NUTRITIONAL COMPOSITION, ANTIOXIDANT ACTIVITY AND HYPOTENSIVE EFFECT OF BROWN SEAWEED (*Sargassum polycystum*) ENRICHED BREAD

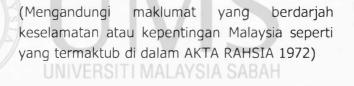
NORAIDAH BINTI HAINI

PERPUSTAKAAN MINERSITI MALAYSIA SARAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF FOOD SCIENCE AND NUTRITION UNIVERSITI MALAYSIA SABAH 2017

UNIVERSITI MALAYSIA SABAH


BORANG PENGESAHAN STATUS

JUDUL: NUTRITIONAL COMPOSITION, ANTIOXIDANT ACTIVITY AND HYPOTENSIVE EFFECT OF Sargassum polycystum ENRICHED BREAD

IJAZAH: MASTER OF SCIENCE (NUTRITION)

Saya **NORAIDAH BINTI HAINI**, sesi **2013 – 2014**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat – syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

SULIT

NORAIDAH BINTI HAINI MN1311001T

Disahkan Oleh, NURULAIN BINTI ISMAIL LIBRARIAN UNWERSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

(Prof. Madya Dr. Patricia Matanjun) Penyelia

DECLARATION

I hereby acknowledge that I have stated the source of each extraction, summary and reference in this study.

Date: 26 May 2017

(lains

Noraidah binti Haini MN1311001T

CERTIFICATION

- PECEIVED 2 9 MAY 2017 Pejabat Am Fakulti Sains Makanem & Remakanem, UMSi
- NAME : NORAIDAH BINTI HAINI
- MATRIC NO. : **MN1311001T**

TITLE : NUTRITIONAL COMPOSITION, ANTIOXIDANT ACTIVITY AND HYPOTENSIVE EFFECT OF BROWN SEAWEED (Sargassum polycystum) ENRICHED BREAD

- DEGREE : MASTER OF SCIENCE (NUTRITION)
- VIVA DATE : 14 MARCH 2017

CERTIFIED BY;

1. Supervisor

Assoc. Prof. Dr. Patricia Matanjun

Signature

2. Co-Supervisor

Dr. Yasmin Ooi Beng Houi

3. Co-Supervisor

Assoc. Prof. Dr. Tan Tek Song

ACKNOWLEDGEMENT

First and foremost, to the Almighty Allah S.W.T for his continuous blessings to enable me to complete this thesis.

I would like to express my utmost appreciation to my supervisor, Assoc. Prof. Dr. Patricia Matanjun for her invaluable opportunities, suggestions, guidance, motivation and patience throughout the research. I would also like to show my deepest gratitude to my co-supervisors, Assoc. Prof. Dr. Tan Tek Song and Dr. Yasmin Ooi Beng Houi, for their guidance, advice and support throughout the various processes involved in this research.

Furthermore, I would like to thank the Ministry of Science, Technology and Innovation Malaysia (MOSTI), project code: 06-01-10-SF0163 for funding this research; to the Ministry of Education Malaysia, for providing MyMaster schorlarship, as well as Universiti Malaysia Sabah for providing Teaching Asistant scholarship (EKPP).

Special credits to all lab technicians, especially En. Masran, Cik Jayanti, Pn. Marni, En. Sahirun, En. Duasin, Pn. Irene, En. Wilter and Pn. Dg. Intan, who were always available to provide assistance regarding the use of various laboratories, laboratory equipments and instruments.

Special thanks to all the academic and administrative staff from the Faculty of Food Science and Nutrition, Centre of Postgraduate Studies and Centre for Research and Innovation for their cooperation on all technical and administrative management.

Special recognition to Assoc. Prof. Mariam Abd Latif, for her constructive comments in the improvement of this thesis. Last but not least, to my beloved parents and family for their moral support and great patience as I pursued this task.

