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ABSTRACT 

The classification of users' sentiment from social media data can be used to determine 

public opinion on certain issues. The presence of sarcasm in text may hamper the 

performance of sentiment analysis. This thesis presents research work conducted on 

sarcasm detection and classification to support sentiment analysis. A Malay social media 

dataset, specifically focused on economic and political domain, was acquired from public 

comments posted on Facebook. The proposed work consists of two phases: (i) sarcasm 

detection and (ii) sentiment analysis with sarcasm detection and classification. In the 

first phase, the development of a mechanism for detecting sarcasm on bilingual data 

was explored. To achieve this, a feature extraction process was proposed to identify 

sarcasm features. Five feature categories of that can be extracted using natural 

language processing were considered: lexical, pragmatic, prosodic, syntactic and 

idiosyncratic. A non-linear Support Vector Machines classifier was employed to measure 

the performance of the features using the adopted evaluation metric, average F

measure. The best-performing features were then used as input for the second phase. 

In the second phase, a framework for sentiment analysis that considers sarcasm 

detection and classification was proposed. The framework consists of six modules, 

namely preprocessing, feature extraction, feature selection, sentiment classification, 

sarcasm detection and classification, and actual sentiment classification. Results 

obtained from the evaluation conducted demonstrate that the proposed features and 

framework are able to improve the performance of sentiment analysis. The best 

performance for sarcasm detection was found using a combination of syntactic, 

pragmatic, and prosodic features with an average F-measure score of 0.852. The best 

result of sentiment classification using the proposed framework, considering both 

sarcasm detection and classification, recorded an average F-measure score of 0. 905, 

outperforming the baseline sentiment classification score of 0.839. 
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ABSTRAK 

PENGESANAN DAN KLASIFIKASI SARKASME UNTUK MENYOKONG 

ANALISIS SENTIMEN: SATU KAJIAN DALAM MEDIA SOSIAL MELA YU 

Klasifikasi sentimen oleh pengguna-pengguna daripada data media sosia/ boleh 

digunakan untuk mendalami pendapat awam mengenai isu-isu tertentu. Kehadiran 

sarkasme dalam teks mungkin menjejaskan prestasi analisis sentimen. Tesis ini 

membentangkan ketja penyelidikan yang dfja/ankan ke atas pengesanan dan klasifikasi 

sarkasme untuk menyokong analisis sentimen. Satu set data media sosial Melayu, 

khususnya tertumpu pada domain ekonomi dan politik, telah diperolehi dari komen 

awam yang diposkan di ''Facebook'� Ketja yang dicadangkan terdiri daripada dua fasa: 

(i) pengesanan sarkasme dan (ii) analisis sentiment dengan pengesanan dan klasifikasi

sarkasme. Dalam fasa pertama, pembangunan satu mekanisme untuk mengesan 

sarkasme dari data dwibahasa telah diterokai. Untuk mencapai matlamat ini, satu proses 

pengekstrakan fitur telah dicadangkan bagi mengenalpasti fitur-fitur sarkasme. Lima 

kategori fitur yang boleh diekstrak menggunakan pemprosesan bahasa tabii telah 

dipertimbangkan iaitu leksikal, pragmatik, prosodi, sintaksis dan idiosinkratik. Satu 

pengelas bukan linear ''Support Vector Machines" telah diguna pakai untuk mengukur 

prestasi fitur-fitur tersebut dengan mengguna pakai penilaian metrik, purata ''F

measure'� Fitur-fitur yang berprestasi terbaik telah dijadikan sebagai input untuk fasa 

kedua. Dalam fasa kedua, satu rangka ketja untuk analisis sentimen yang mengambilkira 

pengesanan dan klasifikasi sarkasme telah dicadangkan. Rangka kerja ini terdiri 

daripada enam modul, iaitu pra pemprosesan, pengekstrakan fitur, pemilihan fitur, 

k/asifikasi sentimen, pengesanan dan k/asifikasi sarkasme, dan klasifikasi sentimen 

sebenar. Keputusan yang diperolehi dari penilaian yang dijalankan menunjukkan 

bahawa fitur-fitur dan rangka ketja yang dicadangkan dapat meningkatkan prestasi 

analisis sentimen. Fitur-fitur yang berprestasi terbaik untuk pengesanan sarkasme 

ada/ah dari gabungan fitur sintaksis, pragmatik dan prosodi dengan skor purata ''F

measure" berukuran 0.852. Keputusan terbaik bagi k/asifikasi sentimen menggunakan 

rangka ketja yang dicadangkan, dengan mempertimbangkan pengesanan dan klasifikasi 

sarkasme, merekodkan skor purata ''F-measure" berukuran 0.905, mengatasi skor garis 

asas k/asifikasi sentimen berukuran 0.839. 
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1.1 Overview 

