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ABSTRACT 

The C02 emission has encouraged the research on C02 mitigation by microalgae. 
However, low carbonation and high dissolved oxygen (DO) of microalgal media in 
bioreactor were identified as major drawbacks of this technique, besides low C02 

uptake by microalgae. Thus, this study aimed to increase the carbonation by 
integrating bioreactor with two types of membrane so that C02 uptake by 
microalgae can be increased during the C02 mitigation process. This study used 
indirect membrane-based bubbling as an alternative to increase carbonation of 
microalgae, while the selected microalga was evaluated in term of its suitability for 
C02 mitigation. It was found that the selected microalgae, which is a local isolate 
Ch/orella sp. is suitable for C02 mitigation and as biomass producer. This microalga 
is also capable of performing a carbon concentrating mechanism (CCM), which can 
be manipulated to increase the C02 utilisation. The carbonation by using membrane 
on the other hand was successfully evaluated in term of fouling, bubbling, and 
dissolved C02 (DC02). The effect of membrane to remove the dissolved 02 (DO) 
was evaluated in term of DO efficiency and C02 uptake by microalgae. It was found 
that the membrane integration resulted in DC02 up to 82%. This is 4 times higher 
than typical direct bubbling, which only reached 29%. The result of carbonation 
efficiency was supported by the correlation of C02 inlet and accumulated C02 

concentration with DC02. Based on the developed correlation, overall mass transfer 
coefficient of C02 in the membrane was 4.35 x 10-2 cm2s-1

, making the selected 
membrane and technique suitable for C02 mitigation by microalgae. However, large 
bubbles were identified as the main reason for low DC02 . This causes low C02 
uptake by microalgae. Thus, the decrease in bubble size decreased C02 escape into 
the bioreactor headspace. The most suitable bubble size for C02 mitigation is in the 
range of 1 mm to 5 mm. The use of membrane for deoxygenation resulted in up to 
43% of DO removal. However, the membrane integration removed the DC02 up to 
11 % compared to non-integrated. The membrane also resulted in microalgae 
accumulation of 3% of the total microalgae concentration when pumped through 
the membrane. It may be concluded that overall C02 uptake by microalgae can be 
increased up to 10% through the aid of a membrane. The experimental results 
show that membrane integration aiding the C02 utilisation by microalgae is possible 
by controlling both operating conditions and C02 supply concentration. 
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ABSTRAK 

PENGGUNAAN KARBON DIOKSIDA OLEH PROSES YANG DIINTEGRASI 

DENGAN PENANAMAN MIKROALGA DI DALAM MEMBRAN 

FOTOBIOREAKTOR 

Pelepasan CO2 telah menggalakkan penyelidikan mengenai penggunaan CO2 oleh 
mikroa/ga. Waiau bagaimanapun, pengkarbonan yang rendah atau terlalu berasid 
dan tinggi kandungan 02 di dalam bioreaktor telah dikena/pasti sebagai kelemahan 
utama teknik ini se/ain pengambilan CO2 yang rendah o/eh mikroalga. O/eh itu, 
ketja ini bertujuan untuk meningkatkan kadar pengambilan CO2 o/eh mikroalga 
dengan menggunakan dua jenis membran yang diintegrasi dengan bioreaktor. 
Ketja ini telah menggunakan teknik pengelembungan secara tidak langsung 
berdasarkan membran sebagai altematif meningkatkan CO2 mitigasi ole mikroa/ga. 
Hasil penyelidikan mendapati bahawa mikrolaga tempatan sesuai untuk 
pengurangan CO2 dan sebagai pengeluar biojisim. Mikroalga ini juga dikenal pasti 
dapat me/aksanakan mekanisma pengunnan carbon (CCM) untuk meningkatkan 
pengunaan CO2 secara tidak langsung. Kajian ini telah mendapati bahawa integrasi 
membran bo/eh mencapai sehingga 82% DCO2 iaitu 4 kali lebih tinggi berbanding 
dengan yang tldak diintegrasi yang hanya mencapai sehingga 29%. Pengkarbonan 
bergantung kepada penyebaran CO2 dan boleh dinilai menggunakan model. Model 
tersebut bertujuan untuk meramal hubungan diantara CO2 dan DCO2 dengan CO2 

yang terkumpul. Model yang telah dicipta tersebut telah disahkan sesuai untuk 
mengkaji pemindahan jisim dari bahagian gas ke bahagian cecair

