EXPRESSION DISTRIBUTION OF CANCER STEM CELL, EPITHELIAL TO MESENCHYMAL TRANSITION AND TELOMERASE ACTIVITY IN BREAST CANCER, AND THEIR ASSOCIATION WITH CLINICOPATHOLOGICAL CHARACTERISTIC

PERPUSTAKAAN UNIVERSITI MALAYSIA SABITA

JAAFAR SADEQ MAKKI

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULITY OF MEDICINE AND HEALTH SCIENCES UNIVERSITI MALAYSIA SABAH 2014

UNIVERSITY MALAYSIA SABAH

BORANG PENGESHAN STATUS TESIS

Judul: THE NARATIVE VALUE OF RED SEAWEED, *Kappaphycus alvarezil* MEAL IN FORMULATED FEED OF JUVENILE ASIAN SEABASS, *Lates calcarifer*

IJAZAH: SARJANA SAINS

Saya NIK SITI ZAIMAN BINTI SAFIN, Sesi pengajian 2011/2014, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti malaysia Sabah dengan syarat-syarat keguaaan seperti berikut:

- 1. Tesisi ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjag keselamatan Atau kepentingan Malaysia seperti yang termaktub di Dalam AKTA RAHSIA RASMI 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telah
 Ditentukan oleh organisai/ badan di mana
 Penyelidikan dijalankan)

TIDAK TERHAD

SULIT

(Tandatangan Penulis) D-2-5, Grace Garden, Sembulan ,KK, Sabah.

Tarikh: 28 October 2014

Disahkan oleh,

NURULAIN BINTHISMAIL LIBRARIAN ALERSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

Ass. Prof. Dr.Ohnmar Mynit

DECLARATION

I hereby declare that the work in this thesis is of my own except for excerpts, summaries and references, which have been duly acknowledged.

20 October 2014

Jaafar Šadeq Makki PU20109011

CERTIFICATION

NAME : JAAFAR SADEQ MAKKI

MATRIC NO : **PU20109011**

TITLE : EXPRESSION DISTRIBUTION OF CANCER STEM CELL, EPITHELIAL TO MESENCHYMAL TRANSITION AND TELOMERASE ACTIVITY IN BREAST CANCER, AND THEIR ASSOCIATION WITH CLINICOPATHOLOGICAL CHARACTERISTIC

DEGREE : DOCTOR OF PHILOSOPHY OF MEDICAL SCIENCES

VIVA DATE

20 October 2014

DECLARED BY

SUPERVISOR

Assoc. Prof. Dr. Ohnmar Mynit

1

Signature

Dr Ohnmar Myint

Associate Professor MMC Full Reg. No 42910 Department of Pathology School of Medicine University Malaysia Sabah

ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah for the strengths, guidance and his blessing in completing this work.

I would like to take this opportunity to thank my supervisor Associate professor Dr. Ohnmar Mynit and co-supervisor Dr. Aye Aye Wynn for their guidance, cooperation and expert opinion. Too much and sincere thanks goes to Dr. Ahmad Toha head of pathology department, Queen Elizabeth hospital and to my colleagues and the staff member of histopathology unit for their cooperation and help to achieve this work. I also want to thank and appreciate the research grant from UMS research grant scheme for funding and supporting this work.

ABSTRACT

Three novel concepts have been emerged in breast cancer biology: the role of cancer stem cells (CSC) in tumor initiation, and the involvement of an epithelial to mesenchymal transition (EMT) in the invasiveness and metastasis of cancer cells, along with the telomerase role in keeping the CSC immortal, and avoiding senescence. CSC are a small subpopulation of cells within tumors that initiate the tumor, telomerase is the intracellular enzyme responsible for the elongation of chromosomal telomer during each cell division, while EMT is the loss of epithelial differentiation and gained the mesenchymal phenotype.

The objective of this study is to analyse and determine the prevalence, and prognosticimportance of CSC, Telomerase activity, and epithelial to mesenchymal transition, in primary and metastatic breast carcinoma, and associationbetween each other.

A total of 167 surgically resected primary invasive breast carcinomas, and 63 metastatic lymph node lesionwere analysed forimmunohistochemical localization of the CD44+CD24-^{low}breast CSC markers, and EMT markers, vimentin and E-cadherin, by double staining IHC technique, as well as telomerase activity in formaline fixed paraffin embedded tissue, the results was validated by double staining immunoflourecent and flow cytometry techniques.

