DIVERSITY OF HALOGENATED METABOLITES IN RED ALGAE, Laurencia snackeyi, COLLECTED FROM DINAWAN AND LANKAYAN ISLAND

CHOW LAI THENG

VERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

DISSERTATION SUMMITED IN PARTIAL FULFILLMENT FOR THE AWARD OF THE DEGREE OF BACHELOR OF SCIENCE WITH HONOURS

CONSERVATION BIOLOGY PROGRAMME SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH

APRIL 2009

PUMS99:1

UNIVERSITI MALAYSIA SABAH

UDUL: DIVERSITY OF HALOGENATED	METABOLITES IN RED ALGAE, Laurencia Snackeyi,
COLLECTED FROM DINAWAN AND	LANKAYAN ISLAND
JAZAH: THE DEGREE OF BACHEI	DE OF SCIENCE WITH HONOURS
AYA CHOW LAI THENG (HURUF BES	AR) SESI PENGAJIAN: 2009
engaku membenarkan tesis (LPSM/Sarja Ialaysia Sabah dengan syarat-syarat kegu	na/Doktor Falsafah) ini disimpan di Perpustakaan Universiti naan seperti berikut:-
 Tesis adalah hakmilik Universiti Perpustakaan Universiti Malaysia sahaja 	Malaysia Sabah. a Sabah dibenarkan membuat salinan untuk tujuan pengajian
 Perpustakaan dibenarkan membu pengajian tinggi. Sila tandakan (/) 	at salinan tesis ini sebagai bahan pertukaran antara institutsi
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TIDAK TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
(TANDATANGAN PENULIS)	UNIVERSIT (TANDATANGAN PUSTAKAWAN)
lamat <u>Tetap: 112, LEBUH</u> CINTRA, 10100 GEORGETOWN, DENANG.	Assoc. Prof. Dr. Charles S. Veirappa
arikh: 815709	Tarikh: 8/5/09
ATATAN:- *Potong yang tidak berkenaa **Jika tesis ini SULIT atau TH /organisasi berkenaan denga dikelaskan sebagai SULIT o @Tesis dimaksudkan sebagai	n. ERHAD, sila lampirkan surat daripada pihak berkuasa an menyatakan sekali sebab dan tempoh tesis ini perlu dan TERHAD. tesis bagi Ijazah Doktor Falsafah dan Sarjana secara
@Tesis dimaksudkan sebagai penyelidikan atau disertai b Muda (LPSM).	tesis bagi Ijazah Doktor Falsafah dan Sarjana secara agi pengajian secara kerja kursus dan Laporan Projek Sarjana

I hereby to declare that this dissertation is my original research work except all sources of findings which acknowledged in the text.

5 April 2009

CHOW LAI THENG HS2006-3131

VERIFICATION

Signature

1. SUPERVISOR (ASSOC. PROF. DR. CHARLES SANTHANARAJU VAIRAPPAN)

2. EXAMINER 1

(DR. MOHD FAIRUS JALIL)

3. EXAMINER 2 (MDM. LAM NYEE FAN)

4. DEAN

(PROF. DR. MOHD. HARUN ABDULLAH)

Weagen

Panfall

ACKNOWLEDGEMENTS

The process of performing a research work is a salutary one. And it definitely requires a lot of assistance throughout the study. First and foremost, I would like to acknowledge my supervisor, Assoc. Prof. Dr. Charles Santhanaraju Vairappan for his guidance and advice. Without the motivation from my supervisor, this research work would never been accomplished.

Special thanks to Institute of Tropical Biology and Conservation (ITBC) for providing the facilities needed for the completion of this project. I am indebted to the staffs of ITBC who have been helpful and supportive in many ways.

I would also like to express my gratitude to my lab seniors, Tan Kai Lee, Sangeetha Priya A/P Anangdan and Kishneth Palaniveloo for assisting in sampling and guiding me through the lab work. I also owe a deep gratitude to all my lab mates, Sashikala A/P Manikam, Thilahgavani A/P Nagappan, Wong Wei Teng, Hanna Hazirah Bt Awal, Zuraidah Bt Abdul Malek, Tan Hsin Lin, Woh Swee Shan, Raja Munirah Binti Raja Othman, Nur Faizah Binti Abdul Halim, and Fuzah.

