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ABSTRACT 

Recently, artificial microRNA (amiRNA) technology has been widely used as a tool 
for creating loss-of-function mutants, especially in studies involving functional 
profiling, as it is able to silence genes or gene families in a specific manner. 
Artificial microRNA is derived by replacing the native mature miRNA duplex from an 
endogenous precursor miRNA (pre-miRNA) with synthetic ones. Like mature 
miRNA, amiRNA is designed with an ability to bind complementarily to its target 
_gene. The aim of the study was to develop amiRNAs using different backbones, 
which can then be used to silence the endogenous pineapple microRNA MIR535 
family. In order to find the efficient amiRNA silencing in pineapple, stems of 
precursors were modified, as this will affect their processing efficiency by 
endogenous miRNA biogenesis. And, in order to silence the MIR535family, amiRNA 
was designed with the ability to bind to this mature region, as this increase the 
probability of it targeting more than one miR535 member. The amiRNAs were 
developed from newly discovered pre-miRNA from pineapple, and previously 
identified ones from Arabidopsis thaliana and 0ryza sativa. The first step involved 
the identification of the pre-miRNAs from pineapple transcriptomic libraries through 
in silico analysis. The amiRNAs were then designed to target theMIR535family, and 
subsequently inserted into precursors, and synthesized. The sequences of the 
expression cassette (promoter, enhancer, and terminator) were then fused into it, 
before transforming it into the plant expression vector, pCambia1303. Transgenes 
were then inserted into pineapple callus (MD2 hybrid) through Agrobacterium 
mediated transformation. Transgenic lines developed were used for expression 
profiling of amiRNAs and miR535's through stem-loop RT-qPCR. Three precursors 
found from pineapple (pre-miR156, pre-miR399, pre-miR2673) were modified (to 
have 20nt and S0nt stem) and used to carry amiRNA, together with the precursors 
of A. thaliana (pre-miR319) and 0. sativa (pre-miR528). Here, transgenic lines 
which have been inserted with these precursors showed the presence of amiRNA. 
Two pineapple precursors were found to be highly efficient in expressing amiRNA 
i.e. pre-miR156-50nt stem (Cq value of 20), followed by pre-miR2673 (Cq value of
24.4). The precursors from A. thaliana and 0. sativa were also found to be
functional in pineapple, each with the Cq values of 20.8 and 23.8, respectively.
Next, the ability of this amiRNA to silence the target gene (mature miR535b) was
observed. In conjunction with the expression of amiRNA in transgenic callus, the
expressions of target gene was found downregulated, with the highest silencing
rate was by amiRNA produced from pre-miR156-50nt and pre-miR319. Also, the
expressions of other mature miR535's were also quantified, and were found
downregulated. In conclusion, the amiRNA technology was successfully developed
for pineapple evidenced by the creation of loss-of-function mutant intheMIR535
family. The pineapple endogenous precursor was found capable to serve as
backbone for amiRNA technology in pineapple. This study suggests that targeting
'common region' when designing amiRNA results in the silencing of several genes
of the same family at the same time. Now, two highly efficient amiRNA precursors,
pre-miR156 and pre-miR319 can be utilized in gene silencing- programs in
pineapple.
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ABSTRAK 

PENGHASILAN TANAMAN TRANSGENIC UNTUK PEMPROFILAN FUNGSI 

GEN DALAM KELUARGA MIR535 DENGAN MENGGUNAKAN TEKNOLOGI 

'ARTIFICIAL MICRORNA' 

Teknologi 'artificial microRNA' (amiRNA) telah digunakan secara meluas untuk menghasilkan 
tanaman mutan, terutamanya bagi kajian melibatkan pemprofilan fungsi gen, kerana dapat 
menghalang ekspresi sesuatu gen atau kesemua gen dalam keluarga yang sama. AmiRNA 
dihasilkan dengan menggantikan jujukan asal miRNA matang di dalam prekursor miRNA 
(pre-miRNA) dengan jujukan sintetik. Jujukan sintetik ini menyerupai jujukan miRNA asal, 
dimana ia direka supaya mempunyai keupayaan melekat pada gen yang disasarkan. Kajian 

ini dijalankan dengan tujuan membangunkan teknologi amiRNA di dalam nanas, dengan 
menggunakan prekursor daripada nanas, A. tha/iana, dan 0. sativa. AmiRNA ini 
mensasarkan untuk menghalang ekspresi gen di dalam keluarga 'microRNA' MIR535, yang 
diwakili oleh lebih daripada 50 gen (miRBase, keluaran 21.0). Sebagai miRNA, miR535 ini 

