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Abstract

Recent rapid urbanization has had a profound impact on local-scale atmospheric circulation but its impacts
on the physical and chemical processes controlling the tropospheric ozone remain poorly resolved. In
Taiwan, due to the strict emission policy, the ambient concentrations of nitrogen oxides (NO,) and volatile
organic compounds (VOCSs) have reduced by nearly 60% since 1994. However, such reduction in
precursors has not been linearly reflected on the annual mean ozone concentration, but an increasing or
flattening trend is seenin the last decade. Therefore,a comprehensive investigation on the urban impacts
on tropospheric ozone chemistry is necessary for prescribing an effective ozone abatement strategy. Our
study area focuses on southern Taiwan, a complex region of coastal urban and industrial parks and inland
mountainous areas, where high ozone episode often occurs during the seasonal transition period (i.e. Apr-
May and Oct-Nov). In this thesis, we modelled the spatial and temporal distribution of ozone and its
precursors (i.e. NO, and VOCs) using WRF-CMAQ model at urban scale resolution 1.0 x 1.0 km.

Firstly, we investigated the impacts of urban land-surface forcing and its interaction with local circulations
on local meteorology and ozone air quality. Two simulations were performed with the same emissions but
different land cover designations: URBAN scenario represents the current urbanized condition and NO-
URBAN scenario replaces all urban grid cells with cropland. It was shown that when the urban-heat-island
(UHI) convergent flow stalls over the city, a circulation flow is formed and traps the pollutants at an
elevated height, increasing the reaction of hydroxyl radical with VOCs by 2.0-4.0 ppbv h'* at 1000-1500 m.
At nighttime, the deeper boundary layer of URBAN scenario diluted NO, mixing ratio by 17 ppbv and
weakened the titration effect, causing higher O3 concentration by 15 ppbv in the urban area. When the UHI
vertical mixing diminished, the O; aloft diffused downward to the surface level and further degraded the

nighttime air quality.

Secondly, we examined the budget analysis of boundary-layer Os;, NO, and NMHC over the urban and
inland area of southern Taiwan. In the near-surface budget, chemical process and dry deposition are the
main sink of O3 with the contribution more than 10 ppbv h* and 15 ppbv h, respectively; the major source
of near-surface O; is vertical diffusion exceeding 30 ppbv h™. In the boundary-layer budget, chemical
process is the main source while vertical diffusion becomes the sink for O3. The physiochemical circulation
involves the vertical transport of near-surface pollutants and enhances photochemical production of O3 in
the upper PBL level is dominant in urban areas. This vertical exchange is mainly attributed to the vertical
diffusion process and gradually decreases with heights. Our results highlighted the important role of

daytime sea breeze circulation pushing the polluted urban air masses into the inland region which greatly



enhanced the inland O; production due to the NO,-limited condition. Thus, control of NO, emission in
inland area may be ineffective due to the dynamics role of land-sea breeze; whereas most of the urban areas
are characterized by VOC-limited condition where control of VOCs emission is helpful to reduce urban O,
concentration.

Thirdly, we developed a CMAQ-PMF-based composite index to identify the key VOC source-species for
effective ozone abatementstrategy. First-order, second-order and cross sensitivities of 0zone concentrations
to domain-wide (i.e. urban, suburban and rural) NO, and VOC emissions were determined for the study
area using CMAQ-Higher Direct Decoupled Method (HDDM). Negative (positive) first-order sensitivities
to NO, emissions are dominant over urban (inland) areas, confirming ozone production sensitivity favors
the VOC-limited regime (NO,-limited regime) in southern Taiwan. Most of the urban areas exhibited
negative second-order sensitivity to NO, emissions, indicating a negative O; convex response where the
linear increase of O3 from decreasing NO, emissions was largely attenuated by the non-linear effects. Due
to the solidly VOC-Ilimited regime and the relative insensitivity of O3 production to increases or decreases
of NO, emissions, this study pursued the VOC species that contributed the most to ozone formation. PMF
analysis driven by VOCs resolved 8 factors including mixed industry (21%), vehicle emissions (22%),
solvent usage (17%), biogenic (12%), plastic industry (10%), aged air mass (7%), motorcycle exhausts
(7%), and manufacturing industry (5%). Based on the CMAQ-PMF-based composite index, our results
indicate that VOC control measures should prioritize (1) solvent usage for painting, coating and the printing
industry, which emits abundant toluene and xylene, (2) gasoline fuel vehicle emissions of n-butane,
isopentane, isobutane and n-pentane, and (3) ethylene and propylene emissions from the petrochemical
industry.
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Chapter 1 Introduction

