
ROBOT PATH PLANNING 
USING FAMILY OF SOR ITERATIVE METHODS 

WITH LAPLACIAN BEHAVIOUR-BASED CONTROL 

AZALI BIN SAUDI 

THESIS SUBMITTED IN FULFILLMENT FOR THE 
DEGREE OF DOCTOR OF PHILOSOPHY 

FACULTY OF SCIENCE AND NATURAL RESOURCES 
UNIVERSITI MALAYSIA SABAH 

2015 



UNIVERSITI MALAYSIA SABAH 

BORANG PENGESAHAN STATUS TESIS 

JUDUL: ROBOT PATH PLANNING USING FAMILY OF SOR ITERATIVE METHODS 

WITH LAPLACIAN BEHAVIOUR-BASED CONTROL 

IJAZAH: DOKTOR FALSAFAH dalam bidang PENGKOMPUTERAN SAINTIFIK 

Saya AZALI BIN SAUDI, Sesi Pengajian 2009-2015, mengaku membenarkan tesis 

Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan 

syarat-syarat kegunaan seperti berikut: 

1. Tesis ini adalah hak milik Universiti Malaysia Sabah.

2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan

untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan

pertukakaran antara institusi pengajian tinggi.

4. Sila tandakan (/)

□ SULIT

□ TERHAD

(Mengandungi maklumat berdarjah keselamatan 
atau kepentingan Malaysia seperti yang termaktub di 
dalam AKTA RAHSIA RASMI 1972) 

(Mengandungi maklumat TERHAD yang telah 
ditentukan oleh organisasi/badan di mana 
penyelidikan dijalankan) 

0 TIDAK TERHAD

(Tandatangan Penulis) 

Alamat Tetap: Hse 15, Lorong 4/lB, 

Bandar Sierra, Menggatal, 

88450 Kota Kinabalu, 

Sabah. 

Tarikh: 28 Ogos 2015 

Disahkan 

(Tandatangan Pustakawan) 

,, 

(PROF. MADYA DR. JUMAT SULAIMAN) 
Penyelia 



DECLARATION 

I hereby declare that the material in this thesis is my own except for quotations, excerpts, 

equations, summaries and references, which have been duly acknowledged. 

27th August 2015

ii 

Azali Bin Saudi 

PS20099014 



NAME 

MATRIC NO 

TITLE 

DEGREE 

VIVA DATE 

CERTIFICATION 

AZALI BIN SAUDI 

PS20099014 

ROBOT PATH PLANNING USING FAMILY OF SOR ITERATIVE 
METHODS WITH LAPLACIAN BEHAVIOUR-BASED CONTROL 

DOCTOR OF PHILOSOPHY 
(SCIENTIFIC COMPUTING) 

27th July 2015 

DECLARED BY 

1. MAIN SUPERVISOR
Associate Professor Dr. Jumat Sulaiman

2. CO-SUPERVISOR

f' . 

Dr. Mohd. Hanafi Ahmad Hijazi

iii 

-,, 



ACKNOWLEDGEMENT 

First and foremost, I thank my supervisor Associate Professor Dr. Jumat Sulaiman for 
the invaluable guidance and constant encouragement he has given me throughout the 

study. Without his enthusiasm, comments and patience when listening to my sometimes 

confused ideas, this work would not have been completed. 

I also express my gratitude to my co-supervisor Dr. Mohd. Hanafi Ahmad Hijazi 
for his comments and guidance particularly during the writing of this thesis. 

I would also like to express my love and gratitude to my parents, for their 
understanding and patience throughout my study. I wish to thank my wife Suzanty 
and our children Nur Aqilah, Muhammad Zuhair and Muhammad Zakwan for their love 
during this study, and for being an unlimited source of joy and inspiration. 

Finally, I acknowledge Universiti Malaysia Sabah and Skim Latihan Akademik 
IPTA, Ministry of Higher Education for the financial supports. 

iv 



ABSTRACT 

A truly autonomous robot must have the capability to find path from its start point 
to a specified goal point. This study proposed a robot path planning technique that 
relies on the use of Laplace's equation to constrain the generation of potential values. 
It is based on the theory of heat transfer, when there exist a temperature gradient 
within a surface, heat energy will flow from the region of high temperature at heat 
source to the region of low temperature at heat sink. In this model, high Laplacian 
potentials are assigned to outer boundary, inner walls and obstacles. Whilst, the 
goal point is assigned the lowest and no Laplacian potentials are assigned to all other 
free spaces. The Laplacian potentials for nodes on free spaces are then computed 
iteratively using numerical techniques. In the literature, computing these Laplacian 
potentials using numerical techniques produced encouraging results. The numerical 
implementations of these previous works, however, were only based on family of point 
iterative methods i.e. Jacobi, Gauss-Seidel and Successive Overrelaxation (SOR). These 
standard methods are too slow when handling large environment. Therefore, this study 
introduces the concepts of half-sweep and quarter-sweep iterations, and initiates the 
first application of using family of Point SOR and family of Four Point-Block SOR iterative 
methods for computing the Laplacian potentials to solve the path planning problem. The 
implementations employ two finite difference discretization schemes that are based on 
5-Point and 9-Point Laplacian. Within the family of Point SOR iterative methods, the
simulation results shows that the application of half-sweep and quarter-sweep concepts
reduced the computational complexities of the algorithms by approximately 50% and
75%, respectively. Significantly, simulations with family of Four Point-Block SOR iterative
methods provide even faster computation. In terms of iterations count, the iterative
methods based on the 9-Point Laplacian give the less number of iterations than the
5-Point Laplacian. Whilst, in terms of execution time, the speed difference between
iterative methods based on 5-Point and 9-Point Laplacian is very minimal. Once the
Laplacian potentials are obtained, the standard Gradient Descent Search (GDS) technique
is performed for path tracing to the goal point. The existing GDS, however, suffers
from the occurrence of flat region in a more difficult environment which causing the
path generation to fail. Thus, this study proposes a new control known as Laplacian
Behaviour-Based Control (LBBC) to overcome such problem. Due to its robustness, the
LBBC successfully generated smooth path even in a more complex configuration space.
Therefore in conclusion, the significant contribution of this study is in introducing for
the first time the fast half-sweep and quarter-sweep iterative methods using families
of Point SOR and Four Point-Block SOR methods via 5-Point and 9-Point Laplacian.

