EVALUATION ON THE EFFECTIVENESS OF POTENTIAL ENDOPHYTIC *Trichoderma* spp. FROM NORTH SUMATRA, INDONESIA IN PREVENTING AND SUPPRESSING *Ganoderma boninense* INFECTION IN OIL PALM SEEDLINGS

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAR

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2019

EVALUATION ON THE EFFECTIVENESS OF POTENTIAL ENDOPHYTIC *Trichoderma* spp. FROM NORTH SUMATRA, INDONESIA IN PREVENTING AND SUPPRESSING *Ganoderma boninense* INFECTION IN OIL PALM SEEDLINGS

DEDEK HARYADI

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAR

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2019

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: PENILAIAN KEATAS KEBERKESANAN DAN POTENSI TRICHODERMA SPP. ENDOFITIK DARI SUMATRA UTARA, INDONESIA DALAM MENCEGAH DAN MERENCAT JANGKITAN GANODERMA BONINENSE DALAM ANAK POKOK SAWIT

IJAZAH: DOKTOR FALSAFAH (BIOTEKNOLOGI)

Saya **DEDEK HARYADI**, Sesi <u>2015-2019</u>, mengaku membenarkan tesis Doktoral ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

DEDÉK HARYADI DS1511003A

Tarikh : 20 September 2019

Disahkan Oleh,

NURAZLYNNE MOHD. UCHAN @ JACYLYNE PUSTAKAWAN UNIVERSITI MALAYSIA SABAH (Tandatangan Pustakawan)

(Prof. Madya Dr. Chong Khim Phin) Penyelia Utama

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations excepts, equations, summaries and references, which have been duly acknowledged.

20 September 2019

Dedek Haryadi DS1511003A

UNIVERSITI MALAYSIA SABAH

CERTIFICATION

NAME : DEDEK HARYADI

MATRIX NO. : DS1511003A

- TITLE
 : EVALUATION ON THE EFFECTIVENESS OF POTENTIAL
ENDOPHYTIC Trichoderma spp. FROM NORTH SUMATRA,
INDONESIA IN PREVENTING AND SUPPRESSING
Ganoderma boninense INFECTION IN OIL PALM SEEDLINGS
- DEGREE : DOCTOR OF PHILOSOPHY (BIOTECHNOLOGY)
- VIVA DATE : 12 September 2019

CERTIFIED BY

Signature

SUPERVISOR Associate Prof. Dr. Chong Khim Phin

ACKNOWLEDGEMENT

In the name of Allah SWT, Most Gracious, Most Merciful.

I would like to thank God Almighty's blessing and strengths from the beginning to the end of my journey as a PhD student at the Universiti Malaysia Sabah. I am delighted to have this opportunity to acknowledge those who enabled the completion of this thesis. I offer my thanks in particular:

I would like express my deepest gratitude to my supervisor, Associate Professor Dr. Chong Khim Phin, for his effort and time spent in guiding me in my study with his valuable advice and patience, new knowledge and rich experience in learning. Without his encouragement and helps, it would be impossible for me to complete my study.

To the top management of Asian Agri Group, Kelvin Tio, Mukesh Sharma Ph.D, Manjit Singh Sidhu, M. Sc. Agr. and Yohannes Samosir, Ph.D., and Tumpal Panjaitan M. P., the head of Plant Protection Department of Asian Agri Research & Development Centre, who granted me permission and fully support to undertake my PhD degree.

Other than that, I would like also to thank my colleagues at the Asian Agri Research & Development Centre (AA R&D Centre) in Tebing Tinggi, North Sumatra Indonesia, Hadi Hendra, Daniel Erikson Hutabarat, Sri Purwanti, and Maruli who help me a lot in completing my research. Moreover, thank to my fellow friends at the Faculty of Science and Natural Resources in Universiti Malaysia Sabah, especially for Arnnyitte Alexander and Syahril for the time spent in discussing anything about research work and campus life. I appreciate the hard time spent together in our studies and also in doing projects.

Bapak and Ibu, I don't know how I can say my thank you for Your love and continued prayers for me. I am very fortunate to have wonderful parents like you. Lastly, I would like to express my gratitude to my wife Susi Lestiana, and my wonderful daughter Andini Dzakirah Sudarsono, for their continuing support and love. I would also like to take this opportunity to thanks the people who had helps in study. I offer my regards and blessing to people who had helped and support me during my study.

Dedek Haryadi

24 September 2019

ABSTRACT

Basal stem rot (BSR) caused by the fungus Ganoderma boninense is regarded as the most destructive disease of oil palm (Elaeis guineensis Jagc.) and causes significant economic losses in the oil palm industry of South East Asia. High incidence of BSR affects to the tremendously reduced weight and number of fruit bunches in infected but living palms. Various approaches including chemical, mechanical, cultural and biological measures have been reported to control BSR disease. Unfortunately, no single strategy has yet been able to halt the spreading of the disease. Therefore, a more reliable and integrated strategy that could manage this BSR disease is urgently needed to be further investigated. Application of endophytic biological control agents (BCAs) especially Trichoderma spp.have been used for decades and shows promising results in supressing Ganoderma infection, beside environmentally safe and sustainable. In this respect, evaluation on the effectiveness of potential endophytic Trichoderma spp. in preventing and suppressing G. boninense infection in oil palm seedlings were investigated in this study. This study aimed to investigate the identity of BSR causal pathogen from North Sumatra, Indonesia and to identify the endophytic Trichoderma strain from healthy oil palm roots of this area. Thus, to evaluate the antibiosis activity and resistance induced by endophytic Trichoderma in oil palm seedlings.