Noraidah binti Haini MN1311001T

ABSTRACT

Hypertension is a major risk factor of cardiovascular diseases globally. Studies have shown that there is a positive association between seaweed intake and lower blood pressure as indicated in animal studies as well as limited human trials. Hence, this study was designed to investigate the hypotensive effect of Sargassum polycystum (SP) enriched bread on blood pressure among pre-hypertensive subjects. In this open label crossover trial, 12 subjects were randomly divided into two groups, who later received seaweed bread and control bread for 8 weeks with two months washout period. S. polycystum powder (5 - 25%) was incorporated with wheat flour in producing yeast breads. These formulated breads were examined for their nutritional composition, antioxidant activities and sensory acceptance. The study showed that nutritional values of seaweed breads were significantly different from the control bread (p < 0.05); wherein SP enriched breads contained ash (1.16 -4.74%), moisture (34.65 – 37.57%), crude fat (6.45 – 6.98%), crude protein (8.74 - 8.92%), dietary fibre (2.26 - 9.71%) on dry weight basis, besides having significant composition of macro minerals (Na, K, Ca and Mg) content. Ethanolic extracts of S. polycystum enriched breads possessed significantly higher total phenolic content (5.34 – 13.85 mg PGE/g dry extract), ferric reducing antioxidant power (FRAP) (122.89 – 162.06 µM FE/g dry extract) and DPPH radical scavenging activity (2.09 - 9.07 mg/ml) than water extracts (p<0.05). Sensory evaluation of breads using hedonic test has shown that bread enriched with 10% SP powder was selected as the best formulation among all seaweed breads (p<0.05), whereby its shelf life test showed that it is safe for 7-day consumption. In vitro test of antihypertensive assay showed that SP powder (0.41 mg/ml) and 10% seaweed bread (3.13 mg/ml) possessed higher ACE-inhibitor capacities than the control bread (25.01 mg/ml) (p<0.05). Intervention trial showed that subjects consuming seaweed bread resulted in significantly lower systolic blood pressure, diastolic blood pressure, pulse and total cholesterol (p < 0.05). On contrary, subjects consuming control bread showed that there was no significant change in diastolic blood pressure but their systolic blood pressure, pulse and total cholesterol were significantly higher than the baseline (p < 0.05). On the whole, the new therapeutic discovery of hypotensive effect in SP powder would contribute to health-promoting properties of seaweed as well as providing useful information to local industries for potential development of food and health products.

ABSTRAK

KOMPOSISI PEMAKANAN, AKTIVITI ANTIOKSIDAN DAN KESAN HIPOTENSI ROTI DIPERKAYA RUMPAI LAUT PERANG (Sargassum polycystum)

Hipertensi merupakan antara risiko utama penyakit kardiovaskular sedunia. Kajian telah menunjukkan bahawa terdapat hubungan yang positif di antara pengambilan rumpai laut terhadap paras tekanan darah seperti yang dinyatakan dalam kajian haiwan dan ujikaji klinikal manusia. Justeru, kajian ini direka untuk mengenal pasti kesan hipotensif roti diperkaya rumpai laut perang, Sargassum polycystum (SP) terhadap tekanan darah dalam kalangan subjek pra-hipertensif. Dalam ujikaji pangkah silang terbuka ini, seramai 12 subjek telah dibahagikan secara rawak kepada dua kumpulan, untuk menerima roti diperkaya rumpai laut dan roti kawalan sepanjang 8 minggu yang diselangi 2 bulan tempoh proses "pencucian". Serbuk S. polycystum (5 – 25%) telah dicampur dengan tepung gandum dalam menghasilkan roti yis. Komposisi pemakanan, aktiviti antioksidan dan penerimaan sensori formulasi roti telah dikenal pasti. Kajian ini menunjukkan komposisi pemakanan roti diperkaya SP mempunyai perbezaan yang signifikan dengan roti kawalan (p < 0.05); dimana roti diperkaya SP mengandungi abu (1.16 – 4.74%), lembapan (34.65 – 37.57%), lemak (6.45 - 6.98%), protein (8.74- 8.92%), serat diet (2.26- 9.71%) untuk asas berat kering, disamping mempunyai komposisi makro mineral (Na, K, Ca and Mg) yang signifikan. Ekstrak etanol bagi roti diperkaya S. polycystum mengandungi fenolik (5.34 – 13.85 mg PGE/g ekstrak kering), kuasa penurunan Ferik (FRAP) (122.89 – 162.06 µM FE/g eksrak kering) dan aktiviti penghalang radikal DPPH (2.09 – 9.07 mg/ml) yang lebih tinggi berbanding ekstrak air (p<0.05). Penilaian sensori roti melalui kaedah hedonik telah menunjukkan roti diperkaya SP (10%) telah dipilih sebagai formulasi terbaik berbanding formulasi yang lain (p<0.05), dimana ujian jangka hayat menunjukkan roti tersebut selamat untuk dimakan selama 7 hari. Ujian in vitro anti-hipertensif menunjukkan serbuk SP (0.41 mg/ml) dan roti diperkaya 10% serbuk SP (3.13 mg/ml) mempunyai keupayaan untuk merencat aktiviti ACE yang lebih tinggi berbanding roti kawalan (25.01 mg/ml) (p<0.05). Ujikaji intervensi pula menunjukkan subjek yang menerima roti diperkaya SP mempunyai paras tekanan sistolik darah, tekanan diastolik darah, nadi dan kolesterol yang lebih rendah (p<0.05). Sebaliknya, subjek yang menerima roti kawalan menunjukkan tiada perubahan tekanan diastolik yang signifikan tetapi mempunyai paras tekanan sistolik, nadi dan kolesterol yang lebih tinggi (p<0.05). Keseluruhannya, penemuan terapeutik baru tentang kesan hipertensif serbuk SP boleh menyumbang kepada ciri-ciri kesihatan rumpai laut dan menyediakan maklumat yang berguna kepada industri tempatan untuk potensi pembangunan makanan dan produk kesihatan.