I am also grateful to my parents, Mr. and Mrs. Chow for their love and support throughout the years of study in UMS. Last of all, I wish to express deep appreciation to Neoh Choon Hooi who had been very supportive in helping me to cope with transport problem and providing me with valuable feedback.

All of these individuals made important contributions to this investigation work, and I thank them all.

ABSTRACT

Diversity of halometabolites in red algae *Laurencia snackeyi* collected from two different locations, Dinawan and Lankayan Island was investigated through chemical analysis. A total of four pure compounds were isolated from the Dinawan Island's sample which identified as the (1) Palisadin A, (2) 5-acetoxypalisadin B, (3) Palisain B, and (4) Aplysistatin. These compounds were synthesized in significant quantity, 14.66%, 9.42%, 3.67% and 2.14% of 5.18 g of crude extracts, respectively. However, *Laurencia snackeyi* from Lankayan Island was found to contain five compounds such as compounds (1), (2), (3), (4) with additional compound (9) which was identified as 5 β -hydroxypalisadin B. These compounds were found in significant quantity, 5.53%, 6.50%, 7.08%, 2.69% and 4.51% of 7.90 g of crude extracts, respectively. From this study, it is concluded that the diversity of halogenated metabolites in *Laurencia Snackeyi* from Lankayan Island.

V

ABSTRAK

Kepelbagaian sebatian-sebatian berhalogen dalam alga merah spesies *Laurencia snackeyi* yang dikumpul dari dua lokasi, Pulau Dinawan dan Pulau Lankayan telah dikaji melalui analisi kimia. Sebanyak empat jenis sebatian telah dipencilkan daripada *Laurencia snackeyi* yang berasal dari Pulau Dinawan dan sebatian-sebatian ini telah dikenalpasti sebagai (1) Palisadin A, (2) 5-acetoxypalisadin B, (3) Palisain B, and (4) Aplysistatin. Peratusan kandungan sebatian-sebatian ini yang disintesiskan oleh alga merah adalah 14.66%, 9.42%, 3.67% dan 2.14% daripada 5.18 g ekstrak kasar, masing-masing. Manakala, *Laurencia snackeyi* yang disampel dari Pulau Lankayan pula mengandungi 5 jenis sebatian. Sebatian-sebatian ini termasuklah sebatian (1), (2), (3), (4) dan satu sebatian tambahan iaitu sebatian (9), 5β-hydroxypalisadin B. Peratusan kandungan sebatian dalam sample ini ialah 5.53%, 6.50%, 7.08%, 2.69% dan 4.51% daripada 7.90 g ekstrak kasar, masing-masing. Berdasarkan penyelidikan ini, disimpulkan bahawa kepelbagaian sebatian-sebatian berhalogen dalam *Laurencia Snackeyi* dari Pulau Lankayan Island adalah lebih kaya daripada Pulau Dinawan.

UNIVERSITI MALAYSIA SABAH

CONTENT

			Page
DECLAF	RATION		ii
VERIFIC	CATION		iii
ACKNO	WLEDGEMENT	ſ	iv
ABSTRA	АСТ		v
ABSTRA	AK		vi
CONTEN	NT		vii
LIST OF	TABLES		x
LIST OF	FIGURES		xi
LIST OF	APPENDIX		xiii
LIST OF	ABBREVATIO	NS AND SYMBOLS	xiv
CHAPT	ER 1	INTRODUCTION	
1.1	Marine En	vironment	1
1.2	Marine Al	gae	2
1.3	Division o	f Rhodophyta	3
1.4	Genus Lau	rencia UNIVERSITI MALAYSIA SABAH	4
1.5	Scope of S	budy	5
1.6	Significant	t of Research	6
1.7	Research (Dbjectives	6
CHAPT	ER 2	LITERATURE REVIEW	
2.1	Halogenat	ed Secondary Metabolites of Red Algae	7
2.2	Chemical	Diversity In Red Algae Genus Laurencia	8
	From Mala	aysian Waters	
	2.2.1	Laurencia majuscule (Harvey)	9
	2.2.2	Laurencia pannosa (Zanardin)	9
	2.2.3	Laurencia similis (Nam et Saito)	10
	2.2.4	Laurencia sp.	11
	225	Laurencia snackevi (Webber-van	12

viii

Bosse)

