, SFHSSCC and NVC	174
Table 5.5	Pullout results for Normal Vibrated Concrete (NVC)	179
Table 6.1	Confinement energy of HSSCC and SFHSSCC pullout specimens with 35 mm thickness of concrete cover	198
Table 6.2	Pullout specimens installed with concrete and steel strain gauges	200
Table 6.3	Proposed bond strength equations by various researchers	210
Table 6.4	Experimental data of pullout failure specimens used as input data for all equations in Table 6.3	212
Table 6.5	Comparison of predicted bond strength versus experimental bond strength by Orangun <i>et al.</i> , Kemp, Chapman and Shah, Harajli, Bae, Hadi, Desnerck <i>et al.</i> , Aslani and Nejadi, Pop and Chu and Kwan	213
Table 6.6	Predicted bond strength versus experimental bond strength using Equation 6.11	221
Table 6.7	Experimental data of premature splitting and rebar yielding failure specimens used as input data to modify Equation 6.11	225
Table 6.8	Predicted bond strength versus experimental bond strength using Equation 6.12	226
Table 6.9	Recommended bond strength equations by the author	229

Figure 3.30	Splitting tensile strength test	96
Figure 3.31	Load vs slip with different loading rate	98
Figure 3.32	Strain gauges location on pullout specimen	100
Figure 3.33	Pullout specimen	101
Figure 3.34	Pullout specimen setup	102
Figure 3.35	Direct pullout testing setup	103
Figure 3.36	Concrete coring on pullout specimens	104
Figure 4.1	True slump of NVC mix	109
Figure 4.2	Slump flow of (a) plain HSSCC, (b) SFHSSCC-0.5%	110
Figure 4.3	Slump flow of (a) SFHSSCC-1.0%, (b) Modified SFHSSCC-1.0%	111
Figure 4.4	V-funnel test result for plain HSSCC	112
Figure 4.5	Accumulated steel fibres at the tapered area of V-funnel	113
Figure 4.6	L-box test result	114
Figure 4.7	Average compressive strength test result of NVC, HSSCC & SFHSSCC	116
Figure 4.8	Failure modes of NVC, HSSCC, SFHSSCC-0.5% and SFHSSCC-1.0%	117
Figure 4.9	Average splitting tensile strength results of NVC, HSSCC & SFHSSCC	118
Figure 4.10	Splitting tensile strength failure modes of NVC, HSSCC, SFHSSCC-0.5% and SFHSSCC-1.0%	120
Figure 5.1	Forces generated at the interface of rebar and concrete	129
Figure 5.2	Splitting Failure	130
Figure 5.3	Pullout Failure	132
Figure 5.4	Load versus slip for HSSCC & SFHSSCC specimens with different rebar sizes and corresponding pullout or splitting bond failures	134
Figure 5.5	Load versus slip for HSSCC & SFHSSCC specimens with combined rebar sizes	137
Figure 5.6	Bond failures of specimens with 12 mm rebars	138
Figure 5.7	Bond failures of specimens with 16 mm rebars	139
Figure 5.8	Bond failures of specimens with 20 mm rebars	141