These faster iterative methods overcome the slow performances of the existing standard
methods, particularly when handling large environment. In addition, the newly proposed
LBBC overcomes the drawback of the existing GDS that face difficulty when handling
complex environment. Finally, the path planning problem is solved by combining the
fast iterative method with the robust path searching LBBC technique, so that the path
planning algorithm is capable of handling large and complex environment.

V 



ABSTRAK 

PERANCANGAN LALUAN ROBOT MENGGUNAKAN FAMILI KAEDAH LELARAN 

SOR DENGAN KAWALAN BERASASKAN-KELAKUAN LAPLACIAN 

Robot automatik yang sebenar perlulah berkeupayaan untuk mencari laluan dari tihk 
permulaan hingga ke titik destinasi. Kajian ini mencadangkan teknik perancangan laluan 
robot yang menggunakan persamaan Laplace untuk menjana nilai-nilai potensi. Ianya 
berdasarkan teori pemindahan haba, apabila terdapat kecerunan suhu pada permukaan, 
haba akan mengalir dari kawasan sumber suhu yang bersuhu tinggi ke kawasan bersuhu 
rendah yang bertindak sebagai penarik suhu. Dengan model inl nilai potensi Laplacian 
yang tinggi diberikan kepada dinding luar, dinding dalaman dan objek halangan. 
Manakala titik destinasi diberikan nilai paling rendah, dan tiada nilai potensi Laplacian 
diberikan kepada tittk-titik bebas yang lain. Nilai potensi Laplacian untuk titik-titik bebas 
kemudiannya akan dihitung secara lelaran menggunakan teknik berangka. Dalam ka;1/an 
lepas, pengiraan nilai-nilai potensi Laplacian dengan menggunakan teknik berangka 
menghasilkan keputusan yang menggalakkan. Bagaimanapun, implementasi teknik 
berangka dalam kajian-ka;lan yang lepas ini hanya berasaskan kaedah lelaran titik iaitu 
Jacobi Gauss-Seidel dan Successive Overrelaxation (SOR). Kaedah-kaedah lelaran lazim 
ini terlalu perlahan apabila digunakan untuk persekitaran yang luas. Oleh yang demikian, 
kajian ini memperkenalkan konsep lelaran sapuan-separuh dan sapuan-suku dengan buat 
pertama kali mengaplikasikan penggunaannya melalui kaedah lelaran family of Point 
SOR dan family of Four Point-Block SOR untuk menghitung potensi-potensi Laplacian 
bagi menyelesa1kan masalah perancangan laluan. Dalam implementasinya, dua skima 
pendiskretan pembezaan terhingga digunakan yang berasaskan 5-Point dan 9-Point 
Laplacian. Dengan kaedah lelaran family of Point SOR, keputusan simulasi menunjukkan 
aplikasi sapuan-separuh dan sapuan-suku telah mengurangkan kekompleksan pengiraan 
algoritma masing-masing sekitar 50% dan 75%. Manakala, kaedah lelaran family of 
Four Point-Block SOR pula telah menyediakan pengiraan yang lebih pantas. Dari segi 
bilangan lelaran, kaedah berasaskan 9-Point Laplacian membenkan b!langan lelaran lebih 
rendah berbanding kaedah 5-Point Laplacian. Manakala, dari segi masa pelaksanaan, 
perbezaan kepantasan antara kaedah 5-Point dan 9-Point Laplacian adalah sangat 
m1mmum. Setelah nilai-mlai potensi Laplacian diperolehl teknik Gradient Descent 
Search (GDS) digunakan untuk menjejak laluan ke titik destinasi. Namun, teknik GDS 
mengalami masalah apabila terdapat kawasan rata dalam persekitaran yang lebih sukar 
dan menyebabkan penjanaan laluan gaga!. Oleh itu, kajian ini mencadangkan teknik 
kawalan baru yang dikenali sebagai Laplacian Behaviour-Based Control (LBBC) bagi 
mengatasi masalah tersebut Teknik LBBC telah beljaya menjana laluan yang lancar 
walaupun pada ruang konfigurasi yang kompleks. Sebagai kesimpulan, sumbangan 
terpenting kajian ini ialah memperkenalkan buat pertama kali lelaran sapuan-separuh 
dan sapuan-suku dalam kaedah lelaran family of Point SOR dan family of Four Point-Block 
SOR dengan berasaskan 5-Point dan 9-Point Laplacian. Kaedah-kaedah lelaran yang laju 
ini mengatasi kaedah sedia ada yang terlalu perlahan, terutamanya untuk persekitaran 
yang luas. Selain itu, teknik baru LBBC dapat mengatasi kelemahan teknik sedia ada 
GDS yang mengalami kesukaran apabila mengendalikan persekitaran yang kompleks. 
Seterusnya, masalah perancangan laluan diselesaikan dengan menggabungkan kaedah 
lelaran yang laju dengan teknik carian laluan LBBC yang cekap, lantas algoritma mampu 
mengendalikan persekitaran yang luas dan kompleks. 