TABLE OF CONTENTS

		Page
TITL	E	. i
DECL	ARATION	ii
CERT	IFICATION	iii
ACK	IOWLEDGEMENT	iv
ABST	RACT	v
ABST	TRAK	vi
TABL	E OF CONTENTS	vii
LIST	OF TABLES	xiv
LIST	OF FIGURES	xvi
LIST	OF ABBREVIATIONS	xvii
LIST	OF APPENDICES	xix
CHAF	PTER 1 : INTRODUCTION	1
1.1	Background	1
1.2	Problem statements	5
1.3	Rationale of study UNIVERSITI MALAYSIA SABAI	7
1.4	Hypothesis	7
1.5	Objectives	8
CHAF	PTER 2 : LITERATURE REVIEW	9
2.1	Non-communicable diseases	9
2.2	Cardiovascular diseases (CVDs)	10
	2.2.1 Raised blood pressure: Risk determinant of CVDs	10
	2.2.2 Classification of blood pressure	11
	2.2.3 Pre-hypertension stage	12
	2.2.4 Risk factors of raised blood pressure	13
	a. Age	13
	b. Gender	14
	c. Body weight	15

	d. Sodium intake	16		
	e. Physical activity	16		
	f. Smoking habit	17		
	g. Alcohol consumption	17		
	h. Genetic	18		
	2.2.5 Consumption of natural foods	18		
2.3	Marine algae	19		
2.4	Seaweed as a food ingredient	21		
2.5	Seaweed industry in Sabah	23		
2.6	Seaweed constituents and their relation to health benefits	24		
	2.6.1 Polysaccharides	24		
	a. Alginate	25		
	b. Fucoidan	27		
	2.6.2 Minerals	28		
	2.6.3 Amino acids	29		
	2.6.4 Lipid and fatty acids	31		
	a. Polyunsaturated fatty acids	31		
	b. Phytosterols	32		
	2.6.5 Polyphenols	33		
	2.6.6 Carotenoids UNIVERSITI MALAYSIA SABAH	35		
	2.6.7 Vitamin E	36		
	2.6.8 Ascorbic Acid (Vitamin C)	37		
2.7	Sargassum polycystum	38		
2.8	Kappaphycus alvarezii	41		
2.9	Bread	43		
2.10	Composite flour	43		
2.11	Bread with high dietary fibre composite flour	44		
2.12	Advantages of high dietary fibre composite flour	45		
2.13	Disadvantages of high dietary fibre composite flour 46			
2.14	Application of seaweed in bread making	46		
2.15	Physical assessments of a bread product	47		
	2.15.1 Farinograph analysis	47		
	2.15.2 Dough stickiness	48		

