PSZ 19:16 (Pind. 1/13)
UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / POSTGRADUATE PROJECT REPORT AND

COPYRIGHT
Author's full name : NELLY BINTI MA JAIN

Date of Birth 119 MAY 1979

Title . BOND BEHAVIOUR OF DEFORMED STEEL REBARS IN STEEL
FIBRE HIGH-STRENGTH SELF-COMPACTING CONCRETE

Academic Session 1 2022/2023 - 1

| declare that this thesis is classified as:

CONFIDENTIAL (Contains confidential information under the
Official Secret Act 1972)*

RESTRICTED (Containsrestricted information as specified by
the organization where research was done)*

v | OPEN ACCESS |Iagree that my thesis to be published as online
open access (full text)

I acknowledged that Universiti Teknologi Malaysia reserves the right as

follows:
The thesis is the property of Universiti Teknologi Malaysia
The Library of Universiti Teknologi Malaysia has the right to make copies for
the purpose of research only.
The Library has the right to make copies of the thesis for academic
exchange.

Certified by:

SIGNA FSTUDENT SIGNATURE OF SUPERVISOR

PROF. DR. AHMAD
RIGEMpEADS BAHARUDDIN B. ABD. RAHMAN
MATRIX NUMBER NAME OF SUPERVISOR

Date: 07 NOVEMBER 2022 Date: 07 NOVEMBER 2022

NOTES : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from
the organization with period and reasons for confidentiality or restriction



“We hereby declare that we have read this thesis and in our

opinion this thesis is sufficient in term of scope and quality for the

award of the degree of Doctor of Philosophy in Civil Engineering™

Signature
Name of Supervisor |

Date

Signature
Name of Supervisor I

Date

Signature
Name of Supervisor 11

Date

e =

AHMAD BAHARUDDIN B. ABD. RAHMAN
7 NOVEMBER 2022

-

AZLAN BHII ADNAN
7 NOVEMBER 2022

ROSLLI BIN NOOR MOHAMED
7NOVEMBER 2022




BAHAGIAN A — Pengesahan Kerjasama*

Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui

kerjasama antara dengan

Disahkan oleh:

Tandatangan : Tarikh :

Nama

Jawatan
(Cop rasmi)

* Jika penyediaan tesis/projek melibatkan kerjasama.

BAHAGIAN B - Untuk Kegunaan Pejabat Fakulti Kejuruteraan Awam
Tesis ini telah diperiksa dan diakui oleh:

Nama dan Alamat Pemeriksa Luar 1 : Dato’ Prof. Ir. Dr. Wan Hamidon Bin Wan
Badaruzzaman
Fakulti Kejuruteraan dan Alam Bina
Universiti Kebangsaan Malaysia
43600 UKM Bangi
Selangor

Nama dan Alamat Pemeriksa Dalam : Prof. Madya Dr. Suhaimi Bin Abu Bakar
Fakulti Kejuruteraan Awam
Universiti Teknologi Malaysia
81310 Johor Bahru, Johor

Nama Penyelia Lain (Jika ada)

Disahkan oleh Naib Pengerusi (Akademik & Pembangunan Pelajar), Fakulti Kejuruteraan

Awam

Tandatangan : Tarikh :

Nama



BOND BEHAVIOUR OF DEFORMED STEEL REBARS IN STEEL FIBRE
HIGH- STRENGTH SELF-COMPACTING CONCRETE

NELLY BINTI MAJAIN

A thesis submitted in fulfilment of the
requirements for the award of the degree of

Doctor of Philosophy

Faculty of Civil Engineering

Universiti Teknologi Malaysia

NOVEMBER 2022



DECLARATION

I declare that this thesis entitled “Bond behaviour of deformed steel rebars in steel
fibre high-strength self-compacting concrete” is the result of my own research except
as cited in the references. The thesis has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Signature
Name : NELLY BINTI MAJAIN
Date : 7NOVEMBER 2022

1l



DEDICATION

This thesis is dedicated to my late father, who passed away while | was studying. All
this hard work is inspired by him who always taught me that through hard work I can
achieve anything. It is also dedicated 1o my mother, who never stopped praying for
me from the day | was bom. [ love you both with all my heart.



ACKNOWLEDGEMENT

First and foremost, I would like to thank God for giving me the strength and
grace I needed to complete this thesis. [ am nothing without Him.

I would like to express my sincere gratitude to my supervisor Prof. Dr. Ahmad
Baharuddin Abd. Rahman for trusting me to conduct the research work and for always
supporting, guiding and sharing his wisdom with me. Thank you for believing in me.
I am also thankful to my co-supervisors Prof. Ir. Dr. Azlan Adnan and Assoc. Prof.
Dr. Roslli Noor Mohamed for their continuous support and guidance throughout my
studies.