Identification of *Ganoderma* isolate from Negeri Lama Estate in North Sumatra, Indonesia was confirmed using Ganoderma selective medium (GSM) and DNA sequence analysis. That latter method showed the isolate from Negeri Lama was closely related to virulent *G. boninense* isolate GB001 (NCBI accession number: KX092000.1), with a maximum similarity of 99%. Prior to *in vitro* assessment, all the endophytic BCA isolates from oil palm roots in Negeri Lama Estate studied were first confirmed using Trichoderma selective medium (TSM). Subsequently, DNA sequence analysis identified the BCAs as *Trichoderma* species with 99% of similarity for all isolates, where endophytic ET501 identified as *Trichoderma reesei* strain RHa (NCBI accession number: KM246746.1), while endophytic ET523 identified as *Trichoderma asperellum* isolate F1 (NCBI accession number: KP281701.1) and endophytic ET537 identified as *Trichoderma asperellum* strain Q1 (NCBI accession number: HQ293149.1).

Antagonistic effects of potential endophytic *Trichoderma* spp. against *G. boninense* growth were evaluated via dual culture test and culture filtrate test. The results demonstrated that the percentage inhibition of radial growth (PIRG) of *G. boninense* were 95.1% in endophytic *T. reesei* ET501, 87.1% in endophytic *T. asperellum* ET523, and 88.9% in endophytic *T. asperellum* ET537. In addition, the ability of *Trichoderma* spp. in suppressing *G. boninense* growth was also assessed through percentage inhibition of mycelia growth (PIMG). Endophytic *T. reesei* ET501 showed the strongest PIMG activity (100%), followed by endophytic *T. asperellum* ET537 and *T. asperellum* ET537, 90.5% and 12.3%, respectively. Scanning electron microscopy (SEM) observation was done to reveal the mycoparasitic effect of endophytic *Trichoderma* spp. to the *G. boninense* mycelia. Exposure of endophytic *T. reesei* ET501 caused the most severe disruption and lysed effect to the *G. boninense* mycelium, followed by *T. asperellum* ET537 and *T. asperellum* ET537, spectively.

Potential bioactive compounds produced by single endophytic *Trichoderma* spp. and/or during this interaction which inhibiting the *G. boninense* growth was further investigated using gas chromatography mass spectrometry (GCMS). Several potential antimicrobial compounds such as 3-furaldehyde; pyrazole,1,4-dimethyl-;

propanoic acid; 5-methyloxazolidine; pyrrolizin-1,7-dione-6-carboxylic acid, methyl(ester); butanedioic acid; 9-hexadecenoic acid; thiophene, 2,5-dihydro-; 2-bromotetradecanoic acid; 3,4-furandiol, tetrahydro-trans-; 3-methyloxirane-2-carboxylic acid; hydrazine; octadecenoic acid; 2,5-methano-2H-furo[3,2-b]pyran-8-one, hexahydro-; a-bisabolol, etc were also detected. These compounds shall contribute to the antagonistic effect of endophytic *Trichoderma* spp. against *G. boninense*.

Moreover, to measure the potential of these BCAs in *G. boninense* suppression, an *in-vivo* trial with ten months duration was conducted on oil palm seedlings via *G. boninense* artificial inoculation (rubber wood blocks method) treated with endophytic *Trichoderma* spp. in the nursery condition. The application of endophytic *T. reesei* ET501 found to be the most effective in suppressing BSR with only 13.4% of disease incidence (DI), compared to endophytic *T. asperellum* ET23 and *T. asperellum* ET537 with 71.8% and 48.4 % of DI, respectively. The ability of endophytic *Trichoderma* spp. in inducing resistance of oil palm seedlings was also measured through total phenolic content (TPC) analysis of treated oil palm roots. The results showed all the of endophytic *Trichoderma* spp. treated seedlings were significantly induced of TPC compared to the control seedlings. Application of endophytic *Trichoderma* spp. in the nursery exhibited the potential of triggering oil palm seedlings' TPC amount and help in developing resistance in oil palm seedlings, thus protect them from *G. boninense* infection.

Therefore, the application of endophytic *Trichoderma* spp. to the oil palm seedling roots before transplant (at nursery stage) could provide a promising sustainable strategy to manage BSR disease of oil palm. Despite this, there is also a need for further study in evaluating the potential endophytic *Trichoderma* spp. as a single or consortium approach under field conditions.

