UNSTRUCTURED ELECTRICAL IMPEDANCE TOMOGRAPHY USING AD HOC SENSOR NODE

ABBAS IBRAHIM MBULWA

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF ENGINEERING

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2019

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references which have been duly acknowledged.

18 June 2019

in

Abbas Ibrahim Mbulwa MK1521002A

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references which have been duly acknowledged.

18 June 2019

in

Abbas Ibrahim Mbulwa MK1521002A

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: UNSTRUCTURED ELECTRICAL IMPEDANCE TOMOGRAPHY USING AD HOC SENSOR NODE

IJAZAH: SARJANA KEJURUTERAAN (KEJURUTERAAN KOMPUTER)

Saya **<u>ABBAS IBRAHIM MBULWA</u>**, Sesi <u>2016-2019</u>, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

ABBAS IBRAHIM MBULWA MK1521002A

Tarikh : 30 September 2019

Disahkan Oleh,

NORAZLYNNE MOHD. JOHAN @ JACYLYNE Pustakawan Universiti Malaysia Sabah

(Tandatangan Pustakawan)

(Prof. Dr. Ali Chekima) Pengerusi J/K Penyeliaan

CERTIFICATION

NAME	: ABBAS IBRAHIM MBULWA
MATRIC NO.	: MK1521002A
TITLE	: UNSTRUCTURED ELECTRICAL IMPEDANCE TOMOGRAPHY USING AD HOC SENSOR NODE
DEGREE	: MASTER OF ENGINEERING (COMPUTER ENGINEERING)
VIVA DATE	: 27 SEPTEMBER 2019

CERTIFIED BY;

Signature

SUPERVISORY COMMITTEE

CHAIRPERSON

Prof. Dr. Ali Chekima

COMMITTEE MEMBER

- 1. Assc. Prof. Dr. Jamal Ahmad Dhargam
- 2. Dr. Yew Hoe Tung

ACKNOWLEDGEMENT

First and foremost I would like to express my sincere gratitude to Almighty GOD for guidance and help throughout my studies.

I also wish to express my deepest gratitude and appreciation to Prof. Dr. Ali Chekima for his guidance and continued support in which without, I would be unable to complete this research work. My gratitude to Dr. Renee Chin for the lessons on Electrical Impedance Tomography reconstruction.

I would also like to thank staffs at the Faculty of Engineering, Centre for Postgraduate Studies and Centre for International Affairs of University Malaysia Sabah, whom directly and/or indirect offered me their assistance and support that facilitated a conducive environment for both my study and stay in Malaysia.

Finally, a special thanks to my parents (Mr and Mrs Ibrahim) and my lifepartner Umurerwa Hadjah for their never-ending prayers and support.

Abbas Ibrahim Mbulwa

18 June 2019

ABSTRACT

Electrical Impedance Tomography (EIT) is a simple solution for obtaining information about the interior of an object or a process through performing voltage measurements, whereby interior conductivity distribution in an object can be reconstructed in a form of tomograms. EIT has many applications in areas such as medical, geophysical, and industrial process, where it has shown various potential over existing tomographic modalities. However, the main drawback has been low spatial resolution towards the center of the object. The objective of this project is to obtain EIT measurements from the interior of the object under test, through the employment of ad hoc internal electrodes, in an effort to acquire data that were unobtainable through conventional EIT system. To achieve this objective, a prototype of an ad hoc EIT sensor is designed. The ad hoc EIT sensor is battery powered. The sensor node is attached with two pairs of electrodes. The sensor integrated circuit is designed to enable current injection and voltage measurement from within the medium using the two pairs of electrodes. One pair performs current injection, while another pair measures localized voltage difference. The role of the two pairs are interchangeable by using analog multiplexers. The sensor integrated system consisting of a current source, voltage sense, multiplexers, and microcontroller unit, were simulated and tested. The ad hoc sensor prototype was experimented on homogeneous medium and inhomogeneous medium of tap water and saline. The results show a feasible means of acquiring EIT data from the interior of the object.