The results showed CSC with CD44+CD24-^{low} phenotype was significantly increased in node-positive tumours (p<0.0001), and in high grade tumors (p<0.0001), so CSC is independent, negative prognostic factor, its presence indicate poor prognosis, there was considerable high incidence of these cells in metastatic lymph node lesion compared to primary tumor (p-0.000), CD44+CD24-^{low} phenotypic cells was more prevalent and in significant number in ductal carcinoma insitu (DCIS) comparing to its invasive counterpart (p- 0.001). There was no significant correlation observed in between telomerase activity and clinicopathologicalbreast cancer parameters, but there was considerable high incidence of telomerase expression in metastatic lymph node lesion. EMT was more

expressed in special subtypes of invasive carcinoma comparing to IDC (NOS). The incidence of EMT was more in triple negative tumor. EMT expression was more prevalence in DCIS lesion relative to its invasive component (p-value 0.000), and there was considerable high number of tumor cells with EMT expression in metastatic lymph node lesion (p-0.001). The occurrence of EMT phenomena was usually accompanied by the co-existence of CSC of CD44+CD24-^{low} phenotype. There was no association between the existence of CSC and detection of telomerase activity in tumor cells.

Increase number of both CSC of CD44+CD24-^{low}phenotype and cells underwent EMT in DCIS lesion might be an initial step in the stromal invasion and propagation of breast cancer, and induction of EMT in the breast tumor associated with high prevalence of CSC, promoting tumorinvasiveness and metastasis. EMT occurrence is always co-existence with CSC subsistence, suggesting that EMT phenotype induced by different factors are rich sources for CSC, which raise the

possibility of biological similarities between CSC, and EMT-phenotypic cells.

Finally, we can conclude that the currently used detection methods for breast CSC and EMT are not enough to identify all subtypes of these tumor cell. The clinical relevance on prognosis and therapy response has to be further evaluated in a prospective trial.

TABLE OF CONTENTS

		Page	
TITL		i ii	
DECLARATION			
	TIFICATION	iii i	
	NOWLEDGMENT	iv	
	TRACT	V	
		vii	
		Viii	
	OF TABLES	xvi	
	OF FIGURES	xix	
	OF ABBREVIATION	××ii	
LISI	OF APPENDIX	xxiii	
CHA	PTER 1: INTRODUCTION	1.	
1.1	Research background	1	
	1.1.1 Cancer stem cells	2	
	1.1.2 Telomerase activity	3	
72	1.1.3 Epithelial to mesenchymal transition	6	
1.2	Research problems	7	
1.3	Research objective	8	
1.5	Research objective	0	
1.4	Scope of study	9	
1.5	Thesis structure	11	
CHA	PTER 2: LITERATURE REVIEW	12	
2.1	Introduction	12	
2.2	Breast Carcinoma	12	
	2.2.1 Age	13	
	2.2.2 Incidence and Epidemiology	13	
	2.2.3 Aetiology and Risk factors	14	
	1. Factors Related to Reproductive lifestyle	15	
	 Exogenous hormones 	15	
	3. Endogenous hormones	16	
		10	

	4. Nutrition	16
	5. Alcohol intake	17
	6. Body weight	17
	7. Physical activity	17
	8. Family History and Genetic predisposition	17
	9. Radiation exposure	18
	10. Benign proliferative lesion	19
2.2.4	Location	20
2.2.5	Microscopic type	20
2.2.6	Carcinoma in situ	20
	1. Morphological types of DCIS	21
	2. Grades of DCIS	21
	3. Evolution of DCIS	23
2.2.7	Lobular carcinoma insitu	23
	1. Prognosis and predictive factors of LCIS	24
2.2.8	Invasive ductal carcinoma	24
	1. Classic , invasive ductal carcinoma NOS	27
	2. Tubular carcinoma	27
	3. Invasive cribriform carcinoma	28
	4. Mucinous carcinoma	29
	5. Medullary carcinoma	30
	6. Invasive papillary carcinoma	30
	7. Invasive micropapillary carcinoma	31
	8. Apocrine carcinoma	32
	9. Neuroendocrinetumors	32
	10. Metaplastic carcinoma	33
	11. Lipid rich carcinoma	34
	12. Secretory carcinoma	34
	13. Oncocytic carcinoma	35
	14. Adenoid cystic carcinoma	35
	15. Acinic carcinoma	35
2.2.9	Invasive lobular carcinoma (ILC)	36
	1. classic type	37
	2. Pleomorphic lobular carcinoma	37
	3. Histiocytoid carcinoma	37
	4. signet ring carcinoma	37
	5. Tubulolobular carcinoma	38
2.2.10	Histological grade	38