	2.15.3 Specific volume and density	49			
	2.15.4 Colour	49			
	2.15.5 Texture	50			
СНАР	PTER 3 : MATERIALS AND METHODS	51			
3.1	Sample collection	51			
3.2	Preparation of S. polycystum enriched bread	51			
3.3	Farinograph characteristics of control and S. polycystum	53			
	enriched bread				
3.4	Physical characteristics of S. polycystum enriched bread	53			
	3.4.1 Loaf volume	54			
	3.4.1 Weight	54			
	3.4.1 Specific volume and density	54			
3.5	Nutritional composition of seaweed powder and	55			
	S. polycystum enriched bread				
	3.5.1 Moisture	55			
	3.5.2 Ash	55			
	3.5.3 Crude protein	56			
	3.5.4 Crude fat	57			
	3.5.5 Total dietary fibre	57			
	3.5.6 Available carbohydrate	59			
	3.5.7 Energy	60			
	3.5.8 Mineral analysis	60			
	a. Preparation of sample	60			
	b. Determination of elements	61			
	c. Calibration graph	61			
	d. Calculation	61			
3.6	Total phenolic content and antioxidant activity of S. polycystum	61			
	powder and S. polycystum enriched bread				
	3.6.1 Extraction method	61			
	a. Ethanol extraction	61			
	b. Water extraction	62			
	3.6.2 Extraction yield	62			

ix

	3.6.3 Total Phenolic Contents (TPC)	62
	3.6.4 Ferric Reducing Antioxidant Power (FRAP)	63
	3.6.5 DPPH Free Radical Scavenging Activity	63
3.7	Sensory evaluation of S. polycystum enriched bread	64
3.8	Microbiology test of S. polycystum enriched bread	64
3.9	Angiotensin converting enzyme inhibitory (ACE-i) in vitro test of	65
	S. polycystum powder and S. polycystum enriched bread	
	3.9.1 Sample preparation	65
	3.9.2 ACE inhibition acitvity assay	66
3.10	Clinical intervention trial	67
	3.10.1 Human ethics application and informed consent	67
	3.10.2 Study design	67
	3.10.3 Study location	68
	3.10.4 Sample size calculation	68
	3.10.5 Subject recruitment	68
	3.10,6 Blood pressure measurement	69
	3.10.7 Anthropometry measurement	70
	3.10.8 Blood glucose measurement	70
	3.10.9 Total blood cholesterol measurement	71
	3.10.10 Study protocol	71
3.11	Statistical analysis	72
CHAP	TER 4 : RESULTS AND DISCUSSION	74
4.1	Outline	74
4.2	Physical Properties of Bread	74
	4.2.1 Farinograph analysis	74
	a. Water absorption	75
	b. Development time	77
	c. Stability time	78
	d. Mixing tolerance index	78
	4.2.2 Physical characteristics	80
4.3	Nutritional composition	84
	4.3.1 Proximate composition of <i>S. polycystum</i> powder	84

a. Dietary fibre	85
b. Ash	85
c. Carbohydrate	85
d. Moisture content	86
e. Crude protein	86
f. Crude fat	87
4.3.2 Proximate composition of control and S. polycystum	88
enriched bread	
a. Moisture	88
b. Ash	88
c. Crude fat	90
d. Dietary fibre	90
e. Crude protein	91
f. Carbohydrate	92
4.3.3 Mineral content of <i>S. polycystum</i> powder	92
4.3.4 Mineral content of <i>S. polycystum</i> enriched breads	96
a. Macro elements	96
b. Trace elements	99
Phenolic contents and antioxidant activities	101
4.4.1 Extraction yield	101
4.4.2 Total phenolic content	103
4.4.3 Antioxidant activities	106
a. Ferric reducing antioxidant power (FRAP)	106
b. DPPH radical scavenging activity	108
Sensory evaluation	113
4.5.1 Colour	113
4.5.2 Aroma	114
4.5.3 Taste	115
4.5.4 Texture	117
4.5.5 Chewiness	117
4.5.6 Aftertaste	118
4.5.7 Overall acceptance	119
Microbiological analysis	120