ABSTRAK

TOMOGRAFI IMPEDANS ELEKTRIK YANG TIDAK BERSTRUKTUR DENGAN PENGGUNAAN NOD SENSOR AD HOC

Tomografi Impedans Elektrik (EIT) adalah penyelesaian mudah untuk mendapatkan maklumat mengenai bahagian dalam suatu obiek atau proses melalui pengukuran voltan, di mana taburan kekonduksian dalaman dalam objek boleh dibina semula dalam bentuk tomograms. EIT mempunyai banyak aplikasi dalam bidang seperti proses perubatan, geofizik, dan perindustrian, di mana ia telah menuniukkan pelbagai potensi ke atas modaliti tomografi yang sedia ada. Walau bagaimanapun, kelemahan utama adalah resolusi spatial yang rendah ke arah pusat objek. Objektif projek ini adalah untuk mendapatkan pengukuran EIT dari bahagian dalam objek di bawah ujian, melalui penggajian elektrod dalaman ad hoc, dalam usaha memperoleh data yang tidak dapat dikesan melalui sistem EIT konvensional. Untuk mencapai matlamat ini, satu prototaip sensor EIT "ad hoc" telah direka. Nod sensor tersebut telah dipasang dengan dua pasang elektrod. Litar bersepadu sensor direka untuk membolehkan suntikan semasa dan pengukuran voltan dari dalam medium menggunakan dua pasang elektrod. Satu pasangan melakukan pembekalan arus manakala pasangan lain mengukur perbezaan voltan setempat. Peranan kedua-dua pasangan ini boleh ditukar dengan menggunakan multiplekser analog. Sistem bersepadu sensor; yang terdiri daripada sumber semasa, rasa voltan, multiplekser, dan unit mikrokontroler, telah disimulasikan dan diuji. Prototaip sensor "ad hoc" telah diuji pada medium homogen sederhana dan tidak homogen air paip dan masin. Hasilnya menunjukkan cara yang mungkin untuk memperoleh data EIT dari bahagian dalam objek di mana maklumat biasanya cenderung tidak dapat dikesan atau rosak oleh bunvi.

TABLE OF CONTENTS

			Page
TITLI	E		I,
DECL	ARATIO	N	ii
CERI	IFICATIO	ON	iii
ACK	NOWLEDO	GEMENT	iv
ABST	RACT		v
ABS	TRAK		vi
TABL	E OF COM	NTENTS	vii
LIST	OF FIGU	RES	xi
LIST	OF TABL		xvi
LIST	OF ABBR	EVIATIONS	xvii
LIST	OF SYME		xix
LIST	OF APPE	NDICES UNIVERSITI MALAYSIA SABAH	xix
	TER 1 :	INTRODUCTION	
1.1	Backgro		1
1.2	Probler	n Statement	2
1.3	Aim an	d Research Objectives	3
1.4	Resear	ch Scope	3
1.5	Thesis	Organization	4
СНАР	TER 2 :	ELECTRICAL IMPEDANCE TOMOGRAPHY	
2.1	Overvie		5
2.2		ations of EIT	6
2.2			
	2.2.1	Geophysical Applications	6
	2.2.2	Industrial Process Applications	7
	223	Medical Applications	٥

	2.2.4	Summary	of Applications of EIT	10	
2.3	EIT Ins	trumentatior	and System Architecture	11	
2.4	Implem	nentation of E	TIT	13	
	2.4.1	Electrode S	System Arrangement	14	
	2.4.2	Unconvent	ional Electrode Arrangement	15	
	2.4.3	Internal El	ectrode System	16	
	2.4.4	Measurem	ent Strategy	17	
2.5	Voltage	e Signal/Wave	eform Generation	20	
	2.5.1	Signal/Way	veform Generation Approach	20	
		2.5.1.1	Electronic Sinusoidal Oscillator	21	
		2.5.1.2	Waveform Generator IC	23	
		2.5.1.3	Signal Synthesizer using DSP	26	
	2.5.2	Summary	of Signal/Waveform Generation	28	
2.6	Current	Source		29	
	2.6.1	Current So	urce Specification	29	
	2.6.2	Output Im	pedance	30	
	2.6.3	Stray Capa	citance	31	
	2.6.4	Howland C	Current Source (HCS)	32	
		2.6.4.1	Basic HCS	32	
		2.6.4.2	Improved HCS	35	
	2.6.5	Summary	of Current Source	38	
2.7	Current	Injection Pa	itterns	39	
	2.7.1	Adjacent C	Current Pattern	39	
	2.7.2	Opposite C	Current Pattern	40	
2.8	Voltage	Measureme	nt	41	
	2.8.1	Measurem	ent Error	44	
	2.8.2	Instrument	tation Amplifier	44	
2.9	Injectir	ig AC Versus	DC	46	
2.10	Chapte	r Summary			