СНАРТ	YER 3 METHODOLOGY	
3.1	Sample Collection	14
3.2	Sample Processing	15
3.3	Sample Extraction	16
3.4	Chemical Profiling	20
	3.4.1 Thin Layer Chromatography (TLC) Profiling	20
	3.4.2 High-Performance Liquid	21
	Chromatography (HPLC) Analysis	
3.5	Compound Isolation	22
3.6	Compound Elucidation	24
СНАРТ	TER 4 RESULT	
4.1	Specimens of Laurencia snackeyi	26
4.2	Crude extract of L.snackeyi	27
4.3	Chemical Profiling	28
	4.3.1 Thin Layer Chromatography (TLC) Profile	28
	4.3.2 Gradient High-Performance Liquid Chromatography	30
	(HPLC) Profile	
4.4	Compound Isolation	31
	4.4.1 Column Chromatography (CC)	32
	4.4.2 Isolation by High-Performance Liquid Chromatography	35
	(HPLC)	20
4.5	Chemical Structure Elucidation of Compounds	38
СНАРТ	TER 5 DISCUSSION	
5.1	Specimens of Laurencia snackeyi	41
5.2	Chemical Profiles	42
5.3	Identification of Compounds	43
5.4	Structural Diversity of Halogenated Secondary Metabolites of L.	43

snackeyi

CHAPTER 6	CONCLUSION	45
REFERENCES		47
APPENDIX		51

LIST OF TABLES

Table

4.1	Crude extract yield (%) of L. snackeyi collected from two	28
	different locations.	
4.2	Combination of solvent system used in the CC and the weight	32
	generated from each fraction of L. snackeyi in Dinawan Island.	
4.3	Combination of solvent system used in the CC and the weight	34
	generated from each fraction of Laurencia snackeyi in Lankayan	
	Island.	
4.4	Yield (%) of compound 1, 2, 3, and 4 which isolated from	36
	L.snackeyi from Dinawan Island.	
4.5	Yield (%) of compound 1, 2, 3, 4, and 5 which isolated from	38
	Laurencia snackeyi from Lankayan Island.	

LIST OF FIGURES

Figure		Page
2.1	Halogenated secondary metabolites (1-2) of Laurencia majuscula from Sabah's water.	9
2.2	Halogenated secondary metabolites (3-5) of Laurencia pannosa from Sarawak's water.	10
2.3	Halogenated secondary metabolites (6-9) of Laurencia similis from Borneo's water and Carribean Laurencia brongniarti.	11
2.4	Halogenated secondary metabolites (10-11) of <i>Laurencia sp.</i> from Kedah's water.	12
2.5	Halometabolites (12-15) of <i>Laurencia snackeyi</i> from Sepanggar Island.	13
3.1	The red dots indicate the sampling sites for <i>L. snackeyi's</i> samples (Map was drawn not up to scale).	15
3.2	L.snackeyi samples were soaked in Methanol.	17
3.3	Concentration <i>in vacuo</i> was performed by rotary evaporator.	17
3.4	Method of holding separatory funnel.	18
3.5	Two distinctive layers were obtained after the partition process	19
3.6	A glass column which was packed up with the silica gel.	23
3.7	Illustration of steps in extraction, chemical profiling, isolation and structure elucidation of halogenated metabolites from	25
41	Herbarium of <i>L</i> snackeyi from Dinawan Island	27
4.2	Herbarium of L. snackey, from Lankavan Island	27
4.3	TLC chemical profiles of <i>L. snackevi</i> 's crude extract from	29
	Dinawan Island developed in (a) Toluene and (b) Hexane: EtOAc in ratio 3:1 solvent systems, while TLC profiles of <i>L.</i> <i>snackeyi</i> 's crude extract from Lankayan Island developed in (c) Toluene and (d) Hexane: EtOAc in ratio 3:1 solvent systems.	
4.4	HPLC chemical profiles of crude extract for <i>L. snackeyi</i> from Dinawan Island.	30