Keywords : Basal stem rot, *Ganoderma boninense*, biocontrol agents, resistance, endophytic *Trichoderma* spp.

UNIVERSITI MALAYSIA SABAH

ABSTRAK

PENILAIAN KEATAS KEBERKESANAN DAN POTENSI TRICHODERMA SPP. ENDOFITIK DARI SUMATRA UTARA, INDONESIA DALAM MENCEGAH DAN MERENCAT JANGKITAN GANODERMA BONINENSE DALAM ANAK POKOK SAWIT

Reput pangkal batang (RPB) yang disebabkan oleh kulat Ganoderma boninense merupakan penyakit kelapa sawit (Elaeis guineensis Jagc.) yang paling membinasakan dan menyebabkan kerugian ekonomi dalam industri kelapa sawit di Asia Tenggara. Kejadian RPB yang tinggi memberi kesan yang besar terhadap penurunan berat dan jumlah tandan pada kelapa sawit yang dijangkiti. Pelbagai pendekatan termasuk kaedah kimia, mekanikal, kultura dan biologi telah dilaporkan untuk mengawal penyakit RPB. Malangnya, tiada strategi tunggal yang dapat menangani penyebaran penyakit ini. Oleh itu, strategi yang lebih boleh dipercayai dan bersepadu untuk mengurus penyakit RPB perlu dikaji selanjutnya. Penggunaan agen kawalan biologi (AKB) endofitik terutamanya Trichoderma spp. telah digunakan selama beberapa dekad dan menunjukkan keputusan yang baik dalam mengawal jangkitan Ganoderma, di samping *ianya selamat terhadap alam sekitar dan mampan. Oleh itu, penggunaan* Trichoderma dalam mencegah dan membasmi jangkitan G. boninense pada anak kelapa sawit telah diselidik dalam kajian ini. Matlamat utama kajian ini adalah mengenalpasti patogen penyebab RPB dari Sumatera Utara, Indonesia dan mengenalpasti strain Trichoderma endofitik dari akar kelapa sawit yang sihat dari kawasan ini. Selain itu, kajian ini juga menilai aktiviti antibiosis dan rintangan yang disebabkan oleh Trichoderma endofitik dalam anak kelapa sawit.

Identiti isolat Ganoderma dari Ladang Negeri Lama di Sumatera Utara, Indonesia, telah dikenalpasti dengan menggunakan medium selektif Ganoderma dan analisis urutan DNA. Kaedah ini menunjukkan bahawa isolat dari Negeri Lama berkait rapat dengan G. boninense virulen isolat GB001 (nombor aksesi NCBI : KX092000.1), dengan kesamaan maksimum 99%. Sebelum penilaian in vitro, AKB endofitik yang diasingkan daripada akar kelapa sawit dalam kajian Ladang Negeri Lama telah disahkan menggunakan medium selektif Trichoderma. Selepas itu, analisis DNA urutan mengenalpasti semua AKB sebagai spesies Trichoderma dengan kesamaan 99% untuk semua isolat, di mana endofitik ET501 dikenalpasti sebagai Trichoderma reesei strain RHa (nombor aksesi NCBI: KM246746.1), manakala endofitik ET523 dikenalpasti sebagai Trichoderma asperellum isolat F1 (nombor aksesi NCBI : KP281701.1) dan endofitik ET537 yang dikenalpasti sebagai Trichoderma asperellum strain Q1 (nombor aksesi NCBI : HQ293149.1).

Kesan potensi antagonistik endofitik Trichoderma spp. terhadap pertumbuhan G. boninense telah dinilai melalui ujian dwikultur dan ujian tapisan kultur. Hasil menunjukkan bahawa peratusan perencatan pertumbuhan radial G. boninense adalah 95.1% dengan endofitik T. reesei ET501, 87.1% dengan endofitik T. asperellum ET523, dan 88.9% dengan endofitik T. asperellum ET537. Di samping itu, keupayaan Trichoderma spp. dalam menindas kadar pertumbuhan G. boninense juga dinilai melalui perencatan pertumbuhan mycelia. Endofitik T. reesei ET501 menunjukkan aktiviti PIMG terkuat (100%), diikuti oleh endofitik T. asperellum ET537 dan T. asperellum ET537, masing-masing 90.5% dan 12.3%. Pemerhatian menggunakan elektron mikroskop telah menunjukkan kesan mikoparasitik endofitik Trichoderma spp. ke atas miselia G. boninense. Endofitik T. reesei ET501 menyebabkan kerosakan dan *kesan lisis paling teruk ke atas miselia* G. boninense, *diikuti oleh* T. asperellum *ET537 dan* T. asperellum *ET523.*

Beberapa sebatian bioaktif perencat pertumbuhan G. boninense yang dihasilkan oleh endofitik Trichoderma spp. tunggal dan/ atau semasa interaksi telah dianalisa dengan menggunakan kromatograpi gas dan spektrometri jisim. Beberapa sebatian antimikrob yang berpotensi dikenalpasti antaranya adalah 3-furaldehid; pyrazole,1,4-dimetil-; propanoik asid; 5-metiloxazolidine; pyrrolizin-1,7-dione-6carboxylic asid, metil(ester); butanedioik asid; 9-hexadecenoik asid; thiophene, 2,5dihydro-; 2-bromotetradecanoic asid; 3,4-furandiol, tetrahidro-trans-; 3-methyloxirane-2-carboxylic asid; hidrazine; oktadecenoik asid; 2,5-metano-2H-furo[3,2-b]pyran-8one, hexahydro-; a-bisabolol, dan lain-lain. Sebatian-sebatian ini sepatutnya menyumbang terhadap kesan antagonistik endofitik Trichoderma spp. ke atas G. boninense.