Figure 3.4	Fly Ash Class F	66
Figure 3.5	(a) Fine aggregate (b) Coarse aggregate	67
Figure 3.6	Sieve analysis results for fine aggregate	68
Figure 3.7	Sika Viscocrete-2044 admixture	69
Figure 3.8	STAHLCON steel fibres HE 0.55/35	70
Figure 3.9	Geometry of deformed steel rebars	71
Figure 3.10	Samples of rebars and tensile strength test	72
Figure 3.11	Stress versus strain curve for T12 deformed steel rebar	72
Figure 3.12	Stress versus strain curve for T16 deformed steel rebar	73
Figure 3.13	Stress versus strain curve for T20 deformed steel rebar	73
Figure 3.14	Rotary drum mixer	78
Figure 3.15	Curing tank	78
Figure 3.16	Concrete cube samplings for compressive strength test	80
Figure 3.17	Concrete cylinder samplings for splitting tensile strength test	80
Figure 3.18	Specimen identification for pullout specimens	82
Figure 3.19	Pullout steel mould and specimen with installed ribbed rebar	86
Figure 3.20	Embedment length of rebar in pullout specimens	87
Figure 3.21	Concrete cover thickness and position of rebar in pullout specimens	88
Figure 3.22	Casting of pullout specimens and samples for mechanical properties testing	88
Figure 3.23	Pullout specimens under curing	89
Figure 3.24	Some of the pullout specimens and cubes for compressive strength tests	89
Figure 3.25	Slump test	91
Figure 3.26	Making of slump flow test	92
Figure 3.27	V-Funnel test	93
Figure 3.28	L-Box test	94
Figure 3.29	Compressive strength test	95

Figure 5.9	Cracks pattern of HSSCC specimen with 20 mm rebar which is influenced by the horizontal ribs of the rebar	142
Figure 5.10	Load versus slip for HSSCC & SFHSSCC specimens with different thickness of concrete cover and corresponding pullout or splitting bond failures	144
Figure 5.11	Load versus slip for HSSCC & SFHSSCC specimens with 35 mm concrete cover	147
Figure 5.12	Bond failures of HSSCC and SFHSSCC specimens with 12 mm rebars and 35 mm concrete cover	148
Figure 5.13	Bond failures of HSSCC and SFHSSCC specimens with 16 mm rebars and 35 mm concrete cover	149
Figure 5.14	Bond failures of HSSCC and SFHSSCC specimens with 20 mm rebars and 35 mm concrete cover	150
Figure 5.15	Cracks patterns of HSSCC and SFHSSCC specimens with 20 mm diameter rebar and 35 mm concrete cover which is influenced by the horizontal rib of the rebar	151
Figure 5.16	Load versus slip of HSSCC & SFHSSCC specimens with 30 and 50 embedment length and corresponding pullout or splitting bond failures	153
Figure 5.17	Load versus slip for HSSCC & SFHSSCC specimens with different rebar sizes and with embedment length of 50	155
Figure 5.18	Bond failures of HSSCC and SFHSSCC specimens with 12 mm rebars and 3Ø and 5Ø embedment length	156
Figure 5.19	Bond failures of HSSCC and SFHSSCC specimens with 16 mm rebars and 30 and 50 embedment length	157
Figure 5.20	Bond failures of HSSCC and SFHSSCC specimens with 20 mm rebars and $3\emptyset$ and $5\emptyset$ embedment length	158
Figure 5.21	Bond stress versus slip of HSSCC and SFHSSCC specimens	161
Figure 5.22	Bond strength versus cover/diameter for all rebar sizes in HSSCC and SFHSSCC	164
Figure 5.23	Bond strength versus concrete compressive strength	165
Figure 5.24	Bond strength versus concrete tensile strength	168
Figure 5.25	Concrete tensile strength versus concrete compressive strength	169
Figure 5.26	Normalised bond strength of HSSCC, SFHSSCC and NVC specimens	171

