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Abstract 

Recent rapid urbanization has had a profound impact on local-scale atmospheric circulation but its impacts 

on the physical and chemical processes controlling the tropospheric ozone remain poorly resolved. In 

Taiwan, due to the strict emission policy, the ambient concentrations of nitrogen oxides (NOx) and volatile 

organic compounds (VOCs) have reduced by nearly 60% since 1994. However, such reduction in 

precursors has not been linearly reflected on the annual mean ozone concentration, but an increasing or 

flattening trend is seen in the last decade. Therefore, a comprehensive investigation on the urban impacts 

on tropospheric ozone chemistry is necessary for prescribing an effective ozone abatement strategy. Our 

study area focuses on southern Taiwan, a complex region of coastal urban and industrial parks and inland 

mountainous areas, where high ozone episode often occurs during the seasonal transition period (i.e. Apr-

May and Oct-Nov). In this thesis, we modelled the spatial and temporal distribution of ozone and its 

precursors (i.e. NOx and VOCs) using WRF-CMAQ model at urban scale resolution 1.0 x 1.0 km.  

 

Firstly, we investigated the impacts of urban land-surface forcing and its interaction with local circulations 

on local meteorology and ozone air quality. Two simulations were performed with the same emissions but 

different land cover designations: URBAN scenario represents the current urbanized condition and NO-

URBAN scenario replaces all urban grid cells with cropland. It was shown that when the urban-heat-island 

(UHI) convergent flow stalls over the city, a circulation flow is formed and traps the pollutants at an 

elevated height, increasing the reaction of hydroxyl radical with VOCs by 2.0-4.0 ppbv h-1 at 1000-1500 m. 

At nighttime, the deeper boundary layer of URBAN scenario diluted NOx mixing ratio by 17 ppbv and 

weakened the titration effect, causing higher O3 concentration by 15 ppbv in the urban area. When the UHI 

vertical mixing diminished, the O3 aloft diffused downward to the surface level and further degraded the 

nighttime air quality.  

 

Secondly, we examined the budget analysis of boundary-layer O3, NOx and NMHC over the urban and 

inland area of southern Taiwan. In the near-surface budget, chemical process and dry deposition are the 

main sink of O3 with the contribution more than 10 ppbv h-1 and 15 ppbv h-1, respectively; the major source 

of near-surface O3 is vertical diffusion exceeding 30 ppbv h-1. In the boundary-layer budget, chemical 

process is the main source while vertical diffusion becomes the sink for O3. The physiochemical circulation 

involves the vertical transport of near-surface pollutants and enhances photochemical production of O3 in 

the upper PBL level is dominant in urban areas. This vertical exchange is mainly attributed to the vertical 

diffusion process and gradually decreases with heights. Our results highlighted the important role of 

daytime sea breeze circulation pushing the polluted urban air masses into the inland region which greatly 
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enhanced the inland O3 production due to the NOx-limited condition. Thus, control of NOx emission in 

inland area may be ineffective due to the dynamics role of land-sea breeze; whereas most of the urban areas 

are characterized by VOC-limited condition where control of VOCs emission is helpful to reduce urban O3 

concentration.  

 

Thirdly, we developed a CMAQ-PMF-based composite index to identify the key VOC source-species for 

effective ozone abatement strategy. First-order, second-order and cross sensitivities of ozone concentrations 

to domain-wide (i.e. urban, suburban and rural) NOx and VOC emissions were determined for the study 

area using CMAQ-Higher Direct Decoupled Method (HDDM). Negative (positive) first-order sensitivities 

to NOx emissions are dominant over urban (inland) areas, confirming ozone production sensitivity favors 

the VOC-limited regime (NOx-limited regime) in southern Taiwan. Most of the urban areas exhibited 

negative second-order sensitivity to NOx emissions, indicating a negative O3 convex response where the 

linear increase of O3 from decreasing NOx emissions was largely attenuated by the non-linear effects. Due 

to the solidly VOC-limited regime and the relative insensitivity of O3 production to increases or decreases 

of NOx emissions, this study pursued the VOC species that contributed the most to ozone formation.  PMF 

analysis driven by VOCs resolved 8 factors including mixed industry (21%), vehicle emissions (22%), 

solvent usage (17%), biogenic (12%), plastic industry (10%), aged air mass (7%), motorcycle exhausts 