Vi 



LIST OF CONTENTS 

TITLE 

DECLARATION 

CERTIFICATION 

ACKNOWLEDGMENT 

ABSTRACT 

ABSTRAK 

TABLE OF CONTENTS 

LIST OF TABLES 

LIST OF FIGURES 

LIST OF ABBREVIATIONS 

LIST OF SYMBOLS 

CHAPTER 1: INTRODUCTION 

1.1 Background 

1.2 Path Planning Problem 

1.2.1 Local Path Planning 

1.2.2 Global Path Planning 

1.3 Path Planning using Laplace's Equation 

1.3.1 Iterative Methods 

1. 4 Problem Statement

1.5 Research Questions 

1.6 Significance of Research 

1. 7 Objectives of Study

1.8 Scope and Restrictions of Study 

1. 9 Outline of the Thesis

CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

2.2 Path Planning for Mobile Robot 

2.2.1 Local Path Planning 

2.2.2 Global Path Planning 

vii 

Page 

ii 

iii 

iv 

V 

vi 

vii 

viii 

ix 

X 

xii 

1 

1 

4 

5 

5 

6 

7 

10 

11 

11 

13 

13 

14 

18 

18 

18 

24 

25 



2.2.3 Gradient Descent Search 

2.3 Applications of Laplace's Equation in Robotics 

2.4 Numerical Methods for Laplace's Equation 

2.4.1 Iterative Methods for Linear System 

2.4.2 Classifications of Iterative Methods 

2.4.3 Complexity Reduction Approach 

2.5 Robot Control Architectures 

2.5.1 Deliberative Strategy 

2.5.2 Reactive Approach 

2.5.3 Hybrid Architecture 

2.5.4 Behaviour-Based Approach 

2.6 Path Planning Strategy 

2.6.1 Physical Analogy 

2.6.2 Harmonic Function 

27 

28 

29 

30 

31 

35 

35 

36 

37 

38 

38 

40 

41 

42 

2.6.3 Configuration Space 43 

2.6.4 Path Generation 44 

2.6.5 Robot Simulator 44 

2. 7 Half- and Quarter-Sweep Iteration Concepts 49 

2.8 Research Motivations 50 

CHAPTER 3: THE ITERATIVE METHODS AND PATH SEARCHING 52 

TECHNIQUES FOR SOLVING PATH PLANNING 

PROBLEM 

3.1 Introduction 

3.2 Iterative Methods for Solving Laplace's equation 

3.3 The Five-Point Stencil for the Laplacian (SL) 

3.3.1 Five-Point Finite Difference Approximations 

3.4 The Nine-Point Laplacian (9L) 

3.4.1 Nine-Point Finite Difference Approximations 

3.5 Formulation of Family of Point SOR Methods via SL 

3.6 Formulation of Family of Four Point-Block SOR Methods via SL 

3.6.1 Four Point-EGSOR Method via SL 

viii 

52 

52 

53 

59 

65 

69 

75 

81 

81 



3.6.2 Four Point-EDGSOR Method via SL 85 

3.6.3 Four Point-MEGSOR Method via SL 88 

3.7 Formulation of Family of Point SOR Methods via 9L 91 

3.8 Formulation of Family of Four Point-Block SOR Methods via 9L 97 

3.8.1 Four Point-EGSOR Method via 9L 97 

3.8.2 Four Point-EDGSOR Method via 9L 100 

3.8.3 Four Point-MEGSOR Method via 9L 104 

3.9 Searching Techniques for Path Generation 107 

3.9.1 Gradient Descent Search (GDS) 107 

3.9.2 Behaviour-Based Paradigm 109 

3.9.3 Laplacian Behaviour-Based Control (LBBC) 110 

3.10 Path Planning Algorithm using Iterative Methods with GDS 120 

3.11 Path Planning Algorithm using Iterative Methods with LBBC 125 

CHAPTER 4: PATH PLANNING USING ITERATIVE METHODS WITH 130 

GRADIENT DESCENT SEARCH (GDS) 