	2.2.11 Spread and metastasis	39
	1. Direct invasion	39
	2. Lymph node metastasis	40
	3. Blood born metastasis	40
	2.2.12 Staging	41
	2.2.13 Molecular classification	41
	1. Luminal A	42
	2. Luminal B	42
	3. Her2 over expression	42
	4. Basal like	43
	2.2.14 Prognostic factors of breast cancer	44
	i. Tumor size	45
	ii. Lymph node status	45
	iii. Histological type	45
	iv. Histological grade	45
	v. Lymphovascular permeation	46
	vi. Patient age	46
	vii. DCIS status and invasiveness status	46
	viii. Tumor necrosis	47
	ix. Inflammatory cell infiltrates	47
	x. Steroid hormone receptors	47
	xi. The ERBB2 / HER2 oncogene	47
	xii. skin invasion UNIVERSITI MALAYSIA SABAH	48
	xiii. E-cadherin status	48
	xiv. Vimentin staining	48
	xv. Telomerase activity	48
2.3	Cancer Stem cells (CSC)	48
	2.3.1 Cancer stem cell theory	48
	2.3.2 Breast cancer stem cells	50
	2.3.3 Surface marker of breast CSC	51
	2.3.4 Role of CSC in metastasis	53
	2.3.5 Apoptosis and CSC survival2.3.6 Self-renewal pathways in breast CSC	55 56
	2.3.7 Breast CSC and tumor suppressor	58
	2.3.8 Future CSC targeting therapies	58
2.4	Telomerase activity	59
	2.4.1 Telomerase and breast cancer	62

2.5	Epithe	lial mesenchymal transition (EMT)	64
	2.5.1	EMT and cancer stem cell	65
2.6	Ancilla	ry technique	67
	2.6.1	Immunohistochemistry (IHC)	67
	2.6.2	Immunofluorescence (IF)	69
	2.6.3	Flow cytometry (FC)	71
CHAI	PTER 3:	MATERALIS AND METHODS	73
3.1	Patier	nt selection	73
	3.1.1		73
	3.1.2	Exclusion criteria	73
	3.1.3		73
3.2	Mater	ials required	74
	3.2.1	primary antibodies	74
		1. CD44	75
		2. CD24	75
		3. Telomerase	75
		4. Vimentin	76
		5. E-cadherin	76
	3.2.1	Detection system	77
		i. Dako real envision detection system	77
		ii. EnVision G 2 Doublestain System	78
		iii. Double Immunofluorescence detection system	79
		iv. Flow cytometric detection system	79
	3.2.3	Reagent and chemical	80
		a. Buffers	80
b. C	rganic s	olvent	80
		c. Counter stains	80
		d. water	80
		e. pepsin	80
	3.2.4	AEC Substrate chromogen	80
	3.2.5	Mounting media and glasswares	81
3		a. Mounting media	81
		b. Glassware	81
	3.2.6	Equipments	81
	3.2.7	Storage and handling	81
3.3	Metho	odology	81
	3.3.1	Collection of clinicopathological data	81
		a. Relevant clinical data collection	81

		b. Relevant initial histological finding	82
	3.3.2	Immunophenotyping technique	82
		a. Optimizing a new antibodies	83
		b. Paraffin block selection	83
		c. Slide preparation and labelling	83
		d. Cutting paraffin block	84
		e. Antigens retrieval	84
		f. Single antigen staining protocol	86
		g. Positive and negative control	87
		h. Double antigens staining protocol	88
		i. DakoAutostainer instruments	89
	3.3.3	Immunofluorescence technique	85
	1.	Double staining	90
	3.3.4	Flow cytometry	91
3.4 Sc	oring an	d interpretation of staining	92
		a. CD44 staining	92
		b. CD24 staining	93
		c. CSC staining	95
		d. Telomerase	96
		e. Vimentin staining	97
		f. E-cadherin staining	97
		g. EMT staining	98
	3.4.1	Im <mark>munofluo</mark> rescence staining	100
2 5			102
3.5		tometric analysis	102
3.6	Statistic	al analysis	103
СНАР	TER 4:	RESULTS	104
4.1	Invasive	e breast cancer and classic prognostic factors	104
4.2	Cancer	stem cells prevalence	110
	4.2.1	Cancer stem cells in DCIS component	110
	4.2.1	Cancer stem cells in invasive component	113
		1. Association between CSC and tumor histological subtyping	114
		2. Association between CSC and independent variable with other clinicopathological breast cancer parameters	114
		3. Association between CSC and Hormonal receptors	117
	4.2.3	Cancer stem cells in Metastatic lesion	117
4.3	Result c	of Telomerase activity	119