4.4

4.5

4.6

xi

4.7	In vitro test of ACE-inhibitor activity	126
4.8	Clinical intervention study	130
4.9	Subject background	130
	4.9.1 BMI classification	134
	4.9.2 Blood glucose and total cholesterol	135
	4.9.3 Subjects' lifestyle	135
	a. Eating outside	135
	b. Physical activities	136
	a. Sleeping hours	137
4.10	Dietary intake among subjects	138
	4.10.1 Protein	138
	4.10.2 Sugar	141
	4.10.3 Vitamin C	141
	4.10.4 Cholesterol	142
4.11	Sequence and interval effect	143
4.12	Stage one of intervention	144
	4.12.1 The changes of SBP	146
	4.12.2 The changes of DBP	147
	4.12.3 The changes of Pulse	148
	4.12.4 The changes of blood glucose	149
	4.10.5 The changes of total cholesterol	150
4.13	Stage two of intervention	151
	4.13.1 The changes of SBP	153
	4.13.2 The changes of DBP	154
	4.13.3 The changes of Pulse	154
	4.13.4 The changes of blood glucose	155
	4.13.5 The changes of total cholesterol	156
4.14	Comparison of treatment effect within the same group	158
4.15	Blood pressure lowering effect	158
	4.15.1 ACE inhibitor peptides	161
	4.15.2 Dietary fibre	161
	4.15.3 Sodium-potassium ratio	162
	4.15.4 Calcium and magnesium contents	163

	4.15.5	Phenolic content and antioxidant activities	163
4.16	Cholest	erol lowering effect	165
	4.16.1	Dietary fibre	165
	4.16.2	Phenolic content and antioxidant activities	166
4.17 Blood glucose lowering		lucose lowering effects	167
	4.17.1	The use of bread improver in bread making	167
4.18	Correlation between dietary intakes against BP-Pulse-TC		168
	4.18.1	Correlations after Consumption of Seaweed Bread	168
	4.18.1	Correlations after Consumption of Control Bread	172

CHAPTER 5 : CONCLUSIONS AND SUGGESTIONS FOR	175
FUTURE RESEARCH	
5.1 Conclusion	175
5.2 Limitations and suggestions	178
REFERENCES	180
APPENDICES	235
UNIVERSITI MALAYSIA SABAH	

LIST OF TABLES

		Page
Table 2.1:	Classification of blood pressure	11
Table 2.2:	Classification of Sargassum polycystum (C. Agardh)	39
Table 2.3:	Classification of Kappaphycus alvarezii (Doty) Doty	42
Table 3.1:	Formulation of control and seaweed breads	52
Table 4.1:	Farinograph analysis of control and SP enriched breads	76
Table 4.2:	Physical characteristics of breads	81
Table 4.3:	Proximate analysis of SP powder	84
Table 4.4:	Proximata analysis of SP enriched breads	89
Table 4.5:	Mineral content of SP powder	93
Table 4.6:	Macro elements of SP enriched breads	98
Table 4.7:	Trace elements of SP enriched breads	100
Table 4.8:	Yield of extraction	102
Table 4.9:	TP <mark>C in wat</mark> er and ethanol extracts	103
Table 4.10:	FRAP activity in water and ethanol extracts	106
Table 4.11:	DPPH activity of water and ethanol extracts	109
Table 4.12:	TPC, FRAP and DPPH activity of positive control SABAH	113
Table 4.13:	Hedonic test of SP enriched breads	116
Table 4.14:	Microbiology test	121
Table 4.15:	ACE inhibition activity	127
Table 4.16:	Initial baseline characteristics	133
Table 4.17:	Baseline characteristics after washout	134
Table 4.18:	BMI classifications	135
Table 4.19:	Frequencies of eating outside	136
Table 4.20:	Involvement in physical activities	137
Table 4.21:	Subjects and their sleeping hours	138
Table 4.22:	Average of daily macronutrient intake	139
Table 4.23:	Average of daily mineral intake	139
Table 4.24:	Average of daily vitamin intake	140
Table 4.25:	Average of daily cholesterol, sugar and PUFAs intake	140