4.1 Introduction 130 

4.2 Simulation using Family of Point SOR Methods via 5-Point Laplacian with 131 

GDS 

4.2.1 Simulation Results and Discussions 132 

4.3 Simulation using Family of Four Point-Block SOR Methods via 5-Point 156 

Laplacian with GDS 

4.3.1 Simulation Results and Discussions 156 

4.4 Simulation using Family of Point SOR Methods via 9-Point Laplacian with 176 

GDS 

4.4.1 Simulation Results and Discussions 176 

4.5 Simulation using Family of Four Point-Block SOR Methods via 9-Point 196 

Laplacian with GDS 

4.5.1 Simulation Results and Discussions 196 

4.6 Analysis of Computational Complexity 216 

4. 7 Concluding Remarks 217 

ix 



CHAPTER 5: PATH PLANNING USING ITERATIVE METHODS WITH 225 

LAPLACIAN BEHAVIOUR-BASED CONTROL (LBBC) 

5.1 Introduction 225 

5.2 Simulation using Family of Point SOR Methods via 5-Point Laplacian with 225 

LBBC 

5.2.1 Simulation Results and Discussion 226 

5.3 Simulation using Family of Four Point-Block SOR Methods via 5-Point 250 

Laplacian with LBBC 

5.3.1 Simulation Results and Discussion 250 

5.4 Simulation using Family of Point SOR Methods via 9-Point Laplacian with 274 

LBBC 

5.4.1 Simulation Results and Discussion 274 

5.5 Simulation using Family of Four Point-Block SOR Methods via 9-Point 298 

Laplacian with LBBC 

5.5.1 Simulation Results and Discussion 

5.6 Analysis of Computational Complexity 

5.7 Concluding Remarks 

CHAPTER 6: CONCLUSION 

6.1 Summary of the Study 

6.2 Conclusions 

6.3 Recommendation of Future Research 

REFERENCES 

LIST OF PUBLICATIONS 

X 

298 

322 

323 

329 

329 

330 

332 

334 

350 



LIST OF TABLES 

Table 4.1 Performance in terms of number of iterations for Family of Point 141 

SOR methods via SL with GDS 

Table 4.2 Performance in terms of CPU time (in seconds) for Family of 142 

Point SOR methods via SL with GDS 

Table 4.3 Maximum absolute error of Family of Point SOR methods via SL 143 

with GDS 

Table 4.4 Reduction percentages in terms of number of iterations and CPU 144 

time for GDS-HSSOR-SL and GDS-QSSOR-SL compared with 

GDS-FSSOR-SL 

Table 4.5 Performance in terms of number of iterations for Family of Four 165 

Point-Block SOR methods via SL with GDS 

Table 4.6 Performance in terms of CPU time (in seconds) for Family of 166 

Four Point-Block SOR methods via SL with GDS 

Table 4.7 Maximum absolute error of Family of Four Point-Block SOR 167 

methods via SL with GDS 

Table 4.8 Reduction percentages in terms of number of iterations and CPU 168 

time for GDS-4-EDGSOR-SL and GDS-4-MEGSOR-SL compared 

with GDS-4-EGSOR-SL 

Table 4.9 Performance in terms of number of iterations for Family of Point 185 

SOR methods via 9L with GDS 

Table 4.10 Performance in terms of CPU time (in seconds) for Family of 186 

Point SOR methods via 9L with GDS 

Table 4.11 Maximum absolute error of Family of Point SOR methods via 9L 187 

with GDS 

Table 4.12 Reduction percentages in terms of number of iterations and CPU 188 

time for GDS-HSSOR-9L and GDS-QSSOR-9L compared with 

GDS-FSSOR-9L 

Table 4.13 Performance in terms of number of iterations for Family of Four 205 

Point-Block SOR methods via 9L with GDS 

xi 



Table 4.14 Performance in terms of CPU time (in seconds) for Family of 206 

Four Point-Block SOR methods via 9L with GDS 

Table 4. lS Maximum absolute error of Family of Four Point-Block SOR 207 

methods via 9L with GDS 

Table 4.16 Reduction percentages in terms of number of iterations and CPU 208 

time for GDS-4-EDGSOR-9L and GDS-4-MEGSOR-9L compared 

with GDS-4-EGSOR-9L 

Table 4.17 Number of arithmetic operations per iteration for FSSOR-SL, 220 

HSSOR-SL and QSSOR-SL methods 

Table 4.18 Number of arithmetic operations per iteration for 4-EGSOR-SL, 220 

4- EDGSOR-SL and 4-MEGSOR-SL methods

Table 4.19 Number of arithmetic operations per iteration for FSSOR-9L, 220 

HSSOR-9L and QSSOR-9L methods 

Table 4.20 Number of arithmetic operations per iteration for 4-EGSOR-9L, 221 

4- EDGSOR-9L and 4-MEGSOR-9L methods

Table 4.21 Number of arithmetic operations to calculate the remaining 221 

points using direct methods 

Table 4.22 Total number of arithmetic operations for path planning 222 

algorithm using family of Point SOR methods via SL with GDS 

Table 4.23 Total number of arithmetic operations for path planning 222 

algorithm using family of Four Point-Block SOR methods via SL 

with GDS 

Table 4.24 Total number of arithmetic operations for path planning 223 

algorithm using family of Point SOR methods via 9L with GDS 

Table 4.2S Total number of arithmetic operations for path planning 223 

algorithm using family of Four Point-Block SOR methods via 9L 

with GDS 

Table 4.26 Reduction percentages in terms of number of iterations and CPU 224 

time for the proposed algorithms compared to the existing 

standard SOR with GDS technique (also now known as GDS

FSSOR-SL) 