I am also indebted to Universiti Malaysia Sabah (UMS) for funding my Ph.D.
studies and I am especially grateful to Assoc. Prof. Ts. Dr. Ismail Saad, the Dean of
Faculty of Engineering, Universiti Malaysia Sabah, for his continuous support. Also,
a special thank you to Prof. Ir. Dr. Abdul Karim Mirasa, the former Dean of Faculty
of Engineering, Universiti Malaysia Sabah, for giving me the opportunity to pursue
my Ph.D. studies.

My thanks and appreciation also goes to all the technicians of the Materials
and Structure Laboratories (D04) especially to Ms. Mazlina Binti Ngah and Mr.
Muhammad Anwarrasyid Bin Mohd Alwi for helping me a lot in the experimental
work. Thank you to all of my postgraduate friends from D04 especially to Ir. Dr.
Zuraida, Zanariah, Shariwati, Dianah, Ayun, Azie, Nadirah, Nur Fatin, Fazlin, Nur
Suhadah, Annur, Azura and Chiew Shing Mei for assisting me in the experimental
work and for their generosity in sharing knowledge and information. Their views and
tips were useful indeed.

I also want to thank my family members especially my beloved father, the late
Fabian Majain Lajini and to my mother Jovita Moinin, siblings (Genevive, Jonas,
Regina, Sr. Marie Carmen and Emily), sister and brothers-in-law, nieces and nephews
and also my uncles and aunties for consistently praying for me to complete my studies
successfully and also for being so understanding.

I am forever thankful to the most faithful of friends in my life, Melissa Nicholas
and Melissa Audrey Francis for their unending prayers, support, and encouragement.
Thank you for always being there for me throughout all of my ups and downs in my
study life.

Finally, I would like to thank all of my friends in GIFT UTM especially Joanne
and Jason for helping me in my research work. Also, my deepest appreciation to all of
my friends in Eramaju Synergy Sdn. Bhd., especially to Ir. Dr. Tom Ngui and Ir.
Roland Ng for their continuous support and encouragement throughout my studies.



ABSTRACT

Studies on the bond behaviour of deformed steel rebars in conventional
concrete have been widely covered. However, the studies on the bond behaviour
between deformed steel rebars and high-strength self-compacting concrete (HSSCC),
particularly with the addition of steel fibres, are still very limited. Hence, in this
research, an in-depth study was conducted to investigate the effects of steel fibres on
the bond behaviour of deformed steel rebars embedded in steel fibre high-strength self-
compacting concrete (SFHSSCC). Experimemal works were carmed out in two phases.
Phase 1 involved the design of concrete mixes and the testing of fresh and mechanical
properties of the normal vibrated concrete (NVC). HSSCC and SFHSSCC. The steel
fibres used in SFHSSCC were the hooked-end type with 35 mm length and an aspect
ratio of 63.6. The research works in Phase 2 involved the direct pullout testing
conducted according 1o the RILEM RC6 Pan 2 standard. A total of 72 pullout
specimens with a dimension of 200 mm x 200 mm x 200 mm were prepared and tested
at 30 = 2 days. A few of SFHSSCC specimens were tested at the 6 months of concrete
age. The pullout specimens compnsed high yvield deformed steel rebars of 12, 16, and
20 mm diameters. The pullout specimens were subjected 10 increasing axial pullout
load. The test results in Phase | showed the proposed design mix of self-compacting
concrete managed (o achieve high compressive strength of 60-80 N/mm’. As compared
1o HSSCC, the concrete compressive strength of SFHSSCC had increased shightly, but
the spliting tensile strength had increased wremendously. The results showed that
SFHSSCC with 1.0% of steel fibre volume fraction was the best mix that satisfy the
self-compacting and harden concrete requirements and therefore was selected for
further study in Phase 2. The test results of Phase 2 showed that the effect of steel
fibres in increasing bond strength between rebar and the high-strength self-compacting
concrete is seen to be insignificant as the results of bond strength of rebars in HSSCC
and SFHSSCC concrete showed small differences only. However, the addition of steel
fibres in SFHSSCC had improved the concrete ductlity very significantly. At the age
of 6 months, the confinement energy of the SFHSSCC improved substanually by about
80% as compared 1o the confinement energy at 30 = 2 days. Based on the stress-strain
behaviour in concrete, 1 was observed that the SFHSSCC was able w0 expand
significantly under large stresses with conuollable strains which jusufies that the
presence of steel fibres had contributed to improved confinement effects to the extent
that the SFHSSSCC had the ability to provide high confinement energy and good
duculity. Subsequently, based on the pullout test results, iwo new bond strength
equations are proposed to predict the bond strengths of deformed steel rebars
embedded in HSSCC and SFHSSCC. Finally, 1t can be concluded that the presence of
steel fibres in SFHSSCC could overcome the brinle faulure in high swrength self-
compacting concrete and significantly improves the concrete ductlity, which delay the
loss of bond between rebars and concrete.