(7%), and manufacturing industry (5%). Based on the CMAQ-PMF-based composite index, our results 

indicate that VOC control measures should prioritize (1) solvent usage for painting, coating and the printing 

industry, which emits abundant toluene and xylene, (2) gasoline fuel vehicle emissions of n-butane, 

isopentane, isobutane and n-pentane, and (3) ethylene and propylene emissions from the petrochemical 

industry. 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

摘要  

近年來快速的城市化對局部範圍的大氣環流產生了深遠的影響，但對於控制對流層臭氧濃度

的物理及化學反應機制仍然沒有完整的解釋。台灣由於嚴格的排放政策，相較於 1994年，現今氮

氧化物（NOx)和揮發性有機化合物（VOCS)的環境濃度已減少將近 60%。然而，減少這些前驅物並

未使臭氧的年均濃度呈現線性的變化，在過去的十年間反而出現增加或趨於平緩的趨勢。因此，

必須廣泛調查城市對於對流層臭氧化學的影響，以制定有效減少臭氧排放的方針。本研究針對台

灣南部地區，其為一個由沿海城市、工業園區和內陸山區所組成的複雜區域，並經常於換季的時

候（4-5月及 10-11月）發生高臭氧事件。在本篇論文中，吾人將使用城市規模解析度 1.0 x 1.0 公

里的 WRF-CMAQ 模式，模擬臭氧及其前驅物（如：NOx 、VOCS）的時空分布。 

首先，吾人調查城市地表和當地環流的相互作用對當地氣候和臭氧空氣品質造成的影響。並

對使用相同排放源但不同的特定地區進行了兩次模擬：城市情形代表當前城市化的現況；非城市

情形則用農田取代所有城市網格。結果顯示，當城市熱島（UHI）氣流匯聚並停滯在城市上空時，

會形成環流並將污染物困在較高的高度，並發現在 1000-1500 公尺的高空，羥基自由基與 VOC 的

反應增加 2.0-2.4 ppbv h-1。在夜間，城市情形因為較深的邊界層使NOx混合比稀釋了 17 ppbv，同

時也削弱滴定效應，導致市區臭氧濃度升高了 15 ppbv。當 UHI 垂直混合減弱時，臭氧會從高空向

下擴散至地表並進一步降低夜間的空氣品質。 

再者，吾人針對台灣南部城市及內陸地區邊界層內的 O3、NOx和 NMHC 進行收支調查。在近

地表的收支中，化學過程和乾沉降是使 O3匯入的主要原因，並且分別貢獻 10 ppbv h-1 和 15 ppbv 

h-1以上；近地表的O3垂直擴散超過 30 ppbv h-1。在邊界層收支中，化學過程是O3主要來源，而垂

直擴散也會使 O3匯入。物理化學牽涉近地表污染物的垂直擴散並增強 PBL層上層的光化學反應來

產生 O3，並佔據城市中 O3 的主要地位。這種垂直交換的過程主要是因為大氣能夠垂直擴散的結

果，並隨高度增加逐漸地減弱交換效率。本研究結果發現白天的海風環流會將城市中受污染的氣

團推向內陸，並且因為 NOx 的限制條件，大大增強了內陸臭氧的生成，因此即使控制內陸地區的

NOx 排放，也會受海陸風影響而沒有成效，然而大部分的城市地區，由於 VOC 的限制條件，控制

VOC 排放有助於降低 O3的排放。 

最後，吾人基於 CMAQ-PMF 開發一個綜合指數，用來確認 VOC的來源種類對於減少臭氧生成

的貢獻性。利用 CMAQ-Higher Direct Decouple Method (HDDM) 確認研究區域的臭氧濃度對全域（即

城市、郊區和農村）所排放之 NOx和 VOC 的一階、二階交叉敏感性（cross sensitivities）。並發現

南台灣城市地區（內陸地區）的臭氧生成敏感度因子，主要受在 VOC 限制條件（NOx 限制條件下）
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下的 NOx 負一階敏感度主導。大部分城市地區表明負O3凸反應曲線對 NOx排放表現出負二階敏感