xii 



Table 5.1 Performance in terms of number of iterations for Family of Point 235 

SOR methods via SL with LBBC 

Table 5.2 Performance in terms of CPU time (in seconds) for Family of 236 

Point SOR methods via SL with LBBC 

Table 5.3 Maximum absolute error of Family of Point SOR methods via SL 237 

with LBBC 

Table 5.4 Reduction percentages in terms of number of iterations and CPU 238 

time for LBBC-HSSOR-SL and LBBC-QSSOR-SL compared with 

LBBC-FSSOR-SL 

Table 5.5 Performance in terms of number of iterations for Family of Four 259 

Point-Block SOR methods via SL with LBBC 

Table 5.6 Performance in terms of CPU time (in seconds) for Family of 260 

Four Point-Block SOR methods via SL with LBBC 

Table 5.7 Maximum absolute error of Family of Four Point-Block SOR 261 

methods via SL with LBBC 

Table 5.8 Reduction percentages in terms of number of iterations and CPU 262 

time for LBBC-4-EDGSOR-SL and LBBC-4-MEGSOR-SL compared 

with LBBC-4-EGSOR-SL 

Table 5. 9 Performance in terms of number of iterations for Family of Point 283 

SOR methods via 9L with LBBC 

Table 5.10 Performance in terms of CPU time (in seconds) for Family of 284 

Point SOR methods via 9L with LBBC 

Table 5.11 Maximum absolute error of Family of Point SOR methods via 9L 285 

with LBBC 

Table 5.12 Reduction percentages in terms of number of iterations and CPU 286 

time for LBBC-HSSOR-9L and LBBC-QSSOR-9L compared with 

LBBC-FSSOR-9L 

Table 5.13 Performance in terms of number of iterations for Family of Four 307 

Point-Block SOR methods via 9L with LBBC 

Table 5.14 Performance in terms of CPU time (in seconds) for Family of 308 

Four Point-Block SOR methods via 9L with LBBC 

xiii 



Table 5.15 Maximum absolute error of Family of Four Point-Block SOR 309 

methods via 9L with LBBC 

Table 5.16 Reduction percentages in terms of number of iterations and CPU 310 

time for LBBC-4-EDGSOR-9L and LBBC-4-MEGSOR-9L compared 

with LBBC-4-EGSOR-9L 

Table 5.17 Number of arithmetic operations for LBBC-FSSOR-SL, LBBC- 326 

HSSOR-SL and LBBC-QSSOR-SL methods 

Table 5.18 Number of arithmetic operations for LBBC-4-EGSOR-SL, LBBC-4- 326 

EDGSOR-SL and LBBC-4-MEGSOR-SL methods 

Table 5.19 Number of arithmetic operations for LBBC-FSSOR-9L, LBBC- 327 

HSSOR-9L and LBBC-QSSOR-9L methods 

Table 5.20 Number of arithmetic operations for LBBC-4-EGSOR-9L, LBBC-4- 327 

EDGSOR-9L and LBBC-4-MEGSOR-9L methods 

Table 5.21 Reduction percentages in terms of number of iterations and CPU 328 

time for the proposed algorithms compared to the existing 

standard SOR with GDS technique (also now known as GDS

FSSOR-SL) 

xiv 



Figure 1.1 

Figure 1.2 

Figure 1.3 

Figure 1.4 

Figure 1.5 

Figure 1.6 

Figure 1.7 

Figure 1.8 

Figure 1.9 

Figure 1.10 

Figure 2.1 

Figure 2.2 

Figure 2.3 

Figure 2.4 

Figure 2.5 

Figure 2.6 

Figure 2.7 

Figure 2.8 

Figure 2.9 

LIST OF FIGURES 

Aibo, the robotic pet invented by Sony. 

ASIMO, the humanoid robot developed by Honda. 

The robot teacher SA YA. 

Artist's conception of rover on Mars. 

Six-legged walking robot CR200. 

Parrot AR Drone. 

Image of iRobot Packbot. 

iRobot Roomba vacuum cleaner. 

Overview of the proposed methods for solving path planning 

problem. 

List of iterative methods considered in this study. 

An overview of the stationary iterative methods. 

An overview of the nonstationary iterative methods. 

Deliberative Sense-Plan-Act architecture. 

Reactive Sense-Act architecture. 

Hybrid "three layer" architecture. 

Trajectory of the robot from start to goal point. 

Four configuration spaces are relatively simple to navigate. 

Two configuration spaces are more complex and difficult to 

navigate. 

The self-developed robot simulator software, Robot 2D 

Simulator. 

1 

2 

2 

3 

3 

4 

4 

5 

16 

17 

34 

35 

38 

38 

39 

42 

46 

47 

48 

Figure 2.10 (a) The real Khepera robot. (b) Sensor topology of the 49 

Figure 2.11 

Figure 2.12 

Figure 3.1 

Khepera robot. 