✓ 
dengen ralat 

kurang daripada 20%. Kedua-dua model dan keputusan ujikaji menunjukkan 
bahawa pengumpulan terendah CO2 di dalam membran bo/eh dicapai apabila 
beroperasi pada nisbah gas kepada cecair diantara 0.6:1 dan 6:01. Keseluruhan 
pemindahan Jisim CO2 di dalam membran adalah 4.35 x 1 (J2 cm2 /s. Nilai ini boleh 
dianggap sesuai untuk pemindahan CO2 di dalam membran. Keputusan ini 
menunjukan integrasi membran ada/ah sesuai untuk meningkatkan penyerapan CO2 

dida/am bioreaktor. Kajian ini juga mendapati bahawa pembentukan gelembung 
gas yang berpunca daripada ketidakseimbangan kadar aliran masuk bendalir atau 
cecair dan gas boleh menyebabkan DCO2 rendah dan meningkatkan nisbah di 
antara ruang /egar dan DCO2. Ini bo/eh menyebabkan pengambilan CO2 yang 
rendah of eh mikraalga. Penurunan saiz gelembung dapat mengurangkan nisbah 
ruang /egar dan DCO2. Gelembung yang paling sesuai untuk penyerapan CO2 

adalah dalam lingkungan 1 mm sehingga 5 mm. Integrasi a/eh membran kedua 
telah betjaya mengurangkan pengumpulan 02 da/am bioreaktar sehingga 43% 
tetapi menyebabkan pengurangan DCO2 sehingga 11%. Integrasi membran juga 
menyebabkan pengurangan biajisim mikraalga sebanyak 3%. Pengambilan CO2 

secara keseluruhan a/eh mikroalga boleh meningkat sehingga 10% dengan bantuan 
integrasi membran kedua. Kajian ini juga mendapati bahawa keupayaan Chlorella 
sp. untuk me/aksanakan CCM meningkatkan penyerapan CO2. Keputusan ujikaji 
menunjukkan bahawa integrasi membran dapat meningkatkan penyerapan CO2 

oleh mikroa/ga. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Carbon dioxide emissions are the second largest contributor to climate change, 

making up 30% of the greenhouse gases (GHG). The GHG causes global warming 

and threaten ecological systems. Antarctic and arctic sea ice also show declines 

caused by increasing global temperature (Stroeve et al., 2007; Swingedouw et al., 

2008). Sea level, on the other hand, rose about 17 cm over the last century; this 

forced some communities to relocate, including those in Fiji, Papua New Guinea, 

Panama and Vanuatu (Mattson, 2010). The global warming also expected to 

increase the sea level in Malaysia about 13 cm over the next 100 years. 

The effect of global warming shows that CO2 emissions are likely to harm 

the environment than to provide benefits. For this concern, many approaches to 

overcome the issue of CO2 emissions have been proposed, which mostly involve 

high and expensive technology such as carbon capture and storage technology 

(CCS) and conventional methods. Both CCS and conventional methods are used to 

prevent the release of CO2 into the atmosphere. However, safety, capital cost and 

storage capacity are the major issues that hinders the successful of this technique. 

One concern often raised because of the CCS application was leaking of the 

CO2 reservoir. The leaking can cause sudden increased acidity in the ocean that is 

lethal to marine life. Therefore, low cost techniques, which applies a biological 

approach for CO2 sequestration is needed. One of these approaches is by using 

microalgae for CO2 mitigation and at the same time producing biomass for low COr 

emitting energy source. The microalgae research also desires to be used for CO2 

sequestration in the future. 

