CARBON DIOXIDE UTILISATION BY INTEGRATED MICROALGAE CULTIVATION PROCESS IN MEMBRANE PHOTOBIOREACTOR

EMMA SUALI

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED FOR THE FULFILMENT OF THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING UNIVERSITI MALAYSIA SABAH 2014

UNIVERSITI MALAYSIA SABAH

THESIS ACCESS DECLARATION FORM

TITLE: CARBON DIOXIDE UTILISATION BY INTEGRATED MICROALGAE CULTIVATION PROCESS IN MEMBRANE PHOTOBIOREACTOR

DEGREE: DOCTOR OF PHILOSOPHY

I **<u>EMMA SUALI</u>**, Academic Session <u>**2010-2014**</u>, acknowledged that Universiti Malaysia Sabah reserves the right as follows:

- 1. The thesis is the property of Universiti Malaysia Sabah
- 2. The library of Universiti Malaysia Sabah has the right to make copies for the purpose of education only.
- 3. The library has the right to make copies of the thesis for academic exchange.
- 4. I declare that this thesis is classified as:

(Contains confidential information under the Official Secret Act 1972)

(Contains restricted information as specifies by the organization where research was done)

- Conusuelle -

(Signature of Author)

Permanent address: Kiulu, 89257 Tamparuli, Kota Kinabalu, Sabah.

Date: 20 June 2014

Certified by: NURULAIN BINTI ISMAIL LIBRARIAN VERSITI MALAYSIA SABAH

(Signature of Librarian)

(PROF. IR. DR. ROSALAM SARBATLY) Supervisor

DECLARATION

I hereby declare that the material in this thesis is my own except for some quotations, excerpts, equations and references, which have been duly acknowledged.

07 March 2014

- Ennesadi-

Emma Suali PK20099074

CERTIFICATION

NAME	: EMMA SUALI
MATRIC NO.	: PK20099074
TITLE	: CARBON DIOXIDE UTILISATION BY INTEGRATED MICROALGAE CULTIVATION PROCESS IN MEMBRANE PHOTOBIOREACTOR
DEGREE	: DOCTOR OF PHILOSOPHY (CHEMICAL ENGINEERING)
VIVA DATE	: 07 MARCH 2014

DECLARED BY

UNIVERSITI MALAYSIA SABAH

1. SUPERVISOR Prof. Ir. Dr. Rosalam Sarbatly

Signature

2. CO-SUPERVISOR

Assoc. Prof. Dr. Sitti Raehanah Muhd. Shaleh

mense

ACKNOWLEDGEMENT

First and foremost, I give my praises and thanks to God for blessings throughout my study and in the preparation of this thesis.

I would like to express my gratitude to my supervisor, Prof. Ir. Dr. Rosalam Sarbatly, for his continuous guidance, patience and motivation throughout in completing this PhD study and research. He has supported me not only by providing a research assistantship, but also helping in terms of academic and emotional aspects through rough times. His knowledge about membranes has encouraged me to explore CO_2 mitigation using a membrane photobioreactor. I also would like to thank my co-supervisor, Assoc. Prof. Dr. Sitti Raehanah Muhd. Shaleh, for her comments and opinions in completing this thesis. I also want to thank the other staff at BMRI, especially Ms. Lusia Ransangan, for assisting me in microalgae related issue.

The lab assistants at Faculty of Engineering include Abdullah Tarikim, Raysius Modi, Razis Masteri and Freddy Disuk did an amazing job in assisting me to use laboratory apparatus, tools and equipment. Without their assistance, this study and research could not have been completed in time. I also would like to thank the staffs at ITBC especially Mohd. Farhan Bin Mohd. Johar for his guidance in using laboratory equipment. The staff at CRI and CGS centre has helped me a lot, especially in providing guidance about funds and scholarships. I would also like to thank MOSTI for the PGD scholarship.

I also would like to thank for the large number of journals and academic articles provided by librarians at UMS. My sincere thanks also go to lecturers including Prof. Dr. Awang Bono and staffs at Faculty of Engineering for their direct and indirect supports. This gratitude also extends to other individuals and groups outside UMS, especially Assoc. Prof. Dr. Jolius Gimbun for his support.