Table 4.26:	le 4.26: Comparison between baseline and 4th week values	
	in Stage One	
Table 4.27:	Comparison between baseline and 4th week values	152
	in Stage Two	
Table 4.28:	Correlation of SBP, DBP, Pulse and TC against dietary	169
	intakes after four weeks consumption of seaweed bread	
Table 4.29:	Correlation of SBP, DBP, Pulse and TC against	173
	dietary intakes after consumption of control bread	

LIST OF FIGURES

		Page
Figure 2.1:	Alginates structure	26
Figure 4.1:	Correlation between TPC and FRAP activity in ethanol extracts	108
Figure 4.2:	Correlation between TPC and FRAP activity in water extracts	108
Figure 4.3:	Radical scavenging activity of water extracts	110
Figure 4.4:	Radical scavenging activity of ethanol extracts	111
Figure 4.5:	Correlation between TPC and DPPH in water extracts	112
Figure 4.6:	Correlation between TPC and DPPH in ethanol extracts	112
Figure 4.7:	Subjects' Enrolment, Allocation and Withdrawal	132
Figure 4.8:	The changes of SBP in stage one	146
Figure 4.9:	The changes of DBP in stage one	147
Figure 4.10:	The changes of pulse in stage one	148
Figure 4.11:	The changes of glucose in stage one	149
Figure 4.12:	Th <mark>e change</mark> s of TC in stage one	150
Figure 4.13:	The changes of SBP in stage two	153
Figure 4.14:	The changes of DBP in stage two	154
Figure 4.15:	The changes of pulse in stage two MALAYSIA SABAH	154
Figure 4.16:	The changes of glucose in stage two	155
Figure 4.17:	The changes of TC in stage two	156

LIST OF ABBREVIATIONS

A1	-	Group A when receives seaweed bread in Stage One
A2	-	Group A when receives control bread in Stage Two
ALA	-	a-linolenic acid
A	-	Aluminium
ALT	-	alanine aminotransferase
ANOVA	-	Analysis of Variance
ARP	-	Anti-Radical Power
B1	-	Group B when receives seaweed bread in Stage Two
B2	-	Group B when receives control bread in Stage One
BMI	-	Body Mass Index
BP	-	Blood pressure
CVD	-	Cardiovascular Disease
DASH	TI	Dietary Approaches to Stop Hypertension
DBP	-	Diastolic blood pressure
DPPH	-	2,2-diphenyl-1-picrylhydrazyl
DW		Dry Weight
FBG	S.A.	Fasting blood glucose SITI MALAYSIA SABAH
FTC	-	Fasting total cholesterol
FRAP	-	Ferric Reducing Antiradical Power
HAT	-	Hydrogen atom transfer
KA	-	Kappaphycus alvarezii
LDL-C	-	Low Density Lipoprotein Cholesterol
NHMS	-	National Health and Morbidity Survey
PUFA		Polyunsaturated Fatty Acids
PVD	-	Peripheral Vascular Disease
RE	- 1	Retinol
ROS		Reactive Oxygen Species
SBP	-	Systolic blood pressure
S.D	-	Standard deviation
SEM	-	Standard Error Mean

SET	-	Single Electron Transfer
SP	-	Sargassum polycystum
тс	-	Total Cholesterol
UV	-	Ultra Violet
WHO	-	World Health Organization
	-	

LIST OF APPENDICES

		Page
APPENDIX A:	Conferences and award	235
APPENDIX B:	Sargassum polycystum	236
APPENDIX C:	Sargassum polycystum powder	237
APPENDIX D:	Sargassum polycystum enriched bread	238
APPENDIX E:	Research Ethic's Approval	239
APPENDIX F:	Subject Infromation Sheet	241
APPENDIX G:	Informed consent form	247
APPENDIX H:	Anthropometric measurement form	249
APPENDIX I:	Blood pressure, blood glucose and total cholesterol form	250
APPENDIX J:	Checklist form	251
APPENDIX K:	24-Hour dietary recall form	252
APPENDIX L:	Demographic questionaire	253

UNIVERSITI MALAYSIA SABAH

CHAPTER 1

INTRODUCTION

1.1 Background

Blood pressure is defined as the force exerted by the blood flow against the tunnel of blood vessels (Stamler, Stamler and Neaton, 1993). Also known as brachial arterial pressure, it is measured on the upper arm where blood circulates away from the heart. This normal arterial pressure is produced as the heart pumps the blood throughout systemic circulation of human body. However, interference from physiology changes might affect the systemic circulation (Levitan, Wolk and Mittleman, 2009), resulting in a lower or a higher blood pressure reading (Lifton, Gharavi and Geller, 2001). Lower blood pressure is also known as hypotension whereby a raised blood pressure is called hypertension (Appel, 2010).