度，其中 NOx因排放很大程度上被非線性效應減弱而使 O3線性增加。由於嚴格的 VOC 限制政策和

減少或增加 NOx排放對生成O3相對地不敏感，本研究追求對臭氧形成最大貢獻 VOC種類。VOC使

用 PMF 分析並解決八個因素，包括混合工業（21%）、車輛排放（22%）、溶劑使用（17%）、生

物源（12%）、塑膠工業（10%）、老化氣團（7%）、機車尾氣（7%）和製造業（5%）。研究結

果顯示基於 CMAQ-PMF 的綜合指數，VOC 的控制措施應優先考慮以下排放源：（1）油漆、塗料

及印刷業對容易的使用，會排放大量的甲苯和二甲苯；（2）汽油車所排放的 n-丁烷、異戊烷、異

丁烷和 n-戊烷；（3）石化業排放的乙烯及丙烯。 
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Chapter 1 Introduction  

1.1 Background Study 

In recent years, southern Taiwan has been facing severe ozone air quality pollution, particularly during the 

seasonal transition period under the weak synoptic weather condition. Due to the strengthened emission 

control policy, the mean PM2.5 concentrations has significantly declined in the last decade but the ozone 

concentration did not follow the similar declining trend and rather an increasing or flattening trend, 

reflecting a greater urgency for ozone pollution abatement. Chou et al. (2006) showed that the ozone 

concentration in Taipei, Taiwan increased substantially during 1994-2003 despite its precursors nitrogen 

oxides (NOx) and non-methane hydrocarbon (NMHC) decreased significantly in the same period. The 

annual average of ozone and daily maxima ozone increased by 58% and 26% respectively in Taipei from 

1994 to 2003. Chang et al. (2017) also reported that ozone concentration in Taiwan continued to increase 

from 2000 to 2014 with the increasing rate of daily 8h maxima (+0.45 ppb yr-1) is more than twice as great 

as the daytime average (+0.20 ppb yr-1). A more recent study from Tsai and Lin (2021) showed that despite 

all pollutants (i.e. PM, SO2, CO, NO2) in Taiwan has a consistent declining trend from 2014 to 2020, annual 

average ozone has an increasing trend fluctuating in the range 54-60 ppb. Considering that near-surface 

ozone is greenhouse gases and harmful to human health (Yim et al., 2019), crop (Avnery et al., 2011; Tai 

and Val Martin, 2017) and ecosystem (Ashmore, 2005), it is essential to examine the possible reasons 

related to the increasing trend of ozone concentration both regionally and locally.  

 

Tropospheric ozone is closely related to its precursors NOx and NMHC emissions both anthropogenic and 

biogenic. It is a major secondary air pollutant, produced through a complex series of photochemical 

reactions involving NOx and NMHC. High O3 episodes are usually associated with hot sunny weather, low 

wind speed stagnant condition, and slow-moving high pressure system. The consequences of these systems 

can influence the long-lived pollutants such as NOx, NMHC and CO in terms of spatial transport (Lu et al., 
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2019), accumulation and kinetic reaction (Chen et al., 2020), which are directly related to the ozone 

formation. The ozone production regime is characterized by its sensitivity production either VOC-limited 

or NOx-limited. The split between NOx-limited or VOC-limited regime is determined by the chemistry of 

odd hydrogen radicals of either peroxides (i.e. hydrogen peroxide (H2O2), organic peroxides (ROOH)) or 

nitric acid (HNO3). When the peroxides are the dominant radical sinks, the ozone chemistry favors NOx-

limited regime; when the nitric acid is the dominant sink, VOC-limited regime is favored. It is crucial to 

identify the ozone production regime for effective ozone pollution control measures because reducing NOx 

emission in VOC-limited regime could have the adverse effect of increasing the O3 concentration, while 

reducing VOC emission in NOx-limited regime has little to insignificant impact on O3 concentration.  