I am grateful to my fellow postgraduates and colleagues such as Chiam Chel Ken, Azrina Tahir, Farhana Abd. Lahin, Rahma Abdullah and Phang Hooi Kim. My deepest gratitude extends to my friends, especially Flora Wong Choi Yen. Their friendship and support has balanced my life toward positive attitude to my study. Last but not least, I thank to my parents Soulin Banting and Suali Sikir. I am also grateful for having such an understanding family members and for their continuous support.

Emma Suali 20 May 2014 ABSTRACT

The CO_2 emission has encouraged the research on CO_2 mitigation by microalgae. However, low carbonation and high dissolved oxygen (DO) of microalgal media in bioreactor were identified as major drawbacks of this technique, besides low CO2 uptake by microalgae. Thus, this study aimed to increase the carbonation by integrating bioreactor with two types of membrane so that CO₂ uptake by microalgae can be increased during the CO₂ mitigation process. This study used indirect membrane-based bubbling as an alternative to increase carbonation of microalgae, while the selected microalga was evaluated in term of its suitability for CO₂ mitigation. It was found that the selected microalgae, which is a local isolate Chlorella sp. is suitable for CO₂ mitigation and as biomass producer. This microalga is also capable of performing a carbon concentrating mechanism (CCM), which can be manipulated to increase the CO₂ utilisation. The carbonation by using membrane on the other hand was successfully evaluated in term of fouling, bubbling, and dissolved CO_2 (DCO₂). The effect of membrane to remove the dissolved O_2 (DO) was evaluated in term of DO efficiency and CO₂ uptake by microalgae. It was found that the membrane integration resulted in DCO₂ up to 82%. This is 4 times higher than typical direct bubbling, which only reached 29%. The result of carbonation efficiency was supported by the correlation of CO_2 inlet and accumulated CO_2 concentration with DCO₂. Based on the developed correlation, overall mass transfer coefficient of CO₂ in the membrane was $4.35 \times 10^{-2} \text{ cm}^2 \text{s}^{-1}$, making the selected membrane and technique suitable for CO₂ mitigation by microalgae. However, large bubbles were identified as the main reason for low DCO₂. This causes low CO₂ uptake by microalgae. Thus, the decrease in bubble size decreased CO₂ escape into the bioreactor headspace. The most suitable bubble size for CO₂ mitigation is in the range of 1 mm to 5 mm. The use of membrane for deoxygenation resulted in up to 43% of DO removal. However, the membrane integration removed the DCO₂ up to 11% compared to non-integrated. The membrane also resulted in microalgae accumulation of 3% of the total microalgae concentration when pumped through the membrane. It may be concluded that overall CO₂ uptake by microalgae can be increased up to 10% through the aid of a membrane. The experimental results show that membrane integration aiding the CO₂ utilisation by microalgae is possible by controlling both operating conditions and CO₂ supply concentration.