Selanjutnya, untuk menilai potensi endofitik ini dalam menyekat jangkitan G. boninense, percubaan in vivo selama sepuluh bulan dilakukan pada anak kelapa sawit melalui inokulasi tiruan G. boninense (kaedah blok kayu getah) yang kemudiannya dirawat dengan endofitik Trichoderma spp. di nurseri. Aplikasi endofitik T. reesei ET501 didapati paling berkesan dalam merencat RPB dengan hanya 13.4% insiden penyakit (IP) berbanding dengan endofitik T. asperellum ET23 dan T. asperellum ET537 masing-masing dengan 71.8% dan 48.4% IP. Keupayaan endofitik Trichoderma spp. dalam mengaruh ketahanan anak kelapa sawit juga diukur melalui analisis kandungan jumlah kandungan fenolik (JKF) akar kelapa sawit. Hasil yang diperolehi menunjukkan kesemua anak pokok yang dirawat dengan endofitik Trichoderma spp. menaikkan jumlah KTF yang ketara berbanding kawalan. Penggunaan endofitik Trichoderma spp. di nurseri mempamerkan potensi untuk mencetuskan jumlah KTF anak kelapa sawit dan membantu dalam meningkatkan ketahanan dalam anak kelapa sawit, seterusnya melindungi dari jangkitan G. boninense.

Oleh itu, aplikasi endofitik Trichoderma spp. kepada akar anak kelapa sawit sebelum pemindahan (pada peringkat nurseri) dapat menyediakan strategi yang mampan dalam menguruskan penyakit kelapa sawit RPB. Walaupun begitu, kajian yang lebih lanjut juga diperlukan dalam menilai potensi endofitik Trichoderma spp. sebagai pendekatan tunggal atau konsortium di bawah keadaan lapangan.

Keywords : *Reput pangkal batang*, Ganoderma boninense, *agen kawalan biologi*, *ketahanan*, *endofitik* Trichoderma *spp*.

TABLE OF CONTENTS

		Page			
TITL	.E	i			
DEC	LARATION	ii			
CER	TIFICATION	iii			
ACK	NOWLEDGEMENT	iv			
ABS	TRACT	v			
ABS	TRAK	vii			
TAB	LE OF CONTENTS	ix			
LIST	OF TABLES	xiv			
LIST	OF FIGURES	xv			
LIST	OF ABBREVIATIONS	xvii			
СНА	PTER 1. INTRODUCTION	1			
1.1	Research Background	1			
1.2	Hypothesis UNIVERSITI MALAYSIA SABAH	3			
1.3	Research Objectives	3			
СНА	PTER 2. LITERATURE REVIEW	4			
2.1	Oil Palm	4			
	2.1.1 History of oil palm	4			
	2.1.2 Biology of oil palm	5			
	2.1.3 Palm oil products and productivity	6			
2.2	Disease in Oil Palm	7			
2.3	Basal Steam Rot (BSR)				
2.4	Ganoderma boninense	12			
	2.4.1 Biology of <i>G. boninense</i>	12			
	2.4.2 Mode of infection	15			
2.5	Integrated Disease Management (IDM)				
2.6	Endophytic <i>Trichoderma</i> Species				

2.7	Molecular Identification	20
СНА	PTER 3. GENERAL MATERIALS AND METHODS	23
3.1	Preparation of Agar and Broth Media	23
	3.1.1 Potato dextrose agar (PDA)	23
	3.1.2 Potato dextrose broth (PDB)	23
	3.1.3 Ganoderma selected medium (GSM)	23
	3.1.4 Trichoderma selected medium (TSM)	24
3.2	Dual culture assay	24
3.3	Experimental Design and Statistical Data Analysis	25
	3.3.1 In vitro study	25
	3.3.2 Nursery trial	25
	3.3.3 Statistical analysis	25
3.4	Research Location	25
СНА	PTER 4. ISOLATION AND IDENTIFICATION OF BASAL STEM ROT	
	(BSR) CAUSAL PATHOGEN FROM NORTH SUMATRA,	
	INDONESIA	26
4.1	Introduction	26
4.2	Materials and Methods	27
	4.2.1 Isolation of BSR causal pathogen on Ganoderma selective medium	
	(GSM)	27
	4.2.2 Observation of BSR causal pathogen morphology	27
	4.2.3 Identification of BSR causal pathogen based on PCR /sequence	
	homology	28
	a. DNA extraction	28
	b. PCR amplification	28
	c. DNA sequencing and sequence analysis	29
4.3	Results	29
	4.3.1 Isolation and morphological identification of BSR causal pathogen	29
	4.3.2. DNA sequence of BSR causal pathogen	32
	4.3.3 BLAST search and phylogenetic tree construction	33
4.4	Discussion	35
4.5	Conclusion	38