Placement of sensors and motors for the POINTROBOT. 

Computational nodes of the configuration space for (a) 

standard or full-sweep, (b) half-sweep and (c) quarter-sweep 

iteration, respectively. 

The computational molecules of the SL approximation for (a) 

full-, (b) half- and (c) quarter-sweep cases, respectively. 

xv 

50 

52 

58 



Figure 3.2 Portion of the computational grid for the SL about the point 59 

(i,j) for (a) full-, (b) half- and (c) quarter-sweep cases, 

respectively. 

Figure 3.3 The computational molecules of the 9L approximation for (a) 68 

full-, (b) half- and (c) quarter-sweep cases, respectively. 

Figure 3.4 

Figure 3.5 

Figure 3.6 

Figure 3.7 

Figure 3.8 

Figure 3.9 

Figure 3.10 

Figure 3.11 

Figure 3.12 

Figure 3.13 

Figure 3.14 

Figure 3.15 

Figure 3.16 

Figure 3.17 

Figure 3.18 

Figure 3.19 

Figure 3.20 

Portion of the computational grid for the 9L about the point 

(i,j) for (a) full-, (b) half- and (c) quarter-sweep cases, 

respectively. 

FSSOR-SL method considers all nodes in the mesh points. 

HSSOR-SL method considers only half of the total nodes in the 

mesh points. 

QSSOR-SL considers only quarter of the total nodes in the 

mesh points. 

Grid for implementation of the 4-EGSOR-SL method. 

Grid for implementation of the 4-EDGSOR-SL method. 

Groups of four black points for the 4-MEGSOR-SL method. 

FSSOR-9L method considers all nodes in the mesh points. 

HSSOR-9L method considers only half of the total nodes in the 

mesh points. 

QSSOR-9L considers only quarter of the total nodes in the 

mesh points. 

Groups of four points are calculated using 9L approximation. 

Group of four points with decoupled pairs. 

Groups of nine points. In each group, 4-MEGSOR-9L method 

considers the four black nodes only. 

The GDS picks the next node location with the lowest 

potential from its eight neighbouring points. 

The classical robot control. 

The behaviour-based control system. 

The core behaviours of the POINTROBOT. 

xvi 

69 

79 

80 

81 

84 

87 

90 

95 

96 

97 

99 

103 

106 

109 

110 

111 

112 



Figure 3.21 The Avoid-Obstacle behaviour. (a) The POINTROBOT turns 45°. 114 

(b) The POINTROBOT turns 90°. (c) The POINTROBOT turns 90° 

when it encounters a corner. (d) The POINTROBOT turns 135° 

when it encounters a corner from diagonal position. 

Figure 3.22 The Follow-Wall behaviour. (a) Follow the wall for a specified 115 

period of time. (b) The POINTROBOT switches to avoid-obstacle 

behaviour before continuing its follow-wall behaviour. (c) The 

POINTROBOT changes its direction and switches to find-slope 

behaviour. (d) The POINTROBOT turns 90° and switches to 

findslope behaviour. 

Figure 3.23 The Keep-Forward behaviour. In (a) and (c), the POINTROBOT 117 

has two options, whereas in (b) and (d) only one option is 

available. 

Figure 3.24 The find-slope behaviour. (a) The timer is stopped if the goal 120 

(0.10) is found. (b) The POINTROBOT moves away from the flat 

regions (yellow). 

Figure 4.1 The generated paths for Case 1 using Family of Point SOR 135 

methods via SL with GDS. 

Figure 4.2 The generated paths for Case 2 using Family of Point SOR 136 

methods via SL with GDS. 

Figure 4.3 The generated paths for Case 3 using Family of Point SOR 137 

methods via SL with GDS. 

Figure 4.4 The generated paths for Case 4 using Family of Point SOR 138 

methods via SL with GDS. 

Figure 4.5 The generated paths for Case 5 using Family of Point SOR 139 

methods via SL with GDS. 

Figure 4.6 The generated paths for Case 6 using Family of Point SOR 140 

methods via SL with GDS. 

Figure 4.7 Performance graph in terms of number of iterations for Case 1 145 

using Family of Point SOR methods via SL with GDS. 

xvii 



Figure 4.8 Performance graph in terms of number of iterations for Case 2 146 

using Family of Point SOR methods via SL with GDS. 

Figure 4.9 Performance graph in terms of number of iterations for Case 3 147 

using Family of Point SOR methods via SL with GDS. 

Figure 4.10 Performance graph in terms of number of iterations for Case 4 148 

using Family of Point SOR methods via SL with GDS. 

Figure 4.11 Performance graph in terms of CPU time (in seconds) for Case 1 149 

using Family of Point SOR methods via SL with GDS. 

Figure 4.12 Performance graph in terms of CPU time (in seconds) for Case 2 150 

using Family of Point SOR methods via SL with GDS. 

Figure 4.13 Performance graph in terms of CPU time (in seconds) for Case 3 151 

using Family of Point SOR methods via SL with GDS. 

Figure 4.14 Performance graph in terms of CPU time (in seconds) for Case 4 152 

using Family of Point SOR methods via SL with GDS. 