		XII
4.5	HPLC chemical profiles of crude extract for L. snackeyi	31
	collected from Lankayan Island.	
4.6	TLC profiles of CC's fractions of L.snackeyi from Dinawan	33
	Island developed in (a) Toluene and (b) Hexane: EtOAc in ratio	
	3:1 solvent systems.	
4.7	TLC profiles of CC's fractions of Lankayan Island's L.snackeyi	34
	developed in (a) Toluene and (b) Hexane: EtOAc in ratio 3:1	
	solvent systems.	
4.8	HPLC chart of fraction 2 for Laurencia snackeyi from Dinawan	35
	Island.	
4.9	HPLC chart of fraction 3 for Laurencia snackeyi from Dinawan	36
	Island.	
4.10	HPLC chart of fraction 1 for Laurencia snackeyi from Lankayan	37
	Island.	
4.11	HPLC chart of fraction 2 for Laurencia snackeyi from Lankayan	37
	Island.	
4.12	Chemical structures of compound 1.	39
4.13	Chemical structures of compound 2.	39
4.14	Chemical structures of compound 3.RSITI MALAYSIA SABAH	40
4.15	Chemical structures of compound 4.	40
4.16	Chemical structures of compound 9.	40

LIST OF APPENDIX

Appendix	Page
¹ H-NMR chart of Palisadin A.	51
¹ H-NMR chart of 5-acetoxypalidasin B.	52
¹ H-NMR chart of Palisadin B.	53
¹ H-NMR chart of Aplysistatin.	54
¹ H-NMR chart of 5β-hydroxypalisadin B.	55

LIST OF ABBREVIATIONS & SYMBOLS

sp	species
SCUBA	self-contained underwater breathing apparatus
GPS	global positioning system
AR	analytical grade
МеОН	methanol
dH ₂ O	distilled water
NaSO ₄	sodium sulphate
TLC	thin layer chromaography
CHCl ₃	chloroform
He	hexane
EtoAc	ethyl acetate
UV	ultra violet
HPLC	high-performance liquid chromatography
MeCN	acetonitrile
CC	column chromatography
NMR	nuclear magnetic resonance
¹ H-NMR	proton nuclear magnetic resonance ALAYSIA SABAH
¹³ C-NMR	carbon-13 nuclear magnetic resonance
FTIR	Fourier transformed infrared spectroscopy
MHz	mega hertz
TMS	tetramethylsilane
CDCl ₃	deuterated chloroform
R _f	retardation factor or ration to front

CHAPTER 1

INTRODUCTION

1.1 Marine Environment

Three-fourths of our earth's surface is covered by water. Hence, it is reasonable that the name of our Earth would be known as the ocean planet (Miller, 2007). With 71% of majority water surface, the aquatic environment is accounted as the largest part of the biosphere in terms of area and plays a very significant role in the earth's biological productivity. Generally, the aquatic environment can be further divided into the saltwater and freshwater environment. About 97% of the earth's water is made of saltwater while less than 1% is freshwater (Miller, 2007).

As the largest aquatic system, the saltwater environment is also described as the marine environment. In the marine ecosystem, the organisms occupy the habitat based on

several abiotic factors such as the depth of water, degree of light penetration, distance from shore and so on. This largest marine biome contains more than 500,000 species of flora and fauna. In general, the marine dwelling organisms are divided into four main groups like plankton, nekton, benthos, and the decomposers. Each group of organisms is playing a key role to support the food webs in the marine ecosystems. However, according to aquatic scientists, we have too little understanding of the marine environment. Therefore, in depth scientific investigation is necessary in order to discover and study the vast number of poorly understood marine species and their interactions.