CHAPTER		5. I	SOLAT	ION	AND	IDENTIF	ICATIO	N O	F POT	ENTIAL	
		-	ENDOP	нүті	C BIO	LOGICAL	CONTR	OL A	GENTS	(BCAs)	
			ROM	OIL	PALM	(<i>Elaeis</i>	Guinee	nsis	Jacq.)	ROOTS	
			AGAIN	ST Ga	anoderi	ma bonin	ense				39
5.1	Introd	luction									39
5.2	Materials and Methods						41				
	5.2.1	Isolati	on of e	ndoph	ytic BCA	IS					41
	5.2.2	Identi	fication	of end	dophytic	BCAs					41
		a. Mao	croscop	ic and	microsc	opic obser	vation				41
		b. Ide	ntificati	on of	selected	endophyt	ic BCAs				42
5.3	Result	S									43
	5.3.1	Isolati	on of p	ossibl	e endop	ohytic BCA	s using	TSM a	after sev	ven days	
		incuba	ation								43
	5.3.2	Identi	ty of en	dophy	tic BCAs	5					44
	a. Morphological characteristics 44								44		
		b. Mic	roscopio	c featu	ires of e	ndophytic	BCAs				45
	c. PCR amplification 4						47				
		d. Sec	d. Sequ <mark>ence ana</mark> lysis 47								
5.4	Discussion 53						53				
5.5	5.5 Conclusion 55										
CHAPTER 6. ANTAGONISTIC ACTIVITY ASSESMENT OF SELECTED											
ENDOPHYTIC Trichoderma spp. FROM OIL PALM ROOT											
		т	SSUE	AGAI	NST <i>Ga</i>	noderma	bonine	nse			56
6.1	Introd	uction									56
6.2	Materi	ials and	l Metho	ds							57
	6.2.1	Мусор	arasitic	scree	ning usi	ng dual cu	lture assa	ау			57
	6.2.2	Antibio	osis pro	perties	s-poison	food agar	assay				57
	6.2.3	Scann	ing elec	tron n	nicrosco	py (SEM) o	observatio	on			58
6.3	Result	S									58
	6.3.1	.3.1 Microparasitic activity of endophytic <i>Trichoderma</i> spp. against									
		G. bc	ninense	2							58
	6.3.2	Antibio	osis pr	operti	es of	endophyti	c <i>Tricha</i>	oderm	a spp.	against	
		G. boi	ninense								60
	6.3.3	Scann	ing elec	tron n	nicrosco	py (SEM) o	observatio	on			61

- 6.4 Discussion
- 6.5. Conclusion

65

CHAPTER 7. ANTIMICROBIAL ACTIVITY AND IDENTIFICATION OF				
		THE POSSIBLE BIOACTIVE COMPOUNDS FROM THE		
		SELECTED ENDOPHYTIC Trichoderma-Ganoderma		
		boninense INTERACTION	68	
7.1	Introd	uction	68	
7.2	Materi	als and Methods	69	
	7.2.1	Extraction of selected potential metabolites from endophytic		
		Trichoderma spp. bioassay broth	69	
	7.2.2	In vitro antimicrobial assay of selected potential endophytic		
		Trichoderma spp. crude extracts	70	
	7.2.3	Identification of bioactive compounds from the selected potential		
		endophytic Trichoderma – G. boninense interaction	70	
7.3	Result	S	71	
	7.3.1	Antimicrobial activity of selected potential endophytic Trichoderma		
		spp. cru <mark>de extrac</mark> t	71	
	7.3.2	Identification of possible bioactive compounds from selected		
		potential endophytic Trichoderma spp and their interaction with		
		G. boninense UNIVERSITI MALAYSIA SABAH	72	
7.4	Discus	ssion	81	
7.5	Conclu	usion	88	
СНА	PTER	8. EVALUATION ON THE EFFECTIVENESS OF SELECTED		
		ENDOPHYTIC Trichoderma spp. AGAINST Ganoderma		
		boninense INFECTION IN OIL PALM NURSERY	89	
8.1	Introd	uction	89	
8.2	Materi	als and Methods	90	
	8.2.1	Preparation of endophytic Trichoderma	90	
	8.2.2	Preparation of rubber wood block (RWB) for artificial inoculation	91	
	8.2.3	Artificial infection of G. boninense and endophytic Trichoderma		
		application in oil palm seedlings	91	
	8.2.4	Disease incidence (DI) observation	92	