ABSTRAK

PENGGUNAAN KARBON DIOKSIDA OLEH PROSES YANG DIINTEGRASI DENGAN PENANAMAN MIKROALGA DI DALAM MEMBRAN FOTOBIOREAKTOR

Pelepasan CO₂ telah menggalakkan penyelidikan mengenai penggunaan CO₂ oleh mikroalga. Walau bagaimanapun, pengkarbonan yang rendah atau terlalu berasid dan tinggi kandungan O₂ di dalam bioreaktor telah dikenalpasti sebagai kelemahan utama teknik ini selain pengambilan CO₂ yang rendah oleh mikroalga. Oleh itu, keria ini bertuiuan untuk meningkatkan kadar pengambilan CO₂ oleh mikroalga dengan menggunakan dua ienis membran yang diintegrasi dengan bioreaktor. Kerja ini telah menggunakan teknik pengelembungan secara tidak langsung berdasarkan membran sebagai alternatif meningkatkan CO₂ mitigasi ole mikroalga. Hasil penyelidikan mendapati bahawa mikrolaga tempatan sesuai untuk pengurangan CO₂ dan sebagai pengeluar biojisim. Mikroalga ini juga dikenal pasti dapat melaksanakan mekanisma pengunnan carbon (CCM) untuk meningkatkan pengunaan CO₂ secara tidak langsung. Kajian ini telah mendapati bahawa integrasi membran boleh mencapai sehingga 82% DCO2 iaitu 4 kali lebih tinggi berbanding dengan yang tidak diintegrasi yang hanya mencapai sehingga 29%. Pengkarbonan bergantung kepada penyebaran CO₂ dan boleh dinilai menggunakan model. Model tersebut bertuiuan untuk meramal hubungan diantara CO₂ dan DCO₂ dengan CO₂ yang terkumpul. Model yang telah dicipta tersebut telah disahkan sesuai untuk mengkaji pemindahan jisim dari bahagian gas ke bahagian cecair, dengen ralat kurang daripada 20%. Kedua-dua model dan keputusan ujikaji menunjukkan bahawa pengumpulan terendah CO2 di dalam membran boleh dicapai apabila beroperasi pada nisbah gas kepada cecair diantara 0.6:1 dan 6:01. Keseluruhan pemindahan jisim CO₂ di dalam membran adalah 4.35 x 10^2 cm²/s. Nilai ini boleh dianggap sesuai untuk pemindahan CO₂ di dalam membran. Keputusan ini menunjukan integrasi membran adalah sesuai untuk meningkatkan penyerapan CO₂ didalam bioreaktor. Kajian ini juga mendapati bahawa pembentukan gelembung gas yang berpunca daripada ketidakseimbangan kadar aliran masuk bendalir atau cecair dan gas boleh menyebabkan DCO2 rendah dan meningkatkan nisbah di antara ruang legar dan DCO₂. Ini boleh menyebabkan pengambilan CO₂ yang rendah oleh mikroalga. Penurunan saiz gelembung dapat mengurangkan nisbah ruang legar dan DCO2. Gelembung yang paling sesuai untuk penyerapan CO2 adalah dalam lingkungan 1 mm sehingga 5 mm. Integrasi oleh membran kedua telah berjaya mengurangkan pengumpulan O_2 dalam bioreaktor sehingga 43% tetapi menyebabkan pengurangan DCO₂ sehingga 11%. Integrasi membran juga menyebabkan pengurangan biojisim mikroalga sebanyak 3%. Pengambilan CO2 secara keseluruhan oleh mikroalga boleh meningkat sehingga 10% dengan bantuan integrasi membran kedua. Kajian ini juga mendapati bahawa keupayaan Chlorella sp. untuk melaksanakan CCM meningkatkan penyerapan CO2. Keputusan ujikaji menuniukkan bahawa integrasi membran dapat meningkatkan penverapan CO2 oleh mikroalga.

TABLE OF CONTENTS

			Page
TITL	E		1
DECL	ARATIO	N	ii
CERT	IFICATI	ON	iii
ACK	NOWLED	GEMENT	iv
ABST	RACT		v
ABS	TRAK		vi
TABL	E OF CO	NTENTS	vii
LIST	OF TABL	ES	xi
LIST	OF FIGU	RES	xiii
LIST	OF ABBF	REVIATIONS	xv
LIST	OF NOM	ENCLATURES	xvii
LIST	OF APPE	NDIX	xxi
СНА	PTER 1: 1	INTRODUCTION	1
1.1	Backgr	ound	1
1.2	Problem	n statement	3
	1.2.1	Issue of microalgae selection for ALAYSIA SABAH CO ₂ mitigation	3
	1.2.2	Fouling and accumulation of microalgae in membrane	3
	1.2.3	Instability of bubbling due to hydrodynamics stress in the membrane	5
	1.2.4	Issue of generated O ₂	5
1.3	Objecti	ive	6
1.4	Scope	of work	7
1.5	Thesis	outline	8
СНАР	PTER 2: L	ITERATURE REVIEW	11
2.1	Introdu	uction	11
2.2	Emissio	on of CO ₂	11
	2.2.1	Impacts of energy demands	12