CHAPTER 3 : SELF-SUFFICIENT EIT SENSOR DESIGN AND SIMULATION

3.1	Overvie	W		49
3.2	System	Design		50
3.3	Modules	Modules Design and Simulation		
	3.3.1	DC Power S	Source	53
	3.3.2	Current So	urce	55
		3.3.2.1	Operational Amplifier	56
		3.3.2.2	Simulation of the IHCS	57
		3.3.2.3	Output Impedance of the IHCS	60
		3.3.2.4	Simulation of the IHCSB	60
		3.3.2.5	Output Impedance of the IHCSB	63
		3.3.2.6	Summary of Current Source	64
	3.3.3	Switch and	Selection (Multiplexer/Demultiplexer)	65
	3.3.4	Voltage Ser	nsing Module	70
	3.3.5	Microcontro	oller and PC Interface	73
		3.3.5.1	Simulation of Microcontroller Unit and PC	75
			Interface	
3.4	System	Integration an	d construction TIMALAYSIA SABAH	76
3.5	Chapter	Summary		77
CHAP	TER 4 :	EXPERIMEN	TAL RESULTS AND DISCUSSION	
4.1	Overvie	w		79
4.2	Experim	ental Setup		79
4.3	System	Evaluation		80
	4.3.1	Measuremen	t of Current Source	81
		4.3.1.1 L	Load Current Measurement	81
		4.3.1.2 (Output Impedance Measurement	84
	4.3.2	Measuremen	t of Localized Voltage Inside a Filled	85
		Vessel		
4.4	Sensitiv	ity of the ad h	oc Sensor towards an Anomaly	94
4.5	Experim	ents on Saline		97

CHAPTER 5: CONCLUSION AND FUTURE WORKS

5.1	Research Summary	103
5.2	Contributions	105
5.3	Future works	106

REFERENCES

APPENDICES

117

107

LIST OF FIGURES

		Page
Figure 2.1:	A standard EIT system	12
Figure 2.2:	Ring electrode arrangement (a) Single ring, and (b) multiple rings - aligned, (c) multiple rings – offset	15
Figure 2.3:	Adjacent measurement strategy for a four-electrode arrangement	19
Figure 2.4:	Basic oscillator concept	21
Figure 2.5:	Basic elements of a feedback oscillator	22
Figure 2.6:	Feedback oscillator with loop gain > 1	22
Figure 2.7:	Feedback oscillator with loop gain = 1	22
Figure 2.8:	The Wien Bridge oscillator	23
Figure 2.9:	The XR2206 waveform generator	25
Figure 2.10:	The MAX038 waveform generator	26
Figure 2.11:	Components of Direct Digital Synthesizer	27
Figure 2.12:	Function block of a Programmable Waveform Generator AD9833	28
Figure 2.13:	Current source circuit model with output impedance	30
Figure 2.14:	Current source circuit model with output impedance and stray capacitance	31
Figure 2.15:	Basic Howland current circuit	33
Figure 2.16:	Improved Howland current source	35
Figure 2.17:	Improved Howland circuit with a buffer on a positive feedback loop	38
Figure 2.18:	Current pattern based on adjacent current injection	40
Figure 2.19:	Current pattern based on opposite current injection	41