Figure 4.15 Samples of Laplacian potentials for Case 1 using GDS-FSSOR-SL 153 

method. 

Figure 4.16 Samples of Laplacian potentials for Case 2 using GDS-FSSOR-SL 154 

method. 

Figure 4.17 Samples of Laplacian potentials for Case 3 using GDS-FSSOR-SL 155 

method. 

Figure 4.18 Samples of Laplacian potentials for Case 4 using GDS-FSSOR-SL 156 

method. 

Figure 4.19 The generated paths for Case 1 using Family of Four Point-Block 159 

SOR methods via SL with GDS. 

Figure 4.20 The generated paths for Case 2 using Family of Four Point-Block 160 

SOR methods via SL with GDS. 

Figure 4.21 The generated paths for Case 3 using Family of Four Point-Block 161 

SOR methods via SL with GDS. 

Figure 4.22 The generated paths for Case 4 using Family of Four Point-Block 162 

SOR methods via SL with GDS. 

xviii 



Figure 4.23 The generated paths for Case 5 using Family of Four Point-Block 163 

SOR methods via SL with GDS. 

Figure 4.24 The generated paths for Case 6 using Family of Four Point-Block 164 

SOR methods via SL with GDS. 

Figure 4.25 Performance graph in terms of number of iterations for Case 1 169 

using Family of Four Point-Block SOR methods via SL with GDS. 

Figure 4.26 Performance graph in terms of number of iterations for Case 2 170 

using Family of Four Point-Block SOR methods via SL with GDS. 

Figure 4.27 Performance graph in terms of number of iterations for Case 3 171 

using Family of Four Point-Block SOR methods via SL with GDS. 

Figure 4.28 Performance graph in terms of number of iterations for Case 4 172 

using Family of Four Point-Block SOR methods via SL with GDS. 

Figure 4.29 Performance graph in terms of CPU time (in seconds) for Case 1 173 

using Family of Four Point-Block SOR methods via SL with GDS. 

Figure 4.30 Performance graph in terms of CPU time (in seconds) for Case 2 174 

using Family of Four Point-Block SOR methods via SL with GDS. 

Figure 4.31 Performance graph in terms of CPU time (in seconds) for Case 3 175 

using Family of Four Point-Block SOR methods via SL with GDS. 

Figure 4.32 Performance graph in terms of CPU time (in seconds) for Case 4 176 

using Family of Four Point-Block SOR methods via SL with GDS. 

Figure 4.33 The generated paths for Case 1 using Family of Point SOR 179 

methods via 9L with GDS. 

Figure 4.34 The generated paths for Case 2 using Family of Point SOR 180 

methods via 9L with GDS. 

Figure 4.3S The generated paths for Case 3 using Family of Point SOR 181 

methods via 9L with GDS. 

Figure 4.36 The generated paths for Case 4 using Family of Point SOR 182 

methods via 9L with GDS. 

Figure 4.37 The generated paths for Case S using Family of Point SOR 183 

methods via 9L with GDS. 

xix 



Figure 4.38 The generated paths for Case 6 using Family of Point SOR 184 

methods via 9L with GDS. 

Figure 4.39 Performance graph in terms of number of iterations for Case 1 189 

using Family of Point SOR methods via 9L with GDS. 

Figure 4.40 Performance graph in terms of number of iterations for Case 2 190 

using Family of Point SOR methods via 9L with GDS. 

Figure 4.41 Performance graph in terms of number of iterations for Case 3 191 

using Family of Point SOR methods via 9L with GDS. 

Figure 4.42 Performance graph in terms of number of iterations for Case 4 192 

using Family of Point SOR methods via 9L with GDS. 

Figure 4.43 Performance graph in terms of CPU time (in seconds) for case 1 193 

using Family of Point SOR methods via 9L with GDS. 

Figure 4.44 Performance graph in terms of CPU time (in seconds) for Case 2 194 

using Family of Point SOR methods via 9L with GDS. 

Figure 4.45 Performance graph in terms of CPU time (in seconds) for case 3 195 

using Family of Point SOR methods via 9L with GDS. 

Figure 4.46 Performance graph in terms of CPU time (in seconds) for case 4 196 

using Family of Point SOR methods via 9L with GDS. 

Figure 4.47 The generated paths for Case 1 using Family of Four Point-Block 199 

SOR methods via 9L with GDS. 

Figure 4.48 The generated paths for Case 2 using Family of Four Point-Block 200 

SOR methods via 9L with GDS. 

Figure 4.49 The generated paths for Case 3 using Family of Four Point-Block 201 

SOR methods via 9L with GDS. 

Figure 4.50 The generated paths for Case 4 using Family of Four Point-Block 202 

SOR methods via 9L with GDS. 

Figure 4.51 The generated paths for Case 5 using Family of Four Point-Block 203 

SOR methods via 9L with GDS. 

Figure 4.52 The generated paths for Case 6 using Family of Four Point-Block 204 

SOR methods via 9L with GDS. 

XX 



Figure 4.53 Performance graph in terms of number of iterations for Case 1 209 

using Family of Four Point-Block SOR methods via 9L with GDS. 

Figure 4.54 Performance graph in terms of number of iterations for Case 2 210 

using Family of Four Point-Block SOR methods via 9L with GDS. 