	8.2.5 Total phenolic content analysis	92			
	a. Seedling treatment	92			
	b. Extraction of total phenolic from root tissue	93			
	c. Total phenolic content measurement	93			
8.3	Results	94			
	8.3.1 Ganoderma boninense infected seedling symptoms	94			
	8.3.2 Disease incidence (DI)	96			
	8.3.3 Total phenolic content (TPC)	97			
8.4	Discussion	98			
8.5	Conclusion	101			
СНА	PTER 9. GENERAL DISCUSSION AND CONCLUDING REMARKS	102			
9.1	Future research	110			
REFI	REFERENCES 111				

LIST OF TABLES

		Page
Table 4.1.	PCR Master Mix (MM) for PCR amplication of causal pathogen of	20
1.1	BSR	29
Table 4.2.	The most homologous microorganism from NCBI gene bank in	
	comparison to isolate from Negeri Lama Estate, North Sumatra	34
Table 5.1.	Preliminary study of endophytic BCAs from Asian Agri Group	
	Plantation	44
Table 5.2.	The growth rate of endophytic BCA isolates on PDA at room	
	temperature (27 \pm 2 °C)	45
Table 5.3.	Microscopic characteristics of endophytic BCA isolates	46
Table 5.4a.	The five most homologous microorganisms from the NCBI	
	GenBank database in comparison to the ET501 isolate	50
Table 5.4b.	The five most homologous microorganisms from	
	the NCBI GenBank database in comparison to the ET523 isolate	51
Table 5.4c.	The five most homologous microorganisms from the NCBI	
	GenBank database in comparison to the ET537 isolate	52
Table 6.1.	<i>In vitro</i> antagonistic activity of potential endophytic <i>Trichoderma</i> spp.	
	in dual culture agar assay against <i>G. boninense</i>	59
Table 6.2.	Antibiosis properties-poison food agar assay of endophytic	
	Trichoderma spp. against G. boninense	61
Table 7.1.	Antimicrobial activity of selected endophytic Trichoderma spp. crude	
	extracts against <i>G. boninense</i>	71
Table 7.2.	Metabolites profile of endophytic Trichoderma spp. compared to	
	G. boninense	73
Table 7.3.	Metabolites detected during the endophytic Trichoderma spp	
	G. boninense interactions	77
Table 8.1.	Disease incidence in oil palm seedlings	97
Table 8.2.	Total phenolic content (TPC) in oil palm roots	98

LIST OF FIGURES

		Page
Figure 2.1.	Young (12 months) oil palm infected by Ganoderma	10
Figure 2.2.	BSR disease symptoms in oil palm	12
Figure 2.3.	Morphology variation of Ganoderma basidiocarps	14
Figure 2.4.	Ganoderma mycelia showing numerous clamp junctions (arrows)	
	under light microscope with 400x magnification.	15
Figure 2.5.	Trichoderma spp.mode of action against pathogen and plant growth	
	Improvement	18
Figure 2.6.	Primer locations in the ITS region, showing the variable ITS1 and	
	ITS2 regions and sequence length in the ITS-LSU training set	22
Figure 4.1.	Isolate of causal pathogen of BSR from Negeri Lama Estate	30
Figure 4.2.	BSR causal pathogen isolate from Negeri Lama Estate cultured on	
	GSM at room temperature (27 \pm 2 °C)	31
Figure 4.3.	Basiodipores under light microscope observation with 1000x	
	magnification	31
Figure 4.4.	Daily average diameter growth of BSR causal pathogen isolate	
	from Negeri Lama Estate, North Sumatra, Indonesia	32
Figure 4.5.	PCR amplification of the fungal samples using primers ITS1 and	
	ITS4 M=Promega 1kb DNA Ladder (Lane 1&2:BSR causal	
	pathogen isolates)	32
Figure 4.6	DNA sequence of BSR causal pathogen isolate	33
Figure 4.7.	Phylogenetic tree of 7 species of Ganoderma among the isolate	
	from Negeri Lama Estate (with NCBI query ID : lcl Query_15105)	35
Figure 5.1.	Possible endophytic BCA isolates from oil palm roots on TSM after	
	seven days incubation	43
Figure 5.2.	Morphology of endophytic BCA isolates	45
Figure 5.3.	Conidia of endophytic BCA isolates under light microscope with	
	1000X magnification	46
Figure 5.4.	Conidiophores of endophytic BCA isolates observed under light	
	microscope with 1000X magnification	47
Figure 5.5.	PCR Products of the most potential isolates against G. boninense	47