CHAPTER 1 

INTRODUCTION 

Sentiment Analysis (SA) classifies user generated content such as opinion, believe, views and 

emotion in written text towards their entities and attributes (B. Liu, 2015). Generally, SA 

focuses on opinions in generated content whether it expresses positive or negative 

sentiments. Focus can be categorized into sentiment orientation (positive, negative or 

neutral), sentiment intensity ( different level of strength), and sentiment rating ( expression 

degree such as 1-5). Different levels of analysis at the document, aspect and sentence levels 

have been investigated as found in the literature. The latter is the focus of the work presented 

in this thesis. Sentence level sentiment analysis can be defined determining whether an 

opinionated sentence expresses a positive or negative opinion (Indurkhya & Damerau, 2010; 

B. Liu, 2015).

The rise of the social networking platform and web technologies has encouraged users 

to create and share content in the form of opinion, believe, views and emotion. This user

generated content is increasing vast on social networking media such as Facebook, Twitter, 

Google+ and forum discussion. Research in sentiment analysis has been extended to learn 

and gain knowledge and benefits from user generated content. It has been used extensively 

in review summarization, decision making, ranking and recommender systems, and been 

applied in industry, organization, government and business (Farzindar & Inkpen, 2015). Social 

media sentiment analysis applications include predicting voting intention for political benefit, 

security defense application to identify national threats, and media monitoring for business 

intelligence. 

Social media SA's primary issues include classification accuracy, cross language SA, 

informal medium type and ambiguity. The classification accuracy issue concerns a high 



percentage of sentiments incorrectly classified as neutral (Madhoushi, Hamdan, & Zainudin, 

2015). Cross language SA issue includes lack of resource for applying SA in multiple language 

or target language in non-English that resulting in weak prediction performance (Dashtipour 

et al., 2016; Korayem, Aljadda, & Crandall, 2016). Informal medium issues include incorrect 

words and limitation of length for providing opinion (Giachanou & Crestani, 2016). Ambiguity 

concerns figurative language such as sarcasm to convey the actual meaning sentiment in 

delivering opinion (Balahur & Jacquet, 2015; Ravi & Ravi, 2015). The last factor has been 

identified as the most significance challenge in social media SA (Farzindar & Inkpen, 2015; 

Joshi, Bhattacharyya, & Carman, 2016; B. Liu, 2015; Serrano-Guerrero, Olivas, Romero, & 

Herrera-Viedma, 2015; Weitzel, Prati, & Aguiar, 2016). 

In communication, sarcasm is used to express opinion that is different from the initially 

apparent meaning (Ghosh, Guo, & Muresan, 2015). Therefore, sarcasm existence in sentences 

tend to confuse the SA system and misclassify the sentiment. In an automatic system, 

detecting sarcasm from genuine subjectivity opinion, an opinion that contains personal 

orientation or sentiment towards an entity, is tough. Sarcasm is difficult to resolve as words 

used in a comment are usually associated to the opposite polarities. Failure to detect sarcasm 

in the sentences will affect the actual sentiment prediction and misclassification (Farzindar & 

Inkpen, 2015). Example of sarcasm is "hmmm ... , soon the college fee will rise, good job", 

which could be classified as positive since the words used are usually presenting positive 

sentiment. However, it is obvious that the comment carries negative sentiment. 

This thesis addresses a number of issues raised due to sarcasm in SA and proposes 

several solutions to overcome those issues (see Section 1.2 and 1.3 for detail). In the 

literature, most work has focused on the detection of sarcasm, including identification of 

features to recognize sarcasm, techniques to improve detection and classification, and a 

background study related to linguistic and computational sarcasm. The work presented in this 

thesis address the sarcasm detection issue in bilingual social media texts, and subsequently 

employs sarcasm detection to support sentiment analysis. 