Figure 2.20:	Single-ended voltage measurement	42
Figure 2.21:	Differential voltage measurement	43
Figure 2.22:	Differential amplifier with common-mode voltage	44
Figure 2.23:	Instrumentation Amplifier	45
Figure 3.1:	Flow diagram of implementation of the EIT sensor	49
Figure 3.2:	Image of experimental setup of the EIT sensor	50
Figure 3.3:	Self-sufficient EIT sensor architecture	52
Figure 3.4:	Schematic of a DC power source	53
Figure 3.5:	Voltage – time characteristics of the DC power source	54
Figure 3.6:	A lithium coin cell CR2032	55
Figure 3.7:	Schematic for simulation of IHCS	57
Figure 3.8:	Current - time characteristic for the IHCS	58
Figure 3.9:	Load current versus impedance variation for the IHCS	59
Figure 3.10:	Schematic for measuring output impedance of the IHCS in simulation	60
Figure 3.11:	Schematic for simulation of the IHCSB	61
Figure 3.12:	Load current versus impedance variation for unbalanced and unstable IHCSB	61
Figure 3.13:	Load current versus impedance variation for a balanced IHCSB	62
Figure 3.14:	Load current versus load impedance variation for a balanced IHCSB, μA load current	63
Figure 3.15:	Schematic for measuring output impedance of the IHCSB in simulation	64
Figure 3.16:	Analogue switching and selection connectivity using two dual-four-channel bidirectional analogue multiplexers	67
Figure 3.17:	Analogue switching and selection connectivity using four single-four-channel bidirectional analogue multiplexers	68

Figure 3.18:	Simulation of the analogue switching and selection module by using two dual-four-channel bidirectional analogue multiplexers	69
Figure 3.19:	Schematic diagram of the IA INA128	71
Figure 3.20:	Simulation circuit/schematic of instrumentation amplifier INA128 for a differential voltage of 1mV using a gain of 10V/V	71
Figure 3.21:	DC transfer characteristic of the instrumentation amplifier INA128 for a gain of 10V/V	72
Figure 3.22:	Schematic diagram of the microcontroller unit and PC interface	74
Figure 3.23:	Simulation circuit/schematic of microcontroller and PC interface module using PIC12F1840	75
Figure 3.24:	EIT ad hoc sensor system schematic using EAGLE PCB	76
Figure 3.25:	EIT ad hoc sensor system prototype and setup	77
Figure 4.1:	Experimental setup for ad hoc EIT sensor	80
Figure 4.2:	Schematic of IHCS impelemented to measure load current	81
Figure 4.3:	Magnitude of the load current for various load impedance, for approximately 10 hours acquisition	82
Figure 4.4:	The mean and standard deviation of load current over 10 hours of acquisition; a) Mean and b) Standard deviation	83
Figure 4.5:	Schematic of IHCS impelemented to measure output impedance	84
Figure 4.6:	Diagram of electrolytic tank for the experiment to acquire localized EIT data	85
Figure 4.7:	Voltage profile from homogenious tap water obtained with four sequential current injections at sensor location d=6.5cm, h=5.25cm & 9.25cm	87
Figure 4.8:	Voltage profile from homogenious tap water obtained with four sequential current injections at sensor location d=4cm, h=5.25cm & 9.25cm	88

Figure 4.9:	Voltage profile from conductive fabric obtained with 16 sequential current injections	89
Figure 4.10:	SNR for measurements acquired from four localities at the centre (d=6.5cm) and off the centre of the vessel (d=4cm) at heights 5.25cm and 9.25cm	90
Figure 4.11:	The effects of electrode switching on measured signal	91
Figure 4.12:	Voltage data (full measurement) from a 4-electrodes ad hoc EIT sensor node inside a vessle filled with tap water	92
Figure 4.13:	Voltage data (full measurement) from a conventional EIT of 8 boundary-attached full-array electrodes in a complete homogenous medium	93
Figure 4.14:	Voltage data (full measurement) from a conventional EIT of 8 boundary-attached hemi-array electrodes in a complete homogenous medium	93
Figure 4.15:	Diagram of electrolytic tank for the experiment to investigate the sensitivity of the ad hoc sensor towards an anomaly	94
Figure 4.16:	Measured voltage signal from homogenious and inhomogeneous medium with anomaly slightly moved toward sensor	96
Figure 4.17:	Sensitivity of the ad hoc sensor versus anomaly's displacement from sensor	97
Figure 4.18:	Voltage profile from a 10g and 20g saline solution obtained with four sequential current injections at sensor location $d=6.5$ cm, $h=9.25$ cm	98
Figure 4.19:	SNR for measurement acquired in 10 g saline from four localities at the centre (d=6.5cm) and off the centre of the vessel (d=4cm) at heights h=5.25cm and 9.25cm	99
Figure 4.20:	Voltage data (full measurement) from a 4-electrodes ad hoc EIT sensor node inside a vessle filled with homogenious saline	100
Figure 4.21:	EIT reconstraction for a conductive anomaly inserted in a tap water filled vessel, based on simulated voltage data from conventional arrangement of 16 electrodes mounted on vessels's wall	101