Figure 5.6.	DNA sequence of endophytic BCAs 48						
Figure 5.7a.	Phylogenetic tree of five taxa among the ET 501 isolate						
	(With NCBI query ID:lcl 141685) with other five homologous						
	microorganisms	50					
Figure 5.7b.	Phylogenetic tree of five taxa among the ET 523 isolate (With NCBI						
	query ID:lcl 61097) with other five homologous microorganisms	51					
Figure 5.7c.	Phylogenetic tree of five taxa among the ET 537 isolate (With NCBI						
	query ID:lcl 72211) with other five homologous microorganisms	52					
Figure 6.1.	Dual culture assay of endophytic Trichoderma spp. against						
	G. boninense	60					
Figure 6.2.	Antibiosis properties via poison food agar assay with culture						
	filtrate incorporation into growth media at different concentration	61					
Figure 6.3.	Healthy <i>G. boninense</i> mycelium on PDA at 6 days of incubation 6						
Figure 6.4.	G. boninense mycelium in dual culture assay destructed by						
	endophytic <i>T. reesei</i> ET501 at 6 days of incubation (arrowed)	63					
Figure 6.5.	G. boninense mycelium in dual culture assay destructed by						
	endophytic T. asperellum ET523 at 6 days of incubation (arrowed)	64					
Figure 6.6.	G. boninense mycelium in dual culture assay destructed by T.						
	asperellum ET537 at 6 days of incubation (arrowed)	65					
Figure 8.1.	Integration of absorbance at 765 nm plotted against the						
	concentration of gallic acid NIVERSITI MALAYSIA SABAH	94					
Figure 8.2.	Infected oil palm seedling after <i>G. boninense</i> RWB treatment 95						
Figure 8.3.	G. boninense infected seedlings after G. boninense RWB treatment						
	exhibit the external and internal symptoms	96					

LIST OF ABBREVIATIONS

ANOVA	÷	Analyzed using analysis of variance
ARISA	3	Amplified rRNA intergenic spacer analysis
BCAs	•	Biological control agents
BLAST	1	Basic local alignment search tool
BSR	1	Basal stem rot
CRBD	•	Completely randomized block design
CRD	ł.	Completely randomized design
CWDEs		Cell wall degrading enzymes
DGGE		Denaturing gradient gel electrophoresis
DI	1 2 0	Disease incidence
DNA	R	Deoxyribonucleic acid
DMRT	:	Duncan's multiple range test
ELISA		Enzyme-linked immunosorbent assay
ET		Endophytic <i>Trichoderma</i>
FFB		Fresh fruit bunch
FOL		Fusarium oxysporum f. sp. Lycopersici
GC-MS		Gas chromatography – mass spectrometry
GSM	:	Ganoderma selective medium
IDM	:	Integrated disease management
IPM	:	Integrated pest management
ISR	:	Induced systemic resistance
ITS	:	Internal transcribed spacer
MEGA	:	Molecular evolutionary genetics analysis

MM	:	Master mix
NCBI	:	National center for biotechnology information
NEB		New england biolabs
NIST		National institute standard and technology
PCR	:	Polymerase chain reaction
PCNB		Pentachloronitrobenzene
PDA		Potato dextrose agar
PDB	:	Potato dextrose broth
PIMG	• •	Percentage inhibition of mycelia growth
PIRG	:	Percentage inhibition of radial growth
RAFLP	:	Random amplification polymorphic
RAPD	:	Random amplified polymorphic DNA
RFLPs	STI NA	Restriction fragment length polymorphisms
ROS		Reactive oxygen species
RWB	() ;	Rubber wood block
SAR	A B A L	Systemic acquired resistance SIA SABAH
SEM	-	Scanning electron microscopy
SMs	:	Secondary metabolites
SPSS	:	Statistical package for social science
SSCP		Single-strand conformation polymorphism
TGGE	;	Thermal gradient gel electrophoresis
TPC	:	Total phenolic content
TSM	(15) , id.	Trichoderma selective medium
USR		Upper stem rot
VOCs		Volatile organic compounds

CHAPTER 1

INTRODUCTION

1.1 Research Background

Basal stem rot (BSR) caused by the fungus *Ganoderma boninense* is regarded as the most economically debilitating disease of oil palms in Malaysia and Indonesia (Idris, 2009; Susanto, 2013; Turner, 1981). Cooper *et al.* (2011) reported that 50% of palms are lost with the majority of standing palms showing disease symptoms at the same time of replanting in North Sumatra, Indonesia. Losses begin to have a financial effect once the disease affects more than 10% of the stand (Hasan & Turner, 1998). Yield decline on average was 0.16 tonnes per hectare fresh fruit bunch (FFB) for every palm lost, and when the stand had declined by 50% mean losses were 35% (Subagio & Foster, 2003).

BSR also the most serious disease of oil palm in Asian Agri Group estates in North Sumatra. The disease has been particularly severe in first generation oil palm plantings established on volcanic and peat soils. Up to 2017, a total of 30 palms per hectare (22% per hectare) have been killed by the BSR disease in Asian Agri Group (Asian Agri R&D internal report, 2018). Apart from a significant decline in yield, the high loss of palm stand has significantly shortened the economic life-span of the oil palm plantings necessitate premature replanting. This becomes a serious threat to oil palm plantations sustainability.

However, the research about *Ganoderma* pathogenicity and controlling the pathogen are still in sufficient, especially in North Sumatra, Indonesia. Through this research, *Ganoderma* pathogenicity and *Ganoderma* species proper identification as one of the early steps in controlling strategy were done followed by evaluating the efficacy of some antagonistic bioagents in controlling the disease. Basic identification to confirm the identity of BSR causal pathogen in North Sumatra, through molecular

approach also has never been performed before, especially in Negeri Lama Estate, North Sumatra.