	2.2.2	Effects and environment concerns	14
	2.2.3	Prevention and CO ₂ mitigation	15
2.3	Utilisat	ion of CO ₂ by microalgae	18
	2.3.1	Versatility of microalgae	18
	2.3.2	Species that were considered for mitigation	19
	2.3.3	Approaches to increase CO ₂ mitigation	21
	2.3.4	Roles of microalgae photosynthesis in CO_2 fixation	22
	2.3.5	Fundamental of CO ₂ utilisation by microalgae	22
	2.3.6	Status of CO ₂ utilisation by microalgae	26
2.4	Membr	ane as CO_2 fixation enhancer	26
	2.4.1	Advantages over conventional devices	27
	2.4.2	Materials for CO ₂ utilisation-based membrane	29
	2.4.3	Carbonation through the membrane	30
	2.4.4	Type of preferable membrane	31
	2.4.5	Techniques to improve CO ₂ solubility using membrane	33
2.5	Membr	rane PBR	34
	2.5.1	Research and invention history	34
	2.5.2	Design consideration	35
	2.5.3	Method to supply CO_2 into the membrane bioreactor	37
	2.5.4	Technique to improve CO_2 fixation in bioreactor	37
2.6	Conclu	sions	38
CHAF	PTER 3: N	MATERIALS AND METHODS	39
3.1	Introdu	uction	39
	3.1.1	Carbonation	39
	3.1.2	Cultivation	40
	3.1.3	Deoxygenation	41
3.2	Experir	mental setup and operating procedure	41
	3.2.1	Carbonation	41
	3.2.2	Deoxygenation	46

	3.2.3	Setup and procedure for microalgae characterisation	49
	3.2.4	Summary of experimental setup	50
3.3	Analytic	cal work on laboratory experiment	50
	3.3.1	Lipid and energy content	50
	3.3.2	Bubble size	51
	3.3.3	Light intensity	51
	3.3.4	Dry weight of microalgae	51
	3.3.5	CO ₂ concentration	51
	3.3.6	Temperature	51
	3.3.7	Pressure	52
	3.3.8	O ₂ concentration	52
	3.3.9	Optical density (OD)	52
	3.3.10	Cell size	52
	3.3.11	Flow rate	52
	3.3.12	pH	52
3.4	Analytic	cal work on setup validation analysis	53
	3.4.1	Validation of setup for carbonation and deoxygenation	53
3.5	Analytic	cal work on governing correlation	54
	3.5.1	Correlation of inlet and outlet flow rate media	54
3.6	Experin	nental design	61
	3.6.1	Characterisation of microalgae	62
	3.6.2	Investigation on fouling and accumulation of microalgae in membrane	63
	3.6.3	Investigation on bubbling formation	65
	3.6.4	Investigation on DO removal by membrane	66
СНАР	PTER 4: R	ESULTS AND DISCUSSIONS	68
4.1	Introdu	iction	68
4.2	Charact	terisation of microalgae	69
	4.2.1	Cell shape and size	69
	4.2.2	Growth characteristics of Chlorella sp.	70
	4.2.3	Ability to utilise CO ₂ with respect to light intensity	73

	4.2.4	Lipid and energy content of Chlorella sp.	77	
4.3	Investig of micro	ation on fouling and accumulation algae	78	
	4.3.1	Microalgae accumulation and fouling	78	
	4.3.2	Carbonation efficiency	80	
	4.3.3	Mass transfer of CO_2 in membrane	84	
4.4	Eliminat	ion of large bubble	95	
	4.4.1	Relationship of bubbling and carbonation	95	
	4.4.2	Effect of bubbling and media volume on CO_2 escape	96	
	4.4.3	Effect of bubble sizes to critical parameters of CO_2 mitigation	97	
4.5	Investig	ation on DO removal	101	
	4.5.1	Investigation on DO removal using membrane	101	
СНАРТ	ER 5: C0	ONCLUSIONS AND RECOMMENDATIONS	106	
5.1	Conclusi	ions	106	
5.2	Limitatio	on and recommendation for future work	109	
	5.2.1	Improvement of membrane design	109	
	5.2.2	Suitable material to make membrane to prevent cell attachment	109	
	5.2.3	Limitation and suggestion to improve correlation	110	
	5.2.4	Evaluation on CO_2 conversion to support CO_2 mitigation	110	
REFER	ENCES		111	
APPENDIX 126-				