Figure 4.22: Voltage data from saline filled vessel for homogenious and inhomogeneous; after inserting conductive anomaly near the sensor node

LIST OF TABLES

- Table 2.1:List and categories of clinical experiments that validate
medical application of EIT
- Table 2.2:Pair drive measurement sequence for a four-electrode
single sensor node
- Table 3.1: Current source parameter
- Table 3.2:
 Potential operational amplifiers for the Howland current source
- Table 3.3:Resistor trimming for maximum load impedance
performance of 1mA constant load current for the IHCS.
- Table 3.4:
 Potential dual 4 channel bidirectional analogue multiplexers
- Table 3.5:Control code for electrode pair switching and selection
using two dual-four-channel bidirectional analogy
multiplexers
- Table 3.6: Potential instrumentation amplifiers
- Table 3.7: Gain resistor values for a gain of 10, 20, 50, and 100V/V

UNIVERSITI MALAYSIA SABAH

LIST OF ABBREVIATIONS

AC	-	Alternating Current					
ACT	2	Adaptive Current Tomography					
ADC	÷	Analog-to-Digital Converter					
ΑΡΤ		Applied Potential Tomography					
CEM	-	Complete Electrode Model					
CMOS	-	Complementary Metal-Oxide-Semiconductor					
CMRR	-	Common Mode Rejection Ratio					
CFD	÷	Computational Fluid Dynamics					
СТ	-	Computed Tomography					
DAQ	-	Data Acquisition					
DC	-	Direct Current					
DDS	- /	Direct Digital Synthesis					
DSP	ß	Digital Signal Processing					
EIDORS	1 3 N	Electrical Impedance and Diffuse Optical Reconstruction					
		Software					
EIT	-	Electrical Impedance Tomography ALAYSIA SABAH					
ERT	-	Electrical Resistance Tomography					
EUSART	-	Enhanced Universal Synchronous Asynchronous Receiver					
		Transmitter					
FVR		Fixed Voltage Reference					
FEM	-	Finite Element Method					
FET	-	Field Effect Transistor					
GIC	-	Generalized Impedance Converter					
GPIO	-	General Purpose Input/Output					
HCS	-	Howland Current Source					
IA	Ŧ	Instrumentation Amplifier					
IC	-	Integrated Circuit					
ICSP	*	In-Circuit Serial Programming					
IHCS	2	Improved Howland Current Source					
IHCSB	÷	Improved Howland Current Source with Buffer					

ITS	-	Industrial Tomography System				
JFET	-	Junction Gate Field-Effect Transistor				
LC	-	Inductor-Capacitor				
LCT	-	Low Cost Tomography				
LIN	÷	Local Interconnect Network				
MRI	-	Magnetic Resonance Imaging				
MSSP	-	Master Synchronous Serial Port				
NIC	-	Negative Impedance Converter				
PC	-	Personal/ Portable Computer				
PWM		Pulse Width Modulation				
PWG	-	Programmable Waveform Generator				
RC	-	Resistor-Capacitor				
RIDAM	-	Reduced Internal Drive-Adjacent Measurement				
ROM	:#	Read-Only memory				
SCI	-	Serial Communications Interface				
SNR	15	Signal-to-Noise Ratio				
TINA	B	Toolkit for Interactive Network Analysis				
VCCS	B	Voltage Controlled Current Source				
2D	6	Two-dimensional				
3D	-	Three-dimensional				
UCT	-	University of Cape Town				