Microalgae are microscopic unicellular organisms with cell diameter range 

from 1 µm to 50 µm. Microalgae can be found naturally in freshwater saline lakes, 



aquatic environment and marine environment. Microalgae have an ability to 

conduct photosynthesis 40 times higher compared to terrestrial plant (based on 

0.09d-1 to 0.Sad-1 relative growth rate estimation of terrestrial plant (Garnier, 1992; 

Hunt and Cornelissen, 1997) compared with o.11d-1 to 0.Ssd-1 specific growth rate 

estimation of microalgae (Aleya et al. 2011; Suali et al., 2012). Thus, microalgae 

have a high potential as a biological approach for CO2 mitigation. However, CO2 

mitigation by microalgae is a species dependent as reported by researchers (Zhang 

et al., 2011; Doucha et al., 2005; Yoo et al., 2010). Thus, selection of microalga for 

the purpose of CO2 mitigation is a very crucial step. 

In this study, a local isolate microalga species known as Ch/ore/la sp. was 

selected as a test subject for CO2 mitigation. The selection was based on the 

growth and characteristics of this microalga, which primarily was investigated 

suitable for CO2 mitigation and biomass production, which has potential to be 

processed into low CO2 emitted energy source such as biodiesel. The investigation 

on this microalga will give benefit to the local community as it was never 

mentioned in any publication. 

The use of microalgae for CO2 mitigation is a step-by-step process. This 

includes transferring CO2 into microalgal culture through the process of 

carbonation, followed by CO2 fixation by the microalgae. CO2 mitigation must be 

carried out in a closed cultivation system to prevent the release of unutilised CO2 

into the atmosphere. The closed cultivation system typically used is known as a 

photobioreactor (PBR) or bioreactor (BR). 

In this study, the term PBR has been used to define a system that consists 

of mini bioreactor which was made up of tubular acrylic pipes. The bioreactor unit 

is equipped with white cool fluorescent lamps as a light source for the 

photosynthesis, stirrer, and aeration system. The other unit making up the PBR 

system include gas exchange unit and a CO2 supply unit. The gas exchange unit 

consists of two types of hydrophobic membranes. Carbon dioxide uptake does not 

occur inside the membrane, but rather inside the tubular bioreactor. 

2 



The main purpose for the integration of a membrane was to address the 

issue of direct bubbling to the bioreactor. Membrane technology was applied due to 

its flexibility and selective properties which only allows certain type of substance or 

compound to pass through the membrane wall. In addition, membrane is known as 

a device that is versatile and can be integrated into many devices and processes. 

The integration of PBR with membrane technology for the purpose of gas 

transfer was not well researched. To date, literature has reported that only 

hydrophobic membrane can be used to aid the gas transfers into the bioreactor 

(Cheng et al., 2006; Fan et al., 2007). Many others issue such as fouling by 

microalgae, bubbling and generated 02 were reported caused the low CO2 uptake. 

These issues discussed in the following subsections. 

1.2 Problem statement 

1.2.1 Issue of microalgae selection for C02 mitigation 

Each microalga species was reported to have various capabilities to mitigate CO2. 

According to Sydney et al. (2001), Botryococcus braunii is tolerable to CO2 

concentration up to 5% of overall air composition. Others species include 

Scendemus sp., Spirulina sp. and Dunaliella sp. were reported tolerant to CO2 

concentration up to 10% of overall air, which were used to carbonise microalgae 

media for the purpose of CO2 utilisation and biomass production (Sydney et al., 

2001; Yoo et al., 2010). The tolerant concentration of CO2 is important to prevent 

CO2 excess, which is lethal to microalgae. Thus, any microalgae species for CO2 

mitigation must be analysed for both CO2 tolerant and growth rate before further 

use in CO2 mitigation. Besides the issue of CO2 tolerance, other microalgae issues in 

terms of CO2 mitigation in a membrane bioreactor include fouling and accumulation 

of microalgae, as detailed in the following subsection. 

1.2.2 Fouling and accumulation of microalgae in membrane 

The typical process of CO2 mitigation by microalgae involves carbonation and 

deoxygenation. During carbonation, the microalgal media, which composed of a 

medium and microalgae cell crosses over the hollow fibre as shown in Figure 1.1. 

The CO2 first contacts the microalgae cells in media that crossed over the hollow 
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