Figure 5.27	Top and bottom rebars in pullout specimens	173
Figure 5.28	Coring samples of the SFHSSCC, HSSCC and NVC pullout specimens	175
Figure 5.29	Dimensions of the cylindrical and cube pullout specimens	177
Figure 5.30	Comparison between cylinder (Zaini Rijal, 2019) and cube specimens embedded with 16 mm diameter rebar	180
Figure 6.1	Forces transfer mechanism and its effect on surrounding concrete in unreinforced HSSCC	187
Figure 6.2	Steel fibre confinement	188
Figure 6.3	Sewing effect by steel fibres on concrete	189
Figure 6.4	Steel fibres distribution in coring samples	190
Figure 6.5	Stages of pullout behaviour and confinement effects	192
Figure 6.6	Steel rebar-concrete interaction at different stages of pullout testing and confinement effects	193
Figure 6.7	The confinement energy parameters to estimate the confinement energy	197
Figure 6.8	Pullout specimens with top and bottom rebars and installed with concrete and steel strain gauges	201
Figure 6.9	Stress – strain curves of HSSCC, SFHSSCC and NVC specimens embedded with 12 mm rebar	203
Figure 6.10	Stress – strain curves of HSSCC, SFHSSCC and NVC specimens embedded with 16 mm rebar	204
Figure 6.11	Stress – strain curves of HSSCC, SFHSSCC and NVC specimens embedded with 20 mm rebar	206
Figure 6.12	Stress – strain curves of HSSCC and SFHSSCC specimens embedded with 12, 16 and 20 mm bottom rebars	208
Figure 6.13	Comparison of predicted bond strength versus experimental bond strength from Orangun <i>et al.</i> (1997), Kemp (1986), Chapman and Shah (1987), Harajli (1994), Bae (2006) and Hadi (2008) models	216
Figure 6.14	Comparison of predicted bond strength versus experimental bond strength from Desnerck <i>et al.</i> (2010b), Aslani and Nejadi (2012a), Pop (2014) and Chu and Kwan (2019) models	217
Figure 6.15	Predicted bond strength versus experimental bond strength using proposed bond strength equation (Equation 6.11)	222

- Figure 5.9 Cracks pattern of HSSCC specimen with 20 mm rebar which is influenced by the horizontal ribs of the rebar
- Figure 5.10 Load versus slip for HSSCC & SFHSSCC specimens with different thickness of concrete cover and corresponding pullout or splitting bond failures
- Figure 5.11 Load versus slip for HSSCC & SFHSSCC specimen^s with 35 mm concrete cover
- Figure 5.12 Bond failures of HSSCC and SFHSSCC specimens with 12 mm rebars and 35 mm concrete cover
- Figure 5.13 Bond failures of HSSCC and SFHSSCC specimens with 16 mm rebars and 35 mm concrete cover
- Figure 5.14 Bond failures of HSSCC and SFHSSCC specimens with 20 mm rebars and 35 mm concrete cover
- Figure 5.15 Cracks patterns of HSSCC and SFHSSCC specimens with 20 mm diameter rebar and 35 mm concrete cover which is influenced by the horizontal rib of the rebar
- Figure 5.16 Load versus slip of HSSCC & SFHSSCC specimens with 30 and 50 embedment length and corresponding pullout or splitting bond failures
- Figure 5.17 Load versus slip for HSSCC & SFHSSCC specimens with different rebar sizes and with embedment length of 50
 - Figure 5.18 Bond failures of HSSCC and SFHSSCC specimens with 12 mm rebars and 3Ø and 5Ø embedment length
 - Figure 5.19 Bond failures of HSSCC and SFHSSCC specimens with 16 mm rebars and 30 and 50 embedment length
 - Figure 5.20 Bond failures of HSSCC and SFHSSCC specimens with 20 mm rebars and 30 and 50 embedment length
 - Figure 5.21 Bond stress versus slip of HSSCC and SFHSSCC specimens
 - Figure 5.22 Bond strength versus cover/diameter for all rebar sizes in HSSCC and SFHSSCC
 - Figure 5.23 Bond strength versus concrete compressive strength
 - Figure 5.24 Bond strength versus concrete tensile strength
 - Figure 5.25 Concrete tensile strength versus concrete compressive strength
 - Figure 5.26 Normalised bond strength of HSSCC, SFHSSCC and NVC specimens

Figure 6.16Comparison of existing bond strength equations with the
proposed bond strength equation (Equation 6.11)223Figure 6.17Experimental peak load of specimens with premature
splitting and rebar yielding failure as compared to peak load
of specimens with pullout failure224Figure 6.18Predicted bond strength versus experimental bond strength
using proposed model (Equation 6.12)227