1.2 Marine algae

The algae are chlorophyll bearing, non-vascular plant with predominant aquatic distribution. Some scientists suggest that the alga can be considered as a simple lower plant due to the alga has several common features with other plants biochemically and physiologically. For instance, the algae are the photoautotrophic organisms or primary produces which have the same biochemical pathways as the higher plants as they produce starch as the end products (Bilgrami & Saha, 2004). Unlike the terrestrial plants, the multicellular wall around the sporangia is absent within the algae.

Algae are ubiquitous for the marine habitats. They are distributed in the marine either in form of free-floating, attaching to the rocks, or attaching to submerged vegetation. The marine algae are commonly called seaweeds and divided into macroalgae and microalgae. There are three main recognized divisions of macroalgae based on their ornament photosynthetic pigments respectively which include the green algae (Chlorophyta), brown algae (Phaeophyta) and red algae (Rhodophyta) (Stern *et al.*, 2007). The red algae, Rhodophyta are those seaweeds with complex life cycles that involve three different types of thallus structures. They are abundant in Malaysian waters especially in the coastal waters of Borneo.

Algae are ecological and economically important. The most significant ecological role of algae is as serving as the primary food for fishes and other aquatic small animals. In addition, the photosynthetic algae function in providing the oxygen to the marine ecosystems. The production of oxygen is achieved by the algae during photosynthesis process. Furthermore, some seaweeds are utilized as the fertilizers of agriculture activity due to their ability to increase the water holding capacity.

1.3 Division of Rhodophyta

JNIVERSITI MALAYSIA SABAH

Phylum Rhodophyta includes about 500 genera and 6,000 species of organisms which commonly known as the red algae (Rajan, 2001). Majority of the red algae are marine dwellers. The red algae occupy the marine environment at all latitudes. As compared to brown and green algae, they favor the warmer and deeper waters where they receive only blue-green wavelengths of light (Karleskint, 1998).

Like the other macroalgae, red algae are multicellular with the major body parts like blades, thallus, and holdfast. Each of these body parts has similar function as in the terrestrial green plants, the blades serve as the leave, the filamentous thallus acts as the branch and the holdfast functions like the root. As their name would suggest, the red algae are red in colour because of the pigments, phycoerythrin (McClintock & Baker, 2001). Yet, somes do not appear as reddish instead they look violet, yellow, brown or green due to the chromatic adaptation.

The red algae have the widespread economic importance. The red algae produce cell-wall polysaccharides that have many industrial uses. For instance, the carrageenan are used in stabilizing paints, cosmetics and other commercial products is extracted from the red algae *Chondrus crispus*. Besides, some halogenated metabolites from *Laurencia* were reported have shown the antibacterial activity against marine bacteria as well as the terrestrial bacteria (Vairappan *et al.*, 2001). Also, these secondary metabolites are used for the chemotaxonomy purpose (Carvalho & Roque, 2004).

1.4 Genus Laurencia

According to the taxonomical classification, red alga genus *Laurencia* is derived from the phylum Rhodophyta which only has one class under it, Rhodophyceae. The genus *Laurencia* is derived from the family Rhodomelaceae which belongs to the subclass Florideophyceae, and order Ceramiales (Masuda *et al.*, 1997; Masuda *et al.*, 2002).

The red algae are distributed widely in Malaysian waters. Particularly the genus *Laurencia*, it is one type of the red macro marine algae that are abundant in Malaysian waters. Its habitat mostly ranges from 1 to 12m depths of the seawater floor (Vairappan *et al.*, 2001). For instance, *Laurencia snackeyi* is a type of red alga that is rich in Malaysian waters especially in Sabah.

The genus *Laurencia* were reported to prolific syntheses of halogenated secondary metabolites like the diterpenes, sesquiterpenes, and C_{15} acetogenins. These halogenated metabolites are suspected to act as the deterrence to protect the algae from being eaten by the predators (Iliopoulou *et al.*, 2002).