	4.3.1	Telomerase activity in DCIS component	120
	4.3.2	Telomerase activity in invasive component	122
		 Association between telomerase activity and tumor histological subtyping 	122
		 Association between telomerase activity and independent variable with other clinicopathological breast cancer parameters 	123
	4.3.3	3. Association between telomerase and Hormonal receptors Telomerase activity in Metastatic lesion	126 126
4.4	Epitheli	al to mesenchymal Transition results	128
	4.4.1	EMT prevalence in ductal carcinoma in situ	129
	4.4.2	EMT prevalence in invasive lesion	131
		a. Association between EMT and tumor histological subtyping	132
		b. Association between CSC and independent variable with other clinicopathological breast cancer parameters	134
		c. Association between EMT expression and tumor subtype according to hormonal receptors and Her2 status	137
	4.4.3	EMT in Metastatic lesion	137
4.5	Correla	tion between CSC and telomerase activity	139
4.6	Correla	ition between CSC and EMT	139
4.7	Correla	tion between telomerase activity and EMT	140
4.8	Immur	oflourescence staining results	140
4.9	Flow cy	/tometric analysis results	141
CHAP	PTER 5:	DISCUSSION	147
5.1	Cancer	stem cells	147
5.2	Telome	erase activity	150
5.3	Epitheli	al to mesenchymal transition	152
5.4	Correlat	tion between CSC and EMT	155
5.5	Correla	tion between CSC and telomerase activity	155
5.6	Correlat	ion between telomerase and EMT	155

5.7	Flow cytometric study	155
СНАР	TER 6: CONCLUSION AND RECOMMENDATION	157
6.1	Cancer stem cells	157
6.2	Telomerase activity	158
6.3	Epithelial to mesenchymal transition	159
6.4	Future study and recommendations	160
СНАР	TER 7: LIMITATION	161
7.1	IHC double staining limitation	161
7.2	IF double staining limitation	162
7.3	Flow cytometry limitation	162
REFE	RENCES	164
APPE	NDIX UNIVERSITI MALAYSIA SABAH	180

LIST OF TABLES

Table 2.1:	Minimal criteria for low grade DCIS	22
Table 2.2:	WHO breast cancer classification 2003/2012	25
Table 2.3:	Mucin producing breast carcinoma	29
Table 2.4:	Classification of metaplastic carcinoma	33
Table 2.5:	Immunohistochemical profile for the molecular subtypes of breast cancer	44
Table 2.6:	CSC phenotype population in various malignancies	50
Table 3.1:	Primary antibodies used in the study	74
Table 4.1:	Histological subtype vs classical prognostic and risk factors	104
Table 4.2:	Cla <mark>ssification of breast cancer according to hormonal and Her2status</mark>	108
Table 4.3:	Lymph node metastasis vs. primary tumor histological subtype	108
Table 4.4:	DCIS classification vs. histological subtype of invasive component	109
Table 4.5:	CSC in DCIS according to its grade	111
Table 4.6:	CSC prevalence in invasive lesion vs DCIS component	112
Table 4.7:	CSC proportion in DCIS vs invasive component	112
Table 4.8:	CSC proportion in each histological subtype	114
Table 4.9:	Association between CSC expression and classic breast cancer prognostic factors, hormonal receptors and histological subtype	115
Table 4.10:	CSC prevalence vs hormonal receptor status	117
Table 4.11:	Prevalence of CSC in primary tumor and metastatic lesion	118