LIST OF TABLES

		Page
Table 2.1:	General properties of carbon dioxide at atmospheric conditions	11
Table 2.2:	Comparison of global CO_2 emission and required energy source	12
Table 2.3:	Comparison of microalgae, CCS and conventional approaches	16
Table 2.4:	Microalgae species for CO_2 utilisation and biomass production	19
Table 2.5:	Operating conditions and major issue of the two-stage growth	21
Table 2.6:	Factor that affects the gas mass transfer by membrane	31
Table 3.1:	Direct and indirect membrane-based bubbling techniques	40
Table 3.2:	Comparison of direct bubbling and membrane-based bubbling	41
Table 3.3:	Operating conditions of apparatus within the CO ₂ supply unit	43
Table 3.4:	Characteristics of membrane module for carbonation Process	44
Table 3.5:	Scaling measure of bioreactors that were used for carbonation	45
Table 3.6:	Characteristics of membrane for deoxygenation of microalgae	48
Table 3.7:	Characteristic of mini bioreactors that built up the PBR system	49
Table 4.1:	Population of microalgae in two different cultivation modes	70
Table 4.2:	Cell productivity cultivated in various glucose concentrations	72
Table 4.3:	Microalgae accumulation in the membrane at various flow rates	79
Table 4.4:	Comparison of direct and indirect membrane-based bubbling techniques	82
Table 4.5:	Experimental result on accumulated CO_2 in membrane When operated with and without liquid inlet	86
Table 4.6:	Bubble formation in media measured at various inlet flow rates of the membrane	94

MALAYSIA SABAP

- Table 4.7:Effect of inlet flow rate and medium volume in bioreactor
- Table 4.8:Comparison effect of bubble sizes

LIST OF FIGURES

Page

Figure 1.1:	Illustration of microalgae cell crosses over the hollow fibres	4
Figure 1.2:	Illustration of CO_2 diffusion of hollow fibres in the membrane	5
Figure 1.3:	Flow chart and organisation of major contents of the thesis	10
Figure 2.1:	Comparison of energy source consumption and CO ₂ emission	13
Figure 2.2:	Cell of Chlorella sp. under the Scanning Electron Microscope	20
Figure 2.3:	Estimation and effect of light and CO_2 to microalgae growth	22
Figure 2.4:	Structure of microalgae cell involves in CO_2 fixation	23
Figure 2.5:	Light dependent reaction to produce energy as ATP and NADPH	24
Figure 2.6:	Photosynthesis and Calvin cycle of microalgae	25
Figure 2.7:	Mass transfer of CO_2 from gas into liquid phase in membrane	27
Figure 2.8:	Illustration of contactor process as gas removal from liquid	31
Figure 2.9:	Example of membrane setup used in microalgae-related field	32
Figure 2.10:	Schematic of CO ₂ utilisation in membrane-photobioreactor	36
Figure 3.1:	Chronological flow chart of experiment and analysis works	39
Figure 3.2:	Process and instrumentation diagram of carbonation setup	42
Figure 3.3:	Characteristic and structure of mini bioreactor for PBRA	44
Figure 3.4:	Flow chart and operating procedure of carbonation process	46
Figure 3.5:	Process and instrumentation diagram of deoxygenation	47
Figure 3.6:	Operating step and procedure of microalgae deoxygenation	49
Figure 3.7:	Comparison of theoretical and experiment for validation	54
Figure 3.8:	Relationship of inlet and outlet liquid flow rate in membrane	56
Figure 3.9:	Illustration of diffusion flux through a pore of hollow fibre	57
Figure 3.10:	A closed up and SEM images of the hollow membrane fibre	59
Figure 3.11:	Summary of experimental on microalgae characterisation	63
Figure 3.12:	Summary of experimental design on fouling investigation	64
Figure 3.13:	Summary of experimental design on bubbling investigation	66
Figure 3.14:	Summary of experimental design on DO removal	67
Figure 4.1:	Flow chart and organisation of major sections in Chapter 4	69
Figure 4.2:	Chlorella sp. and Chlorella emersonii cell shape under SEM	69

LIST OF ABBREVIATIONS

ADP	-	Adenosine diphosphate
АТР	<u>-</u>	Adenosine triphosphate
ASTM	-	American Society for Testing and Materials
BP	-	British Petroleum
BV	-	Ball valve
BOD	-	Biochemical oxygen demand
ССМ	.=	Carbon concentrating mechanism
CCS	-	Carbon capture and storage
CO2	-	Carbon dioxide
C:E	-	Ratio of consumption to emission
COD	-	Chemical oxygen demand
CO3-	-	Carbonate ion
CI	-	Confidence interval
DCO ₂	-	Dissolved carbon dioxide
DO		Dissolved oxygen
DIC	-0	Dissolved inorganic carbon
DHA	And wat	Docosahexaenoic acid
EOR	ABA	Enhanced Oil Recovery
EPA	-	Eicosapentaenoic acid
EPICs	-	Equilibrium partitioning in closed systems
GFM	-	Gas flow metre
GC	-	Gas chromatography
GHG	-	Greenhouse gas
GPRV1	-	Gauge pressure regulator
HS:DCO ₂	Ť	Ratio of headspace to dissolved CO ₂
IEA	-	International Energy Agency
М	-	Jaworski's media
LDL		Low-density lipoprotein
LFM	-	Liquid flow metre
МТ		Million tonnes
N/A	-	Not applicable