1.5 Scope of Study

To investigate the chemical diversity of halogenated secondary metabolites of red algae *Laurencia snackeyi* collected from two different locations, Dinawan Island and Lankayan Island. Dinawan Island is located at the Western Coast of Sabah. On the other hand, the Lankayan Island is situated at the North-Eastern Coast of Sabah.

1.6 Significant of Research

Up to now, very few studies have been carried out on the halogenated metabolites of red algae genus *Laurencia* from Malaysian waters. The *Laurencia snackeyi* species has no complete documentation or investigation as compared with *Laurencia similis*. Thus, a scientific investigation of halogenated secondary metabolites of *Laurencia snackeyi* from Sabah's waters is essential.

1.7 Research Objectives

The objectives of the investigation are:

- 1. To obtain crude extract and chemical profiling of Laurencia snackeyi.
- 2. To isolate and elucidate the pure compound of Laurencia snackeyi.
- To compare the structural diversity of halogenated secondary metabolites of Laurencia snackeyi from two different locations, Dinawan Island and Lankayan Island.

CHAPTER 2

LITERATURE REVIEW

2.1 Halogenated Secondary Metabolites of Red Algae

The division Rhodophyta is well-known to produce metabolites particularly the halogenated secondary metabolites. However, each of the metabolites has different function respectively. For the primary metabolites, they are essential to the primary metabolites pathway of the organism such as growth, development, and reproduction (Kaufman *et al.*, 1999). On the other hand, the secondary metabolites do not take part in the primary metabolism. As reported in some scientific studies, these halogenated secondary metabolites serve as the deterrence of predators and diseases (Vairappan *et al.*, 2005).

Mostly, the red macroalgae are rich in bromoperoxidases which the haloterpenes are commonly synthesized as well as the mono and oligophenols. In genus *Laurencia*, brominated sesquiterpenes are commonly found. These compounds exhibit a series of structures which can be used as the taxonomy markers to identify the certain species (Carvalho & Roque, 2004). The secondary metabolites of red algae genus *Laurencia* are located at the intracellular "*corps en cerise*" where is the synthesis site of the metabolites. Besides, the "*corps en cerise*" in superficial cortical cells are suspected to be acting as the site of storage of the halometabolites. If the "*corps en cerise*" is absent in a particular *Laurencia* species, this indicates that there is no halogenated metabolites are produced (Howard *et al.*, 1980; Suzuki *et al.*, 2002; Vairappan *et al.*, 2001).

2.2 Chemical Diversity in Red Algae Genus Laurencia from Malaysian Waters

UNIVERSITI MALAYSIA SABAH

Based on the available information, there are seven known *Laurencia* species that can be found in Malaysian waters. So far, the reported species of red algae genus *Laurencia* form Malaysian waters are including *Laurencia crib*, *Laurencia majuscula*, *Laurencia nanggii*, *Laurencia pannosa*, *Laurencia papilossa*, *Laurencia similis* and *Laurencia sncakeyi* (Suzuki *et al.*, 2001; Vairappan *et al.*, 2001; Vairappan, 2003; Vairappan *et al.*, 2005; Vairappan & Tan, 2005; Vairappan *et al.*, 2007).

2.2.1 Laurencia majuscula Harvey (1935)

As reported by Vairappan *et al.* (2001), two major halogenated metabolites were isolated from Malaysian *Laurencia masjucula* from northern Borneo. This species of red algae synthesized a total of two halogenated sesquiterpenes, elatol (1) and iso-obtusol (2). Besides, the chemical composition of this species of genus *Laurencia* bears a resemblance to the chemical composition of Gran Canarian *Laurencia masjucula* (Vairappan *et al.*, 2001; Vairappan, 2003).

Figure 2.1 Halogenated secondary metabolites (1-2) of *Laurencia majuscula* from Sabah's water (Vairappan, 2003).

2.2.2 Laurencia pannosa Zanardini (1872)

The specimen of *Laurencia pannosa* collected from the waters of Talang-talang Island of Sarawak yielded the two halogenated sesquiterpenes and one C_{15} acetogenin. The two halogenated sesquiterpenes are pannosaaol (3) and pannosane (4). While (3Z)-