Ţable 4.12:	Proportion of CSC in primary tumorvs metastatic lesion	119
Table 4.13:	Telomerase activity prevalence in DCIS component	121
Table 4.14:	Telomerase activity in primary IDC vs DCIS	121
Table 4.15:	Telomerase proportion in invasive lesion vs DCIS component	122
Table 4.16:	Telomerase activity in different histological subtype	123
Table 4.17:	Association between Telomerase activity and classical prognostic breast cancer factors	124
Table 4.18:	Telomerase activity vs hormonal receptor status	126
Table 4.19:	Telomerase activity in primary tumor and metastatic lesion	127
Table 4.20:	Telomerase proportion in primary tumor and metastatic lesion	127
Table 4.21:	EMT prevalence in DCIS component in relation to its grade	129
Table 4.22:	EMT expression in DCIS vs primary IDC	130
Table 4.23:	EMT proportion in invasive lesion vs DCIS component	131
Table 4.24:	Histological subtype VS EMT	132
Table 4.25:	Histological subtype VS vimentin	133
Table 4.26:	EMT expression vsVimentin expression	134
Table 4.27:	Proportion of cell expressed EMT vsvimentin	134
Table 4.28:	Association between EMT expression and classical prognostic breast cancer factors	135
Table 4.29:	EMT expression vs hormonal receptor status	137
Table 4.30:	Incidence of EMT in primary tumorvs metastatic lesion	138
Table 4.31:	Proportion of tumor cell exhibiting EMT in primary ICD and metastatic lymph node lesion	138
Table 4.32:	Correlation between CSC and Telomerase	139
Table 4.33:	Correlation between CSC and EMT	139

- Table 4.34:
 Correlation between EMTand Telomerase
- Table 4.35:percentage of CSC detected by IHC Vs percentage of CSC 141highlighted by IF
- Table 4.36:percentage of CSC detected by IHC Vs percentage of CSC 143
detected by flow cytometry

LIST OF FIGURES

		Page
Figure 1.1:	CSC, Telomerase and EMT interaction	07
Figure 2.1:	Interaction of breast cancer risk factors	19
Figure 2.2:	Nottingham/ Bloom-Richardson Grading system	41
Figure 3.1:	Two PT Modules Routinely Used in Our Laboratory	84
Figure 3.2:	Computerized slide label printer	85
Figure 3.3:	IHC protocol principles	87
Figure 3.4:	DakoAutostainer	90
Figure 3.5:	CD44 positive ductal cells (membranous brown staining)	93
Figure 3.6:	CD24 positive ductal cells (cytoplasmic brown staining)	94
Figure 3.7:	CSC double staining, membranous circumferential permanent staining of CD44, with negative or low brown staining of cell membrane and cytoplasm of CD24	
Figure 3.8:	Telomerase positive ductal cells (nuclear brown staining)	96
Figure 3.9:	Vimentin positive ductal cells (cytoplasmic brown staining)	97
Figure 3.10:	E-cadherin positive ductal cells (membranous brown staining	g) 98
Figure 3.11:	EMT, IHC double staining	99
Figure 3.12:	CD44 green IF staining of cell membrane	100
Figure 3.13:	CD24 orange IF staining of the cytoplasim	101
Figure 3.14:	CSC double IF staining	102
Figure 4.1:	CD44+/CD2-/ ^{low} cell inbetween CD44+/CD2+ cell	110
Figure 4.2:	CSC (CD44+/CD24-/ ^{low}) mainly in the DCIS component	113
Figure 4.3:	Telomerase expression, brown nuclear staining	120

Figure 4.4:	EMT phenotype, brown cytoplasmicvimentin positive and loss of red membranous E-cadherin	128
Figure 4.5:	EMT tumor cell in DCIS component	130
Figure 4.6:	EMT tumor cells at the periphery of invasive component	132
Figure 4.7:	CSC double IF staining	141
Figure 4.8:	Flow cytometric analysis CD44	144
Figure 4.9:	Flow cytometric analysis CD24	145
Figure 4.9:	identification of CD44+cd24-/ ^{low} subpopulation in eight samples of breast cancer by flow cytometry.	146

LIST OF ABBREVIATION

AACR	American Association for Cancer Research
AEC	3-amino-9-ethyl carbazole
AJCC	American joint committee on cancer
ЛМСА	aminomethylcoumarin acetate
BSA	Bovine serum albumin
CSC	Cancer stem cell
DAB	3,3'-diaminobenzidine
DAPI	diamidino-2-phenylindole
DCIS	Ductal carcinoma insitu
DFS	Disease-free survival
DPX	Distrene 80, polystyrene, and Xylene
DW	Distal water
EDTA	Tris-ethylenediamine tetra acetic acid
ER	Estrogen receptor
EMT	Epithelial mesenchymal transition
FBS	Fetal bovine serum
FFPES	formalin-fixed paraffin-embedded tissue sections
FITC	FlouresceinIsoThioCyanate
FISH	FlourescentinsituHybridyzation
FC	Flow cytometry
HMEC	Human mammary epithelial cell
нмм	high molecular weight
HIER	heat-induced epitope retrieval
HRP	Horse-radish peroxidase
hTERT	human telomerase reverse transcriptase
hTR	human telomerase RNA
IARC	International Agency for Research on Cancer
IDC	Invasive Ductal carcinoma
IHC	Immunohistochemistry
IF	Immunoflourescent
IDC	Invasive ductal carcinoma