NADPH	÷0	Nicotinamide adenine dinucleotide phosphate-oxidise
NaOH	-	Natrium hydroxide
OD	1	Optical density
PHI		Photosystem 1
PHII	3)	Photosystem 2
PGA	<u></u>	Phosphoglycerate
PGAL	H)	Glyceraldehyde 3-phosphate
PP	-	Polypropylene
PTFE	-	Polytetrafluoroethylene
PVDF	-	Polyvinylidenefluoride
PBR	-	Photobioreactor
PVC	-);	Polyvinylchloride
PG	-	Pressure gauge
PAR	÷.	Photosynthetically active radiation
SEM	-	Scanning Electron Method
₩МО		World Meteorological Organisation

UNIVERSITI MALAYSIA SABAH

LIST OF NOMENCLATURES

α	-	Function of inlet and outlet liquid flow rate (dimensionless)
C _{il}	-	Initial concentration of CO_2 in liquid phase (kgm ⁻³)
C _{il(std)}	-	Initial concentration of CO_2 in standard solution (kgm ⁻³)
$C_{il(unk)}$	-	Initial concentration of CO_2 in unknown solution (kgm ⁻³)
$C_{ m ig}$	-	Initial concentration of CO_2 in gas phase (kgm ⁻³)
$C_{ m ig(std)}$	-	Initial concentration of CO ₂ in standard gas phase (kgm ⁻³)
$C_{ig(unk)}$	-	Initial concentration of CO_2 in unknown gas phase (kgm ⁻³)
$C_{\rm g1}$	÷	Concentration of CO_2 in gas phase at first point (kgm ⁻³)
C_{g^2}		Concentration of CO_2 in gas phase at final point (kgm ⁻³)
C_{g}		Gas dissolved at constant temperature (kgm ⁻³)
$C^{l}_{o_2}$	2011	Initial concentration of O ₂ gas (kgm ⁻³)
C.	/ 🗖	Concentration of O ₂ at equilibrium (kgm ⁻³)
C ¹ ₀₂	-	Concentration of in bulk liquid (kgm ⁻³)
С	JA I	Molar concentration (molm ⁻³) ALAYSIA SABAH
D	-	Diffusion coefficient (m ² s ⁻¹)
De	-	Effective diffusion coefficient (m ² s ⁻¹)
D_{k}	÷	Knudsen diffusion coefficient (m ² s ⁻¹)
df	-	Degree of freedom
H	-	Henry constant
H_{i}	÷	Initial Henry gas constant
$J_{\rm CO_2(m)}$	-	Diffusion flux of CO_2 gas in the membrane (kgm ⁻² s ⁻¹)
I _{avg}	-	Average light intensity (µEs ⁻¹ m ⁻²)
I,	÷.	Initial light intensity (µEs ⁻¹ m ⁻²)
Ι	e -	Light intensity (µEs ⁻¹ m ⁻²)
l _d	-	Light path length (m)

l _{di}	-	Light path length at initial point (m)
K	-	Overall mass transfer coefficient (m ² s ⁻¹)
K _m	-	Overall mass transfer coefficient (m ² s ⁻¹)
K _g	4	Overall mass transfer coefficient of gas phase (m ² s ⁻¹)
K ₁	-	Overall mass transfer coefficient of bulk liquid (m ² s ⁻¹)
K	-	Growth rate (per day)
K _n	-	Knudsen number
m	-	Slope of value at Y-axis divide over value of X-axis
m	-	Biomass of microalgae per unit time (kgs ⁻¹)
m	-	Mass flow rate (gmin ⁻¹)
M	-	Molarity (moll ⁻¹)
n		Biomass (kg)
n	-	Number of sample
$N_{\rm g}$	2 22	Molar flux in gas phase (molm ⁻² s ⁻¹)
N	-	Molar flux in liquid phase (molm ⁻² s ⁻¹)
P	Aral and	Pressure at constant temperature (Pa)
$p_{o_2}^{g}$	- B	Partial pressure at gas phase (Pa)
$p_{o_2}^i$	-	Partial pressure at interphase (Pa)
$P_{o_2}^{\star}$	-	Partial pressure of gas at the equilibrium (Pa)
R	-	Gas constant (JK ⁻¹ mol ⁻¹)
t	-	Time (s)
V _g	-	Volume of gas (m ³)
$V_{\rm g2}$	-	Volume of gas at second point (m ³)
V _{g1}	-	Volume of gas at first point (m ³)
V_1	-	Volume of liquid (m ³)
V _{II}	-	Volume of liquid at first point (m ³)
V ₁₂	-	Volume of liquid at second point (m ³)