Figure 4.55 Performance graph in terms of number of iterations for Case 3 211 

using Family of Four Point-Block SOR methods via 9L with GDS. 

Figure 4.56 Performance graph in terms of number of iterations for Case 4 212 

using Family of Four Point-Block SOR methods via 9L with GDS. 

Figure 4.57 Performance graph in terms of CPU time (in seconds) for Case 1 213 

using Family of Four Point-Block SOR methods via 9L with GDS. 

Figure 4.58 Performance graph in terms of CPU time (in seconds) for Case 2 214 

using Family of Four Point-Block SOR methods via 9L with GDS. 

Figure 4.59 Performance graph in terms of CPU time (in seconds) for Case 3 215 

using Family of Four Point-Block SOR methods via 9L with GDS. 

Figure 4.60 Performance graph in terms of CPU time (in seconds) for Case 4 216 

using Family of Four Point-Block SOR methods via 9L with GDS. 

Figure 4.61 Graph of reduction percentages in terms of number of iterations 225 

and CPU time for the proposed algorithms compared to the 

existing GDS-FSSOR-SL. 

Figure 5.1 The generated paths for Case 1 using Family of Point SOR 229 

methods via SL with LBBC. 

Figure 5.2 The generated paths for Case 2 using Family of Point SOR 230 

methods via SL with LBBC. 

Figure 5.3 The generated paths for Case 3 using Family of Point SOR 231 

methods via SL with LBBC. 

Figure 5.4 The generated paths for Case 4 using Family of Point SOR 232 

methods via SL with LBBC. 

Figure 5.5 The generated paths for Case 5 using Family of Point SOR 233 

methods via SL with LBBC. 

xxi 



Figure 5.6 The generated paths for Case 6 using Family of Point SOR 234 

methods via SL with LBBC. 

Figure 5. 7 Performance graph in terms of number of iterations for Case 1 239 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.8 Performance graph in terms of number of iterations for Case 2 240 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.9 Performance graph in terms of number of iterations for Case 3 241 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.10 Performance graph in terms of number of iterations for Case 4 242 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.11 Performance graph in terms of number of iterations for Case 5 243 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.12 Performance graph in terms of number of iterations for Case 6 244 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.13 Performance graph in terms of CPU time (in seconds) for case 1 245 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.14 Performance graph in terms of CPU time (in seconds) for case 2 246 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.15 Performance graph in terms of CPU time (in seconds) for case 3 247 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.16 Performance graph in terms of CPU time (in seconds) for Case 4 248 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.17 Performance graph in terms of CPU time (in seconds) for case 5 249 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.18 Performance graph in terms of CPU time (in seconds) for Case 6 250 

using Family of Point SOR methods via SL with LBBC. 

Figure 5.19 The generated paths for Case 1 using Family of Four Point-Block 253 

SOR methods via SL with LBBC. 

Figure S.20 The generated paths for Case 2 using Family of Four Point-Block 254 

SOR methods via SL with LBBC. 

xxii 



Figure 5.21 The generated paths for Case 3 using Family of Four Point-Block 255 

SOR methods via SL with LBBC. 

Figure 5.22 The generated paths for Case 4 using Family of Four Point-Block 256 

SOR methods via SL with LBBC. 

Figure 5.23 The generated paths for Case S using Family of Four Point-Block 257 

SOR methods via SL with LBBC. 

Figure 5.24 The generated paths for Case 6 using Family of Four Point-Block 258 

SOR methods via SL with LBBC. 

Figure 5.2S Performance graph in terms of number of iterations for case 1 263 

using Family of Four Point-Block SOR methods via SL with LBBC. 

Figure 5.26 Performance graph in terms of number of iterations for Case 2 264 

using Family of Four Point-Block SOR methods via SL with LBBC. 

Figure 5.27 Performance graph in terms of number of iterations for Case 3 265 

using Family of Four Point-Block SOR methods via SL with LBBC. 

Figure 5.28 Performance graph in terms of number of iterations for Case 4 266 

using Family of Four Point-Block SOR methods via SL with LBBC. 

Figure 5.29 Performance graph in terms of number of iterations for case 5 267 

using Family of Four Point-Block SOR methods via SL with LBBC. 

Figure S.30 Performance graph in terms of number of iterations for Case 6 268 

using Family of Four Point-Block SOR methods via SL with LBBC. 

Figure S.31 Performance graph in terms of CPU time (in seconds) for case 1 269 

using Family of Four Point-Block SOR methods via SL with LBBC. 

Figure S.32 Performance graph in terms of CPU time (in seconds) for case 2 270 

using Family of Four Point-Block SOR methods via SL with LBBC. 

Figure S.33 Performance graph in terms of CPU time (in seconds) for case 3 271 

using Family of Four Point-Block SOR methods via SL with LBBC. 

Figure S.34 Performance graph in terms of CPU time (in seconds) for case 4 272 

using Family of Four Point-Block SOR methods via SL with LBBC. 

Figure 5.3S Performance graph in terms of CPU time (in seconds) for case S 273 

using Family of Four Point-Block SOR methods via SL with LBBC. 

xxiii 