 

Urbanization is an irreversible process involves the change of land use land cover from natural surfaces to 

artificial impervious surfaces. One of the most well-known impacts of urbanization is urban heat island 

(UHI) effect. UHI is characterized by a strong temperature gradient between the urban core and its 

surrounding areas generating a convergent flow towards the urban center in the lower boundary layer and 

a divergent flow from the upper boundary to the urban outskirts (hereinafter referred as urban-breeze) (Oke, 

1976; Saitoh et al., 1996). At local scale, weather condition such as high temperature and low wind speed 

are conducive to UHI development and can induce a persistent convergence favorable to ozone formation 

in the urban areas (Martinelli et al., 2020; Umezaki et al., 2020; Yoshikado and Tsuchida, 1996). For coastal 

city, the interaction of UHI with local circulations (i.e. land-sea breeze) further complicates the ozone and 

its precursors transport through complex recirculation patterns (Finardi et al., 2018). During the daytime 

when entrainment process is unfolded, ozone is injected into the rapidly growing boundary layer. The drop 

in boundary layer depth that occurred when sea breeze front moved inland, carrying polluted urban air of 

NOx-rich air and facilitated near-surface ozone titration effect, also had an impact on the vertical ozone 

profile. During the nighttime when the land-breeze is prevalent, the advected urban polluted air mass is 

transported back to the urban area.  
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To mitigate the ozone pollution problem, several attempts are suggested and extensively reviewed in the 

literatures. These methods can be grouped into two categories: (1) passive control and (2) active control. 

Passive control of ozone is usually done by reducing the UHI effect to reduce the ozone formation rate 

meanwhile active control is related emission control that targeted on the ozone precursors such as NOx and 

NMHC. In the passive control, Fallmann et al. (2016) evaluated the effectiveness of urban greening and 

highly reflective material roof (i.e. white roofs) on the ozone concentration inside the urban canopy layer 

and found that both urban greening and white roofs are able to reduce the urban temperature by about 1 K 

and the mean ozone concentration by 5-8%. Other passive control strategies include installing green roofs 

(Li et al., 2014) or using permeable material pavements for highly populated cities, and proposing effective 

mitigation strategies based on sea breeze patterns (Sasaki et al., 2018). In the active control, it is important 

to first identify the ozone sensitivity production regime of the area of interest. For instance, Chang et al. 

(2016) concluded that the controls of NOx emissions would mitigate ozone air pollution in most of the 

suburban cities in United States due to the NOx-limited condition but control of VOC emissions is more 

effective to curb ozone air pollution in highly populated cities of VOC-limited condition. In another study, 

Tang et al. (2017) reported that the implementation of emission control during the Beijing Olympics 2018 

decreased the ozone precursors (i.e. NOx and NMHC) throughout the boundary layer but elevated the ozone 

concentration in the central urban area by more than 8 ppb. This is likely due to the weakened titration 

effect stems from the reduced NOx emission especially for area of highly VOC-limited condition. The study 

also highlighted the temporary Beijing Olympics 2018 emission control measures expanded the region 

controlled by both NOx and VOC and decreased region controlled by VOC.  

 

1.2 Problem Statement 

Tropospheric ozone is a secondary pollutant formed when the nitrogen oxides (NOx) and volatile organic 

compound (VOCs) react in the atmosphere in the presence of sunlight. While ozone in the stratosphere is 

useful to protect the planet’s surface from the harmful ultraviolet radiation, but ozone in the troposphere or 

ground-level ozone is the main component of photochemical smog. When present in high concentration, it 
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can cause adverse respiratory effects such as difficulty to breathe, increased susceptible to respiratory 

diseases, increased sensitivity to allergens (Karthik L et al., 2017), and long term exposure may result in 

permanent lung damage (Zhang et al., 2019). Ozone is also a plant toxic when enforced by the presence of 

SO2 and NOx can reduce the crop yields (Avnery et al., 2011; Tai and Val Martin, 2017), damage 

agricultural crops, forests and wilderness areas (Ashmore, 2005).  