This introductory chapter has been organized as follows. Section 1.2 describes the 

research motivation and Section 1.3 elaborates the research objectives. Section 1.4 briefs the 

scope of the research and Section 1.5 describes the research methodology. Section 1.6 details 

the evaluation criteria for the research. Section 1. 7 presents research contributions and 

2 



Section 1.8 provides details of the published work as a result of this research. Section 1.9 

describes the organization of the thesis. 

1.2 Research Motivation 

Detecting sarcasm (and also SA) is made more complex when social media texts are written 

in more than one language (bilingual). Misspelled words, shortened word forms and stylistic 

text coupled with the use of dual language are commonplace, and it is not unusual to mix 

different languages. The crucial part is to extract the features that could better identify the 

sarcasm content. 

Previous works proposed the approach on sarcasm detection or sarcasm classification 

(Bharti, Babu, & Jena, 2015; Lunando & Purwarianti, 2013; Muresan, Gonzalez-Ibanez, Ghosh, 

& Wacholder, 2015) separately from SA (Medhat, Hassan, & Korashy, 2014; Medhat, Yousef, 

& Korashy, 2014). To the best knowledge of the author, no work has been done to adopt 

sarcasm detection and classification to support SA. The challenge is thus to identify 

mechanism of how this could be done. Therefore, the motivation of this research is to produce 

an approach for social media SA on bilingual text that considers sarcasm detection and 

classification to make sentiment prediction. It is conjectured that by considering sarcasm 

content, better SA performance could be produced. 

1.3 Research Objective 

Given the research motivation described in Section 1.2, the main research question for the 

work presented in this thesis is: "What is the appropriate approach to classify sentiment using 

sarcasm detection and classification for bilingual social media data?'� Two subsidiary questions 

raised from this research question are: 

1. "What are the features that can be extracted from social media containing bilingual

data that can better identify sarcasm features?"

2. ''How the sarcasm detection and classification can be employed into SA system?"

Based on the identified research questions, three research objectives were derived: 

1. To investigate and identify features for sarcasm detection on bilingual social media

data.
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2. To investigate and implement a framework for SA with sarcasm detection and sarcasm

classification to produce better sentiment classification's performance.

3. To evaluate the results of the proposed approaches in (1) and (2).

1.4 Research Scope 

The preliminary focus of this research is sarcasm on bilingual social media data. Malay social 

media data was chosen rather than English for showing high levels of bilingual comments in 

sentence form (Samsudin, Puteh, & Hamdan, 2011; Samsudin, Puteh, Hamdan, & Nazri, 

2013a). According to Dress, Kreuz, Link, and Caucci (2008), factors that influence sarcasm 

also vary according to geographical area, race and cultural; thus the study and result might 

be slightly different from the English or others. However, the approach, techniques and 

methodology could be useful for adoption and implementation. Sentence levels of sentiments 

are concentrated on for this foundation investigation, and only comments from discussions 

are considered. In depth topics of discussion such as topic-based SA or contextual features 

such as commentator profiles are beyond the scope of this research. 

With respect to classification process, a supervised machine learning approach is used 

in this work. Supervised machine learning has been shown to be more effective in sentiment 

classification than a lexicon-based approach (Blinov, Klekovkina, Kotelnikov, & Pestov, 2013; 

Hailong, Wenyan, & Bo, 2014; Yusof, Mohamed, & Abdul-Rahman, 2015). The classification 

algorithm examined is Support Vector Machines (SVM) first proposed by Boser, Guyon, and 

Vapnik (1992), due to its superiority over other classification algorithms in SA and sarcasm 

detection tasks (Bouazizi & Ohtsuki, 2015; Chandrakala & Sindhu, 2012; Ghosh et al., 2015; 

Hailong et al., 2014; Medhat, Hassan,, et al., 2014; Muresan et al, 2015; Yusof et al, 2015). 

1.5 Research Methodology 

To achieve the research objectives of the work in this thesis, a methodology of two phases is 

set up, with which an additional preliminary phase is added. The overall methodology is 

illustrated in Figure 1.1. The preliminary phase is data acquisition, filtering and annotation 

followed by data preprocessing. Tokenization, spellchecking and stopwords removal is 

conducted in the preprocessing stage. Details of the preliminary phase is presented in Chapter 

3. 
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