1.1 Background Study
In recent years, southern Taiwan has been facing severe ozone air quality pollution, particularly during the
seasonal transition period under the weak synoptic weather condition. Due to the strengthened emission
control policy, the mean PM, s concentrations has significantly declined in the last decade but the ozone
concentration did not follow the similar declining trend and rather an increasing or flattening trend,
reflecting a greater urgency for ozone pollution abatement. showed that the ozone
concentration in Taipei, Taiwan increased substantially during 1994-2003 despite its precursors nitrogen
oxides (NO,) and non-methane hydrocarbon (NMHC) decreased significantly in the same period. The
annual average of ozone and daily maxima ozone increased by 58% and 26% respectively in Taipei from
1994 to 2003. Chang etal. (2017) also reported that ozone concentration in Taiwan continued to increase
from 2000 to 2014 with the increasing rate of daily 8h maxima (+0.45 ppb yr?) is more than twice as great
as the daytime average (+0.20 ppb yr?). A more recent study from Tsaiar n (2021) showed that despite
all pollutants (i.e. PM, SO,, CO, NO,) in Taiwan has a consistent declining trend from 2014 to 2020, annual
average ozone has an increasing trend fluctuating in the range 54-60 ppb. Considering that near-surface
ozone is greenhouse gases and harmful to human health , Crop

and ecosystem , It is essential to examine the possible reasons

related to the increasing trend of ozone concentration both regionally and locally.

Tropospheric ozone is closely related to its precursors NO, and NMHC emissions both anthropogenic and
biogenic. It is a major secondary air pollutant, produced through a complex series of photochemical
reactions involving NO, and NMHC. High O; episodes are usually associated with hot sunny weather, low
wind speed stagnant condition, and slow-moving high pressure system. The consequences of these systems

can influence the long-lived pollutants such as NO,, NMHC and CO in terms of spatial transport



, accumulation and kinetic reaction , Which are directly related to the ozone
formation. The ozone production regime is characterized by its sensitivity production either VOC-limited
or NO,-limited. The split between NO,-limited or VOC-limited regime is determined by the chemistry of
odd hydrogen radicals of either peroxides (i.e. hydrogen peroxide (H,O,), organic peroxides (ROOH)) or
nitric acid (HNO;). When the peroxides are the dominant radical sinks, the ozone chemistry favors NO,-
limited regime; when the nitric acid is the dominant sink, VOC-limited regime is favored. It is crucial to
identify the ozone production regime for effective ozone pollution control measures because reducing NO,
emission in VOC-limited regime could have the adverse effect of increasing the O3 concentration, while

reducing VOC emission in NO,-limited regime has little to insignificant impact on O concentration.

Urbanization is an irreversible process involves the change of land use land cover from natural surfaces to
artificial impervious surfaces. One of the most well-known impacts of urbanization is urban heat island
(UHI) effect. UHI is characterized by a strong temperature gradient between the urban core and its
surrounding areas generating a convergent flow towards the urban center in the lower boundary layer and
a divergent flow from the upper boundary to the urban outskirts (hereinafter referredas urban-breeze)

J96). At local scale, weather condition such as high temperature and low wind speed
are conducive to UHI development and can induce a persistent convergence favorable to ozone formation
in the urban areas . For coastal
city, the interaction of UHI with local circulations (i.e. land-sea breeze) further complicates the ozone and
its precursors transport through complex recirculation patterns . During the daytime
when entrainment process is unfolded, ozone is injected into the rapidly growing boundary layer. The drop
in boundary layer depth that occurred when sea breeze front moved inland, carrying polluted urban air of
NO,-rich air and facilitated near-surface ozone titration effect, also had an impact on the vertical ozone
profile. During the nighttime when the land-breeze is prevalent, the advected urban polluted air mass is

transported back to the urban area.



To mitigate the ozone pollution problem, several attempts are suggested and extensively reviewed in the
literatures. These methods can be grouped into two categories: (1) passive control and (2) active control.
Passive control of ozone is usually done by reducing the UHI effectto reduce the ozone formation rate
meanwhile active control is related emission control that targeted on the ozone precursors suchas NO,and
NMHC. In the passive control, evaluated the effectiveness of urban greening and
highly reflective material roof (i.e. white roofs) on the ozone concentration inside the urban canopy layer
and found that both urban greening and white roofs are able to reduce the urban temperature by about 1 K
and the mean ozone concentration by 5-8%. Other passive control strategies include installing green roofs
or using permeable material pavements for highly populated cities, and proposing effective
mitigation strategies based on sea breeze patterns . In the active control, it is important
to first identify the ozone sensitivity production regime of the area of interest. For instance,
concluded that the controls of NO, emissions would mitigate ozone air pollution in most of the
suburban cities in United States due to the NO,-limited condition but control of VOC emissions is more
effective to curb ozone air pollution in highly populated cities of VOC-limited condition. In another study,
)17) reported that the implementation of emission control during the Beijing Olympics 2018
decreasedthe ozone precursors (i.e. NO, and NMHC) throughout the boundary layer but elevated the ozone
concentration in the central urban area by more than 8 ppb. This is likely due to the weakened titration
effectstems from the reduced NO, emission especially for area of highly VOC-Ilimited condition. The study
also highlighted the temporary Beijing Olympics 2018 emission control measures expanded the region

controlled by both NO, and VOC and decreased region controlled by VOC.