 

Over the past several decades, rapid urbanization with increased anthropogenic emissions have substantially 

increased the adverse effect of UHI as well as the local air quality (Ohara et al., 2007). The UHI effects on 

air quality stem from the impacts of urbanization on local meteorology. Local studies in Taiwan show that 

UHI can enhance the daytime sea-breeze and weaken the nighttime land-breeze and thus had a significant 

impact on the air pollution dispersion in Taiwan (Lin et al., 2008). Besides, UHI effects also play an 

important role in perturbing thermal and dynamic processes; the convergence system induced by UHI 

prevented water vapor from being transported by the sea-breeze to the mountainous area and thus delay 

thunderstorm development (Lin et al., 2011). Since the 1990s, ozone has shown an increasing trend and has 

become the main air pollutant in southern Taiwan (Chang et al., 2005) which is located in the western 

coastal region where local circulation is prevalent under weak synoptic weather condition. Kaohsiung city 

located in southern Taiwan hosted many heavy industries such as petrochemical, refinery, steel-making, 

and power generation plants. It is also the second largest city in Taiwan which is densely populated 

approximately 2.7 million inhabitants. The coastal area of Kaohsiung City has the worst air quality in 

Taiwan because to the several industrial parks that are scattered around the city. Three main power plants 

are also located within 35 km of the city. The impact of urbanization on local meteorology such as urban 

heat island effect is well documented in the literatures but very few studies extended to air quality 

investigations. Ambiguity on the interaction between the UHI effect and local circulations (i.e. land-sea 

breeze) as well as its possible impacts on ozone air quality remains poorly established.  
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Due to the stringent emission control policies implemented in the recent years, a decline in NOx emission 

by -23% was estimated in Taiwan from 2010 to 2016 using Ozone Monitoring Instrument (OMI) 

tropospheric nitrogen dioxide (NO2) retrievals during the Korea-United States Air Quality (KORUS-AQ) 

campaign over East Asia (Souri et al., 2020). The study also highlighted that Taiwan stand out as region 

experiencing lower MDA8 ozone levels due to the continuous NOx reductions throughout the years, 

especially for areas primarily in NOx-sensitive condition. Changes in NOx and VOC emission could lead to 

increase or decrease in O3 concentrations depending on the O3 sensitivity regime. In addition, the local 

circulation and urban land-surface forcing further complicates the non-linearity of the complex reaction 

between O3-NOx-VOC, making the mitigation policy becomes difficult at urban scale. To reduce the severe 

photochemical pollution in southern Taiwan, control techniques are required due to the increasing 

atmospheric oxidation capacity brought on by ongoing urbanization. The large gap in the O3 budget studies 

over southern Taiwan may result in the implementation of unsuitable policy. Our knowledge of the budget 

analysis of the O3 and its precursors in the vertical profile still has many gaps and uncertainties, which 

results in a lack of precision in the O3 pollution reduction strategy across southern Taiwan. 

 

1.3 Proposed Workflow 

This thesis adopted the WRF-MEGAN-CMAQ model to simulate the spatial and temporal distribution of 

O3 and its predecessors (i.e. NOx, NMHC) over southern Taiwan at urban scale resolution 1.0 km x 1.0 km. 

The urbanization in the model is invoked by implementing the single-layer urban canopy (SUCM) scheme 

in the modelling system. The accurate representation of the urban meteorology fields is crucial in the 

chemical transport modelling because the chemical production and physical transportation of air pollutant s 

are closely linked with the meteorology at urban scale. Anthropogenic emission is provided by Model Inter-

Comparison Study for Asia, MICS at the outer domain (i.e. East China) and Taiwan Emission Data System, 

TEDS at the inner domain (i.e. Taiwan). The emission inventory contains point, line and area sub-inventory 

sources which are further estimated into gridded and hourly emissions through the use of SMOKE model. 

Biogenic emission is provided by the MEGAN v2 model which is driven by the latest plant functional type 


