Square Integer Matrix with a Single Non-Integer Entry in Its Inverse

Abstract

Matrix inversion is one of the most significant operations on a matrix. For any non-singular matrix $A \in Z n \times n$, the inverse of this matrix may contain countless numbers of non-integer entries. These entries could be endless floating-point numbers. Storing, transmitting, or operating such an inverse could be cumbersome, especially when the size n is large. The only square integer matrix that is guaranteed to have an integer matrix as its inverse is a unimodular matrix $U \in Z n \times n$. With the property that $\operatorname{det}(U)= \pm 1$, then $U-1 \in Z n \times n$ is guaranteed such that $U U-1=I$, where $I \in Z n \times n$ is an identity matrix. In this paper, we propose a new integer matrix $\mathrm{G}^{\sim} \in \mathrm{Z} \mathrm{n} \times \mathrm{n}$, which is referred to as an almost-unimodular matrix. With $\operatorname{det}\left(\mathrm{G}^{\sim}\right) 6= \pm 1$, the inverse of this matrix, $\mathrm{G}^{\sim}-1 \in \mathrm{Rn} \times n$, is proven to consist of only a single non-integer entry. The almost-unimodular matrix could be useful in various areas, such as lattice-based cryptography, computer graphics, lattice-based computational problems, or any area where the inversion of a large integer matrix is necessary, especially when the determinant of the matrix is required not to equal ± 1. Therefore, the almostunimodular matrix could be an alternative to the unimodular matrix.