<i>V</i>	-	Volumetric flow rate (m ³ s ⁻¹)
x		Travel length of diffusion solute (m)
X	+	Sample
x	-	Mean
<i>x</i> 1	-	Constant value of gas inlet
y1	-	Constant value of liquid inlet

Greeks

τ	-	Tortuosity
λ	-	Mean free path (m)
ε	-	Molar absorptivity or absorption coefficient (m ² mol ⁻¹)
δ_{m}	57	Membrane thickness (m)
k _H	1	Henry constant
d	STI	Derivative
$k_{\rm g}$		Individual Mass transfer coefficient in gas phase (m ² s ⁻¹)
k ₁	EL-O	Individual Mass transfer coefficient in liquid phase (m ² s ⁻¹)

UNIVERSITI MALAYSIA SABAH

Subscripts

	Initial liquid
	Initial
	Liquid phase
4	Liquid at first point
-	Liquid at second point
	Initial gas
-	Gas
-	Standard
-	Unknown
-	Gas at first point

g2	-	Gas at second point
02		Gas oxygen
e	-	Effective
k	-	Knudsen
avg		Average
n	-	Number
m	-	Membrane
Н	-	Henry constant

Superscripts

i	-	Initial
*	8	Equilibrium
1	-	Liquid

LIST OF APPENDIX

		Page
Appendix 3A	Medium of Jaworski	126
Appendix 3B	Carbon dioxide supply unit	127
Appendix 3C	Gas exchange unit	128
Appendix 3D	Combined setup of both carbonation and deoxygenation	129
Appendix 3E	Membrane photobioreactor setup in 3D	130
Appendix 3F	Correlation and UV-VIS calibration	133
Appendix 3G	Theoretically value of CO_2 in mass unit	136
Appendix 3H	Specification of the membrane for carbonation	140
Appendix 3I	Correlation between CO_2 inlet and accumulates	141
Appendix 3J	Comparison of inlet and outlet flow rate	148
Appendix 3K	Derivation of CO_2 concentration in membrane	149
Appendix 4A	Data of experimental works	154
Appendix 4B	Data of experiment on CO_2 inlet versus dissolved CO_2 in media	157
Appendix 4C	Specification of membrane for deoxygenation	158
Appendix 4D	Fraction of equilibrium acid bicarbonates	159
Appendix A	List of publications	160

CHAPTER 1

INTRODUCTION

1.1 Background

Carbon dioxide emissions are the second largest contributor to climate change, making up 30% of the greenhouse gases (GHG). The GHG causes global warming and threaten ecological systems. Antarctic and arctic sea ice also show declines caused by increasing global temperature (Stroeve *et al.*, 2007; Swingedouw *et al.*, 2008). Sea level, on the other hand, rose about 17 cm over the last century; this forced some communities to relocate, including those in Fiji, Papua New Guinea, Panama and Vanuatu (Mattson, 2010). The global warming also expected to increase the sea level in Malaysia about 13 cm over the next 100 years.

The effect of global warming shows that CO_2 emissions are likely to harm the environment than to provide benefits. For this concern, many approaches to overcome the issue of CO_2 emissions have been proposed, which mostly involve high and expensive technology such as carbon capture and storage technology (CCS) and conventional methods. Both CCS and conventional methods are used to prevent the release of CO_2 into the atmosphere. However, safety, capital cost and storage capacity are the major issues that hinders the successful of this technique.

One concern often raised because of the CCS application was leaking of the CO_2 reservoir. The leaking can cause sudden increased acidity in the ocean that is lethal to marine life. Therefore, low cost techniques, which applies a biological approach for CO_2 sequestration is needed. One of these approaches is by using microalgae for CO_2 mitigation and at the same time producing biomass for low CO_2 -emitting energy source. The microalgae research also desires to be used for CO_2 sequestration in the future.