In order to control the spread of BSR in the second generation area, Asian Agri Group has adopted an integrated disease management (IDM) strategy based on four principles i.e. proper land preparation before replanting, the use of more tolerant oil palm varieties in the new planting area, application of antagonistic bioagents to protect oil palms from the disease and early detection of infected palms (Asian Agri R&D internal report, 2010). One of main strategies to control BSR is by utilization of potential antagonistic bioagents to protect and strengthen the newly planted oil palm seedlings and controlling the BSR infection in mature oil palms.

Zeilinger *et al.* (2016) reported that species of the *Trichoderma* genus inhabit diverse environments and undergo a variety of interactions with different organisms. Mycoparasitic *Trichoderma* species have been successfully applied as bio-fungicides due to their plant-protecting abilities and they are prolific producers of secondary metabolites (Zeilinger *et al.*, 2016). The wide range application of selected metabolites to induce host resistance and/or to promote crop yield may become a reality in the near future and represents a powerful tool for the implementation of integrated pest management (IPM) strategies (Vinale *et al.*, 2014).

Trichoderma species have been used as biocontrol agents against plant pathogens and could be a possible source of biofungicides as part of IDM strategies especially against fungal pathogens due to its secondary metabolites. The comprehensive information of secondary metabolites, mechanism of action and applications would be useful and important for integrated and sustainable pest and disease management. It is therefore important to identify and perform bioassay on the secondary metabolites from the interaction of *Trichoderma* isolates and *G. boninense* to provide basic information for *Trichoderma* utilization against *Ganoderma* of BSR.

Preliminary study on potential antagonistic bioagents has been done by the Asian in Agri Research and Development Centre and numerous other research organizations including Universiti Malaysia Sabah has shown very promising results in controlling *Ganoderma* (Asian Agri R&D internal report, 2014; Alexander & Chong, 2013). From the numerous bioagents that have been evaluated, endophytic *Trichoderma* showed great potential against the activity of *G. boninense* through various mechanisms of action including mycoparasitism, antibiosis, induced systemic

resistance, and others (Sundram, 2013). This potential need to be further explored to optimize the utilities of the bioagents in controlling BSR. Therefore, this project is designed with the following research objectives.

1.2 Hypothesis

- 1. *Ganoderma boninense* allegedly to be the causal pathogen of BSR in North Sumatra, Indonesia.
- 2. Endophytic Trichoderma could suppress G. boninense growth.
- 3. Endophytic *Trichoderma* plays a role in preventing oil palm from BSR attacks.
- 4. Endophytic *Trichodema* could induced oil palm resistance to BSR.

1.3 Research Objectives

- To isolate and confirm the identity of the causal pathogen of Basal Stem Rot (BSR) from North Sumatra, Indonesia.
- 2. To isolate and identify the endophytic *Trichoderma* strain from healthy oil palm roots in North Sumatra, Indonesia.
- 3. To evaluate the effectiveness of endophytic *Trichoderma* in preventing and suppressing the infection of *G. boninense*.
- 4. To evaluate the antibiosis activity and resistance induced by endophytic *Trichoderma* in oil palm seedlings.

CHAPTER 2

LITERATURE REVIEW

2.1 Oil Palm

2.1.1 History of oil palm

African oil palm originated from Africa, along the coastal strip (200–300 km wide) between Liberia and Angola, from whence it spread north, south and east to Senegal, the Indian Ocean, Zanzibar (Tanzania) and Madagascar (NewCROP, 1996). The African oil palm was named by Jacquin in 1763 (Williams & Hsu, 1970). The genus name *Elaeis* originated from the Greek word "elaion", which means oil, and the specific name *Guineensis* indicates its origin at the Guinea Coast (Hartley, 1988). Since its domestication, oil palm has been introduced and cultivated throughout the humid tropics (16°N to 16°S) (NewCROP, 1996). Since the early 1980s, the total area of land allocated to mature oil palm has more than tripled globally, reaching approximately 20.3 million hectares across the world in 2018 (Oil World, 2018). Few developments of oil palm plantation generate as much controversy as the rapid expansion of oil palm area into forest-rich developing countries such as Indonesia (Koh & Wilcove, 2007).

In Indonesia, oil palms have been cultivated commercially since 1911, when they were first developed in the east coast area of Sumatra under Dutch administration (Corley & Tinker, 2003). While the oil palm was successfully cultivated in this area in large plantations, the native population did not replace their coconut palms with this new palm species. They planted it only for decorative purposes.

Nowadays, expansion of oil palm plantation in Indonesia could not dammed. Indonesia became the biggest oil palm producer sifted Malaysia in 2009 and supplied more than 40% of global oil palm demand (Rofiq, 2013). Ministry of Agriculture of Republic of Indonesia reported that oil palm areal in Indonesia rapidly growing with