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ABSTRACT 

A truly autonomous robot must have the capability to find path from its start point 
to a specified goal point. This study proposed a robot path planning technique that 
relies on the use of Laplace's equation to constrain the generation of potential values. 
It is based on the theory of heat transfer, when there exist a temperature gradient 
within a surface, heat energy will flow from the region of high temperature at heat 
source to the region of low temperature at heat sink. In this model, high Laplacian 
potentials are assigned to outer boundary, inner walls and obstacles. Whilst, the 
goal point is assigned the lowest and no Laplacian potentials are assigned to all other 
free spaces. The Laplacian potentials for nodes on free spaces are then computed 
iteratively using numerical techniques. In the literature, computing these Laplacian 
potentials using numerical techniques produced encouraging results. The numerical 
implementations of these previous works, however, were only based on family of point 
iterative methods i.e. Jacobi, Gauss-Seidel and Successive Overrelaxation (SOR). These 
standard methods are too slow when handling large environment. Therefore, this study 
introduces the concepts of half-sweep and quarter-sweep iterations, and initiates the 
first application of using family of Point SOR and family of Four Point-Block SOR iterative 
methods for computing the Laplacian potentials to solve the path planning problem. The 
implementations employ two finite difference discretization schemes that are based on 
5-Point and 9-Point Laplacian. Within the family of Point SOR iterative methods, the
simulation results shows that the application of half-sweep and quarter-sweep concepts
reduced the computational complexities of the algorithms by approximately 50% and
75%, respectively. Significantly, simulations with family of Four Point-Block SOR iterative
methods provide even faster computation. In terms of iterations count, the iterative
methods based on the 9-Point Laplacian give the less number of iterations than the
5-Point Laplacian. Whilst, in terms of execution time, the speed difference between
iterative methods based on 5-Point and 9-Point Laplacian is very minimal. Once the
Laplacian potentials are obtained, the standard Gradient Descent Search (GDS) technique
is performed for path tracing to the goal point. The existing GDS, however, suffers
from the occurrence of flat region in a more difficult environment which causing the
path generation to fail. Thus, this study proposes a new control known as Laplacian
Behaviour-Based Control (LBBC) to overcome such problem. Due to its robustness, the
LBBC successfully generated smooth path even in a more complex configuration space.
Therefore in conclusion, the significant contribution of this study is in introducing for
the first time the fast half-sweep and quarter-sweep iterative methods using families
of Point SOR and Four Point-Block SOR methods via 5-Point and 9-Point Laplacian.

These faster iterative methods overcome the slow performances of the existing standard
methods, particularly when handling large environment. In addition, the newly proposed
LBBC overcomes the drawback of the existing GDS that face difficulty when handling
complex environment. Finally, the path planning problem is solved by combining the
fast iterative method with the robust path searching LBBC technique, so that the path
planning algorithm is capable of handling large and complex environment.
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ABSTRAK 

PERANCANGAN LALUAN ROBOT MENGGUNAKAN FAMILI KAEDAH LELARAN 

SOR DENGAN KAWALAN BERASASKAN-KELAKUAN LAPLACIAN 

Robot automatik yang sebenar perlulah berkeupayaan untuk mencari laluan dari tihk 
permulaan hingga ke titik destinasi. Kajian ini mencadangkan teknik perancangan laluan 
robot yang menggunakan persamaan Laplace untuk menjana nilai-nilai potensi. Ianya 
berdasarkan teori pemindahan haba, apabila terdapat kecerunan suhu pada permukaan, 
haba akan mengalir dari kawasan sumber suhu yang bersuhu tinggi ke kawasan bersuhu 
rendah yang bertindak sebagai penarik suhu. Dengan model inl nilai potensi Laplacian 
yang tinggi diberikan kepada dinding luar, dinding dalaman dan objek halangan. 
Manakala titik destinasi diberikan nilai paling rendah, dan tiada nilai potensi Laplacian 
diberikan kepada tittk-titik bebas yang lain. Nilai potensi Laplacian untuk titik-titik bebas 
kemudiannya akan dihitung secara lelaran menggunakan teknik berangka. Dalam ka;1/an 
lepas, pengiraan nilai-nilai potensi Laplacian dengan menggunakan teknik berangka 
menghasilkan keputusan yang menggalakkan. Bagaimanapun, implementasi teknik 
berangka dalam kajian-ka;lan yang lepas ini hanya berasaskan kaedah lelaran titik iaitu 
Jacobi Gauss-Seidel dan Successive Overrelaxation (SOR). Kaedah-kaedah lelaran lazim 
ini terlalu perlahan apabila digunakan untuk persekitaran yang luas. Oleh yang demikian, 
kajian ini memperkenalkan konsep lelaran sapuan-separuh dan sapuan-suku dengan buat 
pertama kali mengaplikasikan penggunaannya melalui kaedah lelaran family of Point 
SOR dan family of Four Point-Block SOR untuk menghitung potensi-potensi Laplacian 
bagi menyelesa1kan masalah perancangan laluan. Dalam implementasinya, dua skima 
pendiskretan pembezaan terhingga digunakan yang berasaskan 5-Point dan 9-Point 
Laplacian. Dengan kaedah lelaran family of Point SOR, keputusan simulasi menunjukkan 
aplikasi sapuan-separuh dan sapuan-suku telah mengurangkan kekompleksan pengiraan 
algoritma masing-masing sekitar 50% dan 75%. Manakala, kaedah lelaran family of 
Four Point-Block SOR pula telah menyediakan pengiraan yang lebih pantas. Dari segi 
bilangan lelaran, kaedah berasaskan 9-Point Laplacian membenkan b!langan lelaran lebih 
rendah berbanding kaedah 5-Point Laplacian. Manakala, dari segi masa pelaksanaan, 
perbezaan kepantasan antara kaedah 5-Point dan 9-Point Laplacian adalah sangat 
m1mmum. Setelah nilai-mlai potensi Laplacian diperolehl teknik Gradient Descent 
Search (GDS) digunakan untuk menjejak laluan ke titik destinasi. Namun, teknik GDS 
mengalami masalah apabila terdapat kawasan rata dalam persekitaran yang lebih sukar 
dan menyebabkan penjanaan laluan gaga!. Oleh itu, kajian ini mencadangkan teknik 
kawalan baru yang dikenali sebagai Laplacian Behaviour-Based Control (LBBC) bagi 
mengatasi masalah tersebut Teknik LBBC telah beljaya menjana laluan yang lancar 
walaupun pada ruang konfigurasi yang kompleks. Sebagai kesimpulan, sumbangan 
terpenting kajian ini ialah memperkenalkan buat pertama kali lelaran sapuan-separuh 
dan sapuan-suku dalam kaedah lelaran family of Point SOR dan family of Four Point-Block 
SOR dengan berasaskan 5-Point dan 9-Point Laplacian. Kaedah-kaedah lelaran yang laju 
ini mengatasi kaedah sedia ada yang terlalu perlahan, terutamanya untuk persekitaran 
yang luas. Selain itu, teknik baru LBBC dapat mengatasi kelemahan teknik sedia ada 
GDS yang mengalami kesukaran apabila mengendalikan persekitaran yang kompleks. 
Seterusnya, masalah perancangan laluan diselesaikan dengan menggabungkan kaedah 
lelaran yang laju dengan teknik carian laluan LBBC yang cekap, lantas algoritma mampu 
mengendalikan persekitaran yang luas dan kompleks. 
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