Microalgae are microscopic unicellular organisms with cell diameter range from 1 μ m to 50 μ m. Microalgae can be found naturally in freshwater saline lakes,

aquatic environment and marine environment. Microalgae have an ability to conduct photosynthesis 40 times higher compared to terrestrial plant (based on 0.09d⁻¹ to 0.58d⁻¹ relative growth rate estimation of terrestrial plant (Garnier, 1992; Hunt and Cornelissen, 1997) compared with 0.11d⁻¹ to 0.55d⁻¹ specific growth rate estimation of microalgae (Aleya *et al.* 2011; Suali *et al.*, 2012). Thus, microalgae have a high potential as a biological approach for CO₂ mitigation. However, CO₂ mitigation by microalgae is a species dependent as reported by researchers (Zhang *et al.*, 2011; Doucha *et al.*, 2005; Yoo *et al.*, 2010). Thus, selection of microalga for the purpose of CO₂ mitigation is a very crucial step.

In this study, a local isolate microalga species known as *Chlorella* sp. was selected as a test subject for CO_2 mitigation. The selection was based on the growth and characteristics of this microalga, which primarily was investigated suitable for CO_2 mitigation and biomass production, which has potential to be processed into low CO_2 emitted energy source such as biodiesel. The investigation on this microalga will give benefit to the local community as it was never mentioned in any publication.

The use of microalgae for CO_2 mitigation is a step-by-step process. This includes transferring CO_2 into microalgal culture through the process of carbonation, followed by CO_2 fixation by the microalgae. CO_2 mitigation must be carried out in a closed cultivation system to prevent the release of unutilised CO_2 into the atmosphere. The closed cultivation system typically used is known as a photobioreactor (PBR) or bioreactor (BR).

In this study, the term PBR has been used to define a system that consists of mini bioreactor which was made up of tubular acrylic pipes. The bioreactor unit is equipped with white cool fluorescent lamps as a light source for the photosynthesis, stirrer, and aeration system. The other unit making up the PBR system include gas exchange unit and a CO_2 supply unit. The gas exchange unit consists of two types of hydrophobic membranes. Carbon dioxide uptake does not occur inside the membrane, but rather inside the tubular bioreactor.

2

The main purpose for the integration of a membrane was to address the issue of direct bubbling to the bioreactor. Membrane technology was applied due to its flexibility and selective properties which only allows certain type of substance or compound to pass through the membrane wall. In addition, membrane is known as a device that is versatile and can be integrated into many devices and processes.

The integration of PBR with membrane technology for the purpose of gas transfer was not well researched. To date, literature has reported that only hydrophobic membrane can be used to aid the gas transfers into the bioreactor (Cheng *et al.*, 2006; Fan *et al.*, 2007). Many others issue such as fouling by microalgae, bubbling and generated O_2 were reported caused the low CO_2 uptake. These issues discussed in the following subsections.

1.2 Problem statement

1.2.1 Issue of microalgae selection for CO₂ mitigation

Each microalga species was reported to have various capabilities to mitigate CO_2 . According to Sydney *et al.* (2001), *Botryococcus braunii* is tolerable to CO_2 concentration up to 5% of overall air composition. Others species include *Scendemus* sp., *Spirulina* sp. and *Dunaliella* sp. were reported tolerant to CO_2 concentration up to 10% of overall air, which were used to carbonise microalgae media for the purpose of CO_2 utilisation and biomass production (Sydney *et al.*, 2001; Yoo *et al.*, 2010). The tolerant concentration of CO_2 is important to prevent CO_2 excess, which is lethal to microalgae. Thus, any microalgae species for CO_2 mitigation. Besides the issue of CO_2 tolerance, other microalgae issues in terms of CO_2 mitigation in a membrane bioreactor include fouling and accumulation of microalgae, as detailed in the following subsection.

1.2.2 Fouling and accumulation of microalgae in membrane

The typical process of CO_2 mitigation by microalgae involves carbonation and deoxygenation. During carbonation, the microalgal media, which composed of a medium and microalgae cell crosses over the hollow fibre as shown in Figure 1.1. The CO_2 first contacts the microalgae cells in media that crossed over the hollow