Hypertension is further explained as a continuous elevated systolic blood pressure (SBP) of 140 mmHg or greater and/or diastolic blood pressure (DBP) of 90 mmHq or greater (Ministry of Health Malaysia, 2013). It is an evident major risk factor for heart, cerebrovascular and peripheral diseases globally (Ueshima, Sekikawa, Miura, Turin, Takashima, Kita, Watanabe, Kadota, Okuda and Kadowaki, 2008). Being listed as one of the leading burden of non-communicable diseases, hypertension has caused at least 7.5 million deaths per year worldwide (WHO, 2014). The latest National Health and Morbidity Survey (2015) report shown that the prevalence of hypertension among Malaysians aged 18 and 30 years above has 32.7% 50.4% respectively, which demonstrated that increased to and approximately one third to half of Malaysian adults population are now suffering from hypertension (Ministry of Health Malaysia, 2015). The prevalence has mainly increased with rising awareness on blood pressure control in the hypertensive population (Chobanian, Bakris, Black, Cushman, Green, Izzo, Jones, Materson, Oparil, Wright and Roccella, 2003).

It has also been reported that 37% of Malaysian are belonged to prehypertension category, which demonstrated that approximately 11.1 million of Malaysia adult populations are suffering from pre-hypertension, leading to hypertension if left untreated (Ministry of Health Malaysia, 2013). Furthermore, the increased cardiovascular events such as stroke, diabetes and kidney failure are seen closely associated with the incidence of pre-hypertension. There is approximately a third of blood pressure-related deaths from coronary heart disease have been estimated to occur in individuals with pre-hypertension (Greenlund, Croft and Mensah, 2004). Thus, it is vital to raise public and clinical health level awareness on the prevention of pre-hypertension as the pre-hypertensives are at greater risk for progression to hypertension (Ministry of Health Malaysia, 2013; Chobanian et al., 2003). Early possible detection of pre-hypertension and prevention of hypertension among individuals should be assessed through 6 - 12monthly follow-up and decision regarding pharmacological treatment should be based on the overall of individual cardiovascular risks (Liszka, Mainous, King, Everett and Egan, 2005).

Hence, controlling blood pressure within its normal range is very important (Conlin, 2008). It should be measured frequently (Chia, Keevil and Ching, 2013) because most of hypertension cases in Malaysia have remained undiagnosed (Ministry of Health Malaysia, 2013). The changes in blood pressure can be controlled by self-monitoring at home and workplace (Pickering, 1996). Effective blood pressure control and diagnosis of initial hypertension may help to reduce the burden of non-communicable diseases (Rampal, Rampal, Syed Azhar and Rahman, 2008). Upon diagnosis, the practice on therapeutic lifestyle changes as an alternative way to control blood pressure will be recommended to all individuals with hypertension and pre-hypertension (Ministry of Health Malaysia, 2013).

Therapeutic lifestyle changes such as routine exercise (Montero, Roche and Martinez-Rodriguez, 2014), smoking cessation (Ezzati, Henley, Thun and Lopez, 2005), weight loss management (Costa, 2002), restriction of alcohol intake (Rakic, Puddey, Burke, Dimmitt and Beilin, 1998) and cutting down sodium intake (Graudal, Hubeck-Graudal and Jürgens, 2012) have been discovered to help reduce

2

blood pressure level (Brook, Appel, Rubenfire, Ogedegbe, Bisognano, Elliott, Fuchs, Hughes, Lackland, Staffileno, Townsend and Rajagopalan, 2013). People are also highly encouraged to practice Dietary Approaches to Stop Hypertension (DASH) Eating Plan as another way of lifestyle changes to control their blood pressure (Boden-Albala and Sacco, 2000). DASH is a combination of diet with plenty of fruits and vegetables which are rich in potassium and calcium content; with a reduced cholesterol content as well as total saturated fat (Houston, 2005). DASH diet has been shown to be safe and effective in lowering blood pressure among general population (Appel, 2010). Furthermore, it has been reported that DASH eating plan is more effective than taking treatment drugs in helping to lower blood pressure in some individuals (Chobanian *et al.*, 2003).