Vi



ABSTRAK

Kajian mengenai kelakuan ikatan tetulang keluli berbunga dalam konkrit
konvensional telah dilaksanakan dengan meluas. Bagaimanapun, kajian mengenai
sifat ikatan antara tetulang keluli berbunga dan konkrit kekuatan tinggi terpadat sendiri
(HSSCC), terutamanya dengan penambahan gentian keluli, masih sangat terhad. Oleh
itu, dalam penyelidikan ini, kajian lebih mendalam telah dilakukan untuk menyelidik
kesan gentian keluli terhadap sifat ikatan tetulang keluli berbunga yang tertanam
dalam konkrit kekuatan tinggi terpadat sendiri dengan gentian keluli (SFHSSCC).
Kerja-kerja ujikaji dijalankan dalam dua fasa. Fasa 1 melibatkan reka bentuk campuran
konkrit dan ujian sifat konkrit segar dan mekanikal bagi konkrit bergetar normal
(NVC), HSSCC dan SFHSSCC. Gentian keluli yang digunakan dalam SFHSSCC
adalah jenis hujung bercangkuk dengan panjang 35 mm dan nisbah aspek 63.6. Kerja
penyelidikan Fasa 2 melibatkan ujian tarik-keluar langsung yang dijalankan mengikut
piawaian RILEM RC6 Bahagian 2. Sejumlah 72 spesimen tarik-keluar dengan dimensi
200 mm x 200 mm x 200 mm telah disediakan dan diuji pada 30 + 2 hari. Beberapa
spesimen SFHSSCC juga telah diuji pada umur konkrit 6 bulan. Spesimen tarik-keluar
menggunakan tetulang keluli berbunga alahan tinggi berdiameter 12, 16, dan 20 mm.
Spesimen tarik-keluar dikenakan beban tegangan paksi yang meningkat. Keputusan
ujian Fasa 1 menunjukkan reka bentuk campuran konkrit terpadat sendiri yang
dicadangkan dapat mencapai kekuatan mampatan tinggi di antara 60-80 N/mm-.
Berbanding dengan HSSCC, kekuatan mampatan konkrit SFHSSCC meningkat
sedikit, tetapi kekuatan tegangan pecah meningkat dengan sangat tinggi. Keputusan
menunjukkan SFHSSCC dengan 1.0% pecahan isipadu gentian keluli adalah
campuran terbaik yang memenuhi keperluan konkrit terpadat sendiri dan konkrit keras
dan telah dipilih untuk kajian lanjut di Fasa 2. Keputusan ujian Fasa 2 menunjukkan
kesan gentian keluli dalam peningkatan kekuatan ikatan di antara tetulang keluli
dengan konkrit kekuatan tinggi terpadat sendiri dilihat tidak ketara kerana hasil
kekuatan ikatan tetulang keluli dalam konkrit HSSCC dan SFHSSCC menunjukkan
perbezaan yang sedikit. Bagaimanapun, penambahan gentian keluli dalam SFHSSCC
telah meningkatkan kemuluran konkrit SFHSSCC dengan sangat ketara. Pada umur 6
bulan, tenaga pengurungan SFHSSCC meningkat dengan ketara sehingga 80%
berbanding tenaga pengurungan pada 30 + 2 hari. Berdasarkan penyelidikan sifat
tegasan-terikan dalam konkrit, telah diperhatikan bahawa SFHSSCC dapat
mengembang dengan ketara di bawah tegasan yang besar dengan terikan terkawal
yang membuktikan bahawa kehadiran gentian keluli telah menyumbang kepada kesan
pengurungan yang lebih baik sehingga SFHSSSCC mempunyai keupayaan untuk
memberikan tenaga pengurungan yang tinggi dan kelakuan mulur yang baik.
Seterusnya, berdasarkan keputusan ujian tarik keluar, dua persamaan kekuatan ikatan
baharu telah dicadangkan untuk meramalkan kekuatan ikatan tetulang keluli berbunga
yang tertanam dalam HSSCC dan SFHSSCC. Akhirnya, dapat disimpulkan bahawa
kehadiran gentian keluli dalam SFHSSCC dapat mengatasi kegagalan rapuh dalam
konkrit kekuatan tinggi terpadat sendiri serta meningkatkan kemuluran konkrit dengan
ketara, yang melambatkan kegagalan ikatan di antara tetulang keluli dan konkrit.
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