1.2 Problem State ment

Tropospheric ozone is a secondary pollutant formed when the nitrogen oxides (NO,) and volatile organic
compound (VOCs) react in the atmosphere in the presence of sunlight. While ozone in the stratosphere is
useful to protect the planet’s surface from the harmful ultraviolet radiation, but ozone in the troposphere or
ground-level ozone is the main component of photochemical smog. When present in high concentration, it
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can cause adverse respiratory effects such as difficulty to breathe, increased susceptible to respiratory

diseases, increased sensitivity to allergens , and long term exposure may result in
permanent lung damage . Ozone is also a plant toxic when enforced by the presence of
SO, and NO, can reduce the crop yields , damage

agricultural crops, forests and wilderness areas

Overthe pastseveraldecades, rapid urbanization with increasedanthropogenic emissions have substantially
increased the adverse effect of UHI as well as the local air quality . The UHI effects on
air quality stem from the impacts of urbanization on local meteorology. Local studies in Taiwan show that
UHI can enhance the daytime sea-breeze and weaken the nighttime land-breeze and thus had a significant
impact on the air pollution dispersion in Taiwan (Lin et al., 2008). Besides, UHI effects also play an
important role in perturbing thermal and dynamic processes; the convergence system induced by UHI
prevented water vapor from being transported by the sea-breeze to the mountainous area and thus delay
thunderstorm development (Lin et al., 2011). Since the 1990s, ozone has shown an increasing trend and has
become the main air pollutant in southern Taiwan (C J)5) which is located in the westem
coastal region where local circulation is prevalent under weak synoptic weather condition. Kaohsiung city
located in southern Taiwan hosted many heavy industries such as petrochemical, refinery, steel-making,
and power generation plants. It is also the second largest city in Taiwan which is densely populated
approximately 2.7 million inhabitants. The coastal area of Kaohsiung City has the worst air quality in
Taiwan because to the several industrial parks that are scattered around the city. Three main power plants
are also located within 35 km of the city. The impact of urbanization on local meteorology such as urban
heat island effect is well documented in the literatures but very few studies extended to air quality
investigations. Ambiguity on the interaction between the UHI effect and local circulations (i.e. land-sea

breeze) as well as its possible impacts on ozone air quality remains poorly established.



Due to the stringent emission control policies implemented in the recent years, a decline in NO, emission
by -23% was estimated in Taiwan from 2010 to 2016 using Ozone Monitoring Instrument (OMI)
tropospheric nitrogen dioxide (NO,) retrievals during the Korea-United States Air Quality (KORUS-AQ)
campaign over East Asia . The study also highlighted that Taiwan stand out as region
experiencing lower MDAS ozone levels due to the continuous NOy reductions throughout the years,
especially for areas primarily in NO,-sensitive condition. Changes in NO, and VOC emission could lead to
increase or decrease in O3 concentrations depending on the O; sensitivity regime. In addition, the local
circulation and urban land-surface forcing further complicates the non-linearity of the complex reaction
between O;-NO,-VOC, making the mitigation policy becomes difficult at urban scale. To reduce the severe
photochemical pollution in southern Taiwan, control techniques are required due to the increasing
atmospheric oxidation capacity brought on by ongoing urbanization. The large gap in the O budget studies
over southern Taiwan may result in the implementation of unsuitable policy. Our knowledge of the budget
analysis of the O; and its precursors in the vertical profile still has many gaps and uncertainties, which

results in a lack of precision in the O; pollution reduction strategy across southern Taiwan.

1.3 Proposed Workflow

This thesis adopted the WRF-MEGAN-CMAQ model to simulate the spatial and temporal distribution of
O3 and its predecessors (i.e. NO,, NMHC) over southern Taiwan at urban scale resolution 1.0 km x 1.0 km.
The urbanization in the model is invoked by implementing the single-layer urban canopy (SUCM) scheme
in the modelling system. The accurate representation of the urban meteorology fields is crucial in the
chemical transport modelling because the chemical production and physical transportation of air pollutants
are closely linked with the meteorology at urban scale. Anthropogenic emission is provided by Model Inter-
Comparison Study for Asia, MICS at the outer domain (i.e. East China) and Taiwan Emission Data System,
TEDS atthe inner domain (i.e. Taiwan). The emission inventory contains point, line and area sub-inventory
sources which are further estimated into gridded and hourly emissions through the use of SMOKE model.
Biogenic emission is provided by the MEGAN v2 model which is driven by the latest plant functional type
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