ILC	Invasive Lobular carcinoma
LCIS	Lobular carcinoma insitu
LN	Lobular Neoplasia
NET	NeuroendocrineTumors
NOS	not-otherwise-specified
NOD/SCID	non-obese diabetic mice with severe combined
immur	nodeficiency disease
MET	Mesenchymal to epithelial transition
MC	Medullary Carcinoma
OS	overall survival
PAS	periodic acid-Schiff
PBS	phosphate-buffered saline
PR	Progestrone receptor
RT-PCR	Real time-polymerase chain reaction
SCS	single cell suspension
TW	Tap water
TBS	Tris-Buffered Saline
TDLU	Terminal Duct Lobular Unit
TRAP	Telemetric Repeat Amplification Protocol
UICC	International Union Against Cancer
WHO	World health organization

LIST OF APPENDIX

Page

Appendix

Breast tumor staging

173

CHAPTER 1

INTRODUCTION

1.1 Research background

Breast carcinoma is the most common malignant tumor and the leading cause of carcinoma death in women, with more than 1 000 000 cases occurring worldwide annually. The Malaysian National Cancer Registry 2006 reported that there were 3,525 female breast cancer cases in Malaysia and this made it the most commonly diagnosed cancer in women (29.9 % of all new cancers) (Malaysian MOH and Academy of Medicine Malaysia, 2010).

Human breast cancer is a truly complex disease with a large inter-tumoral and intra-tumoral heterogeneity resulting in highly variable clinical behavior and response to therapy. The maintenance of the heterogeneity of cells within a tumor is not fully understood. Possibly, every cell within a tumor may have a capacity to proliferate and form new tumors, although the likelihood for each cell is very low. Alternatively, only a small subset of cells with distinct characteristics has the capacity to maintain tumor growth (Gabriella, H *et al.*, 2008), called cancer stem cells (CSC), which are capable of both tumor initiation and sustaining tumor growth.

Three novel concepts have emerged in breast cancer biology: the role of cancer stem cells in tumor initiation, and the involvement of an epithelial to mesenchymal transition (EMT) in the metastatic dissemination of cancer cells, along with the Telomerase role in keeping the CSC immortal, and avoiding senescence. The clinicopathological significance of these three novel concepts in primary and metastatic breast carcinoma, and correlation among each other are the leading purpose of this research.

1.1.1 Cancer stem cell

The first novel issue is the CSC concept, these cells possess distinct immunological markers, they have CD44+/CD24-/^{low} phenotype, they has been demonstrated by Al-Hajj *et al.* (2003) to have tumor-initiating properties in breast cancer. This tumorigenic phenotype has been associated with stem cell-like characteristics (Ponti, D *et al.*, 2005), with enhanced invasive properties (Sheridan *et al.*, 2006), and radiation resistance (Phillips *et al.*, 2006).

The concept of cancer stem cells has led to new hypotheses about tumor growth. Cancer stem cells share similar properties with normal stem cells in terms of their capacity for self-renewal. They can self renew, cause tumorigenesis, recurrence, and metastasis. Moreover, they can divide asymmetrically to generate differentiated cancer cells within the population of cancer cells, cancer stem cells are the ones that can form new tumors, and their asymmetric division contributes to the heterogeneity (Wendy *et al.*, 2008).

The CSC hypothesis posit that this minority of cells population can fuel and drive tumor growth and remain in patients after conventional chemotherapy which eradicate the rapidly growing non tumorigenic cell which constitute the major bulk of the tumor, then it is unlikely to be curative and relapses would be expected .The hypothesis predicts that effective tumor eradication will require obtaining agents that can target cancer stem cells while sparing normal stem cells. This explains why the cancer stem cell hypothesis is at the center of a rapidly evolving field that may play a pivotal role in changing how basic cancer researchers, clinical investigators, physicians, and cancer patients view cancer (Michael *et al.*, 2006).

It is widely accepted that CSC originated from pluri-potent normal stem cell rather than from differentiated progenitor cells. Two basic arguments underlie the hypothesis that cancer stem cells originate from normal tissue stem cells. First, as tumor development is believed to result from the sequential and progressive accumulation of genetic abnormalities, adult stem cells appear to be ideal initial targets for malignant transformation due to their long life spans. Second, CSCs