LIST OF SYMBOLS

A _{CL}	-	Closed	loop	gain	of	operational	amplifier
-----------------	---	--------	------	------	----	-------------	-----------

- A_{CM} Common-mode gain
- A_D Differential gain
- C_s Stray capacitance
- d Distance of the ad hoc sensor from vessel wall
- G Gain of the instrumentation amplifier
- J Electric current density
- σ Electric conductivity
- **Ē** Electrical field
- E Electrode
- L Number of electrodes
- h Height of the ad hoc sensor from surface
- I Electric current
- IL Load current (Current injected into the load)
- Is Source current (Current generated by current source)
- V Voltage

V_L - Load voltage

- V₁ Voltage measured on first electrode
- V₂ Voltage measured on second electrode
- V_{in} Input voltage from voltage source
- V_{in+} Voltage input to the positive terminal of operational amplifier
- V_{in}- Voltage input to the negative terminal of operational amplifier
- V_D Differential voltage
- V_{CM} Common-mode voltage
- vo Output amplified voltage
- Z₀ Output impedance
- Z_L Load impedance

LIST OF APPENDICES

		Page
APPENDIX A	Program (code) description	117
APPENDIX B	List of electronics components for an ad hoc EIT sensor	121
APPENDIX C	List of publications derived from research	122

CHAPTER 1

INTRODUCTION

1.1 Background

Electrical Impedance Tomography (EIT) is an imaging modality whereby an interior conductivity distribution of an object is obtainable through current injections and voltage measurements using deployed electrodes. In a typical EIT system, an array of electrodes is attached on the periphery of the object and electrical current is injected through a pair of electrodes whereby voltage measurement is performed on the remaining pairs of electrodes in the array.

EIT has gained popularity in three major areas namely medicine, geophysics and industrial process. The popularity of EIT technology has been due to its cost effectiveness, portability, non-intrusiveness and it does not produce hazardous radiation as compared to other tomographic modalities (Holder, 2005).

In most cases of EIT, electrodes attached on the boundary of the object perform differential voltage measurement as developed on the object boundary. Schlebusch and Leonhardt (2013) explored various electrode arrangements such as ring, linear and matrix arrangement. Ring arrangement has been the conventional arrangement of choice in most EIT implementation where electrodes are attached around the object. Multiple rings and semicircle have also been used in an effort to effectively utilizing the usable areas on the periphery of the object under test and hence optimizing results.

Despite various methods to optimize measurements through electrode placement on the periphery (Huang *et al.* 2008), the desirable information in the central region of the object remains largely unobtainable (Zhang *et. al.* 2014).

This research investigates using ad hoc EIT sensor whereby the ad hoc sensor node is deployed within the phantom vessel to perform EIT measurement from interior of the medium. The sensor node is flexible to assume any location within the medium.

The ad hoc sensor is equipped with two pairs of electrodes which act as a current source and voltage measuring system. This allows for current injection and voltage sensing to be performed from any location within the vessel. The role of the electrode pairs are exchangeable, whereby in each measurement, one pair of electrode is functioning as a current injecting pair while the other pair measures localized differential voltage. This approach aims to acquire localized voltage measurements from the interior of the vessel, especially central locations.

1.2 Problem statement

The Electrical Impedance Tomography (EIT) reconstruction problem is an ill-posed one, whereby there are insufficient measured boundary voltage to recover unknown conductivity within the interior of the object under test. This means that for any given measurement precision, there are arbitrarily large changes in the conductivity distribution that are undetectable by boundary voltage measurements. The favorable effort to solve this problem has been increasing the number of measurements through increasing number of boundary electrodes available. However, the issue is more that the measured data should be unique and accurate to be consistent with a conductivity distribution within the object. One of the limitations of boundary measurement approach is that the electrodes are usually located around the periphery of the object (process vessel), hence limiting the location where the changes in conductivity in the medium can be detected and measured. The constraint of measurements to the boundary of an object results to low spatial resolution especially towards the center of the object (process vessel), which results in misrepresentation of the conductivity distribution on reconstructed tomograms. This leads to misleading results and interpretation of a process. Therefore, there is a need to invade the interior of the object under test (process vessel) by deploying ad hoc electrodes such that the area where measurements are

2