Over the years, studies have reported that non-drug treatment for hypertensive are effective by consuming natural foods containing antioxidants (Galley, Thornton, Howdle, Walker and Webster, 1997), sour milk (Hata, Yamamoto, Ohni, Nakajima, Nakamura and Takano, 1996), immune milk (Sharpe, Gamble and Sharpe, 1994), garlic extracts (Steiner, Khan, Holbert and Lin, 1996) and lactobacillus component (Nakajima, Hata, Osono, Hamura, Kobayashi and Watanuki, 1995). These findings prompted the idea on developing a functional food product which can be useful in delivering health benefit properties (Fleurence, Morancais, Dumay, Decottignies, Turpin, Munier, Garcia-Bueno and Jaouen, 2012). Functional food is a term practically referred to foods or food constituents provided with certain health benefits beyond basic nutrition (Diplock, Aggett, Ashwell, Bornet, Fern and Roberfroid, 1999). Hence, with regards to dissatisfaction of high costs and potentially hazardous side effect of antihypertensive treatment drugs (Gu, Burt, Dillon and Yoon, 2012), the potential of using functional food products for preventive measures is currently on-going.

Seaweed, on the other hand, has been long consumed particularly in Asian countries like China, Japan and Korea (Ismail and Tan, 2002). Seaweed is a type of nutritive edible food which exerts various health benefit properties that reduce the risk of chronic diseases as well as improving the management of chronic diseases (Mohamed, Hashim and Rahman, 2012). Studies have reported that edible

3

seaweeds are rich in polysaccharides, minerals and vitamins (Holdt and Kraan, 2011). They also contain bioactive compounds with antioxidative, anticancer and antimicrobial properties (Kumar, Ganesan, Suresh and Bhaskar, 2008a). There are three main edible seaweed species available in Malaysia, namely as *Kappaphycus alvarezii* (Rhodophyta), *Caulerpa lentillifera* (Chlorophyta) and *Sargassum polycystum* (Phaeophyta) (Matanjun, Mohammed, Mustapha, Muhammad and Cheng, 2008). Among the three seaweed species mentioned above, the use of *S. polycystum* in bread making application will be the main focus in this study.

S. polycystum is a local brown seaweed species collected from the coastal area of Semporna, Sabah, Malaysia. It has been reported that *S. polycystum* contains high total dietary fiber (39.67%) and ash (42.40%) (Matanjun, Mohammed, Mustapha and Muhammad, 2009). In addition, it has been shown to have *in vitro* (Matanjun *et al.*, 2008) and *in vivo* antioxidant activities (Matanjun, Mohamed, Muhammad and Mustapha, 2010). Protein extracts of *S. polycystum* have also portrayed sequences of ACE inhibitor peptides indicating that it possesses natural anti-hypertensive property (Ahmad, Sulaiman, Awang, Chye and Matanjun, 2014). The above properties of *S. polycystum* are appropriate to be used as a functional ingredient in developing bread product for preventing or treating hypertension.

To date, limited studies have been conducted on the use of seaweed as a food ingredient in bread making. According to Hall, Fairclough, Mahadevana and Paxmana (2012), *Ascophyllum nodosum* enriched bread has reduced subsequent energy intake in healthy, overweight males with no effect on their postprandial glucose concentration. Mamat, Matanjun, Ibrahim, Md. Amin, Hamid and Rameli (2013) have incorporated *Kappaphycus alvarezii* powder in bread making but the study only focused on the textural properties, and none of its nutritional content. Additionally, Fitzgerald, Gallagher, Doran, Auty, Prietod and Hayes (2014b) have shown that the incorporation of protein hydrolysate from red seaweed, *Palmaria palmata* into bread is well accepted by consumers, however, the antihypertensive effect of the bread product on blood pressure using human clinical trial has not been investigated.