mempunyai jujukan yang berbeza di bahagian 'stem', tetapi berkongsi jujukan yang hampir 
sama di 'mature' miRNA. Untuk menghalang ekspresi gen dalam keluarga MIR535, amiRNA 
telah direka dengan keupayaan melekat pada bahagian 'mature' miRNA, kerana ini 
menambahkan kebarangkalian amiRNA ini untuk melekat pada lebih daripada satu miR535. 
Kajian ini telah dimulakan dengan mengenalpasti pre-miRNA dari perpustakaan transkrip 

nanas mela'lui analisis berkomputer. AmiRNA kemudiannya direka mensasarkan MIR535, 
dimasukkan ke dalam prekursor, dan disintesis. Jujukan 'promoter', 'enhancer', dan 
'terminator' digabungkan bersamanya, sebelum dimasukkan ke dalam vektor, 
pCambia1303. Gen ini kemudiannya dimasukkan ke dalam kalus nanas (MD2 hibrid) melalui 
transformasi menggunakan Agrobacterium tumefaciens. Tanaman transgenik yang terhasil 
digunakan untuk memprofil ekspresi amiRNAs dan miR535 melalui 'stem-loop' RT-qPCR. 
Tiga prekursor (pre-miR156, pre-miR399, pre-miR2673) digunakan untuk membawa 
amiRNA, bersama-sama dengan prekursor oleh A. thaliana (pre-miR319) dan 0. sativa (pre­
miR528). Tanaman transgenik yang telah dimasukkan dengan prekursor ini telah 
menunjukkan kehadiran amiRNA apabila dianalisis dengan q-PCR. Dua prekursor nanas 
didapati sangat berkesan dalam mengekspresikan amiRNA iaitu pre-miR156 (nilai Cq pada 
paras 20), diikuti oleh pre-miR2673 (nilai Cq pada paras 24.4). Prekursor dari A. thaliana 

dan 0. sativa pula telah didapati sangat berkesan dalam nanas, masing-masing dengan nilai 
Cq pada paras 20.8 dan 23.8. Seterusnya, keupayaan amiRNA untuk menghalang ekspresi 
gen sasaran (miR535) diperhatikan. Dengan kehadiran amiRNA dalam tanaman transgenik, 
ekspresi gen sasaran telah menurun, dengan kadar tertinggi adalah dari pra-miR156 dan 
pra-miR319. Selain itu, ekspresi miR535 yang lain juga diprofil, dan kadar ekspresinya juga 
didapati menurun. Ini sekali gus menunjukkan bahawa teknologi amiRNA telah berjaya 
dibangunkan untuk nanas yang telah menyebabkan penghasilan mutan yang ekspresi gen 
dalam keluarga MIR535 terhalang. Kesimpulannya, prekursor daripada nanas didapati 
mampu untuk berkhidmat sebagai tulang belakang untuk teknologi amiRNA dalam nanas. 
Selain itu, kajian ini menunjukkan bahawa amiRNA yang direka dengan mensasarkan 
kawasan yang mempunyai tahap perkongsian jujukan yang tinggi dapat menghalang 
ekspresi beberapa gen dalam keluarga yang sama pada masa yang sama. Kini, dua 
prekursor yang sangat berkesan, pre-miR156 dan pre-miR319 boleh digunakan dalam 

program pemadaman gen di dalam nanas menggunakan teknologi amiRNA ini. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Ananas comosus or pineapple is one of many commercial fruits available in the global 

market. Nevertheless, compared with other fruits, pineapple has a distinctive position in 

that it is ranked second in terms of global production among major tropical fruits (after 

only the banana) by the United Nations Conference on Trade and Development 

(UNCTAD). Malaysia was once the world's largest producer of pineapple, but is now 

ranked fifteenth (as of 2014). According to the Malaysian Pineapple Industry Board 

(MPIB), there are nine main pineapple cultivars grown in Malaysia at present, namely 

Moris, N36, Sarawak, Moris Gajah, Gandul, Yankee, Josaphine, Masapine and MD2. 

Among these, MD2 pineapples have been most successfully commercialised and are 

traded in about 75% of the European Union market. Indicative of the potential of this 

cultivar, MD2 has been listed as a key crop under the National Key Economic Area 

(NKEA) of the Economic Transformation Programme (ETP). 

MicroRNAs (miRNA) are a type of small RNA ( ~21nt) which are processed by the 

Dicer-likel (DCLl) protein from a longer sequence of a secondary structure called the 

precursor microRNA (pre-miRNA, or precursor) (Ambres et al., 2003). Since miRNAs are 

small and single stranded, it can bind complementarily to other single-stranded 

sequences such as the mRNA transcripts. When this occurs, the translation process of 

mRNA is disrupted, and no protein is produced (Ambres et al., 2003). This mechanism 

is called gene silencing by endogenous miRNA. Several miRNAs have been discovered, 

and have been reported to regulate important genes in plants (Palatnik et al., 2007; 

Debernardi et al., 2012). However, the functions of many other miRNAs are yet to be 

profiled, including the function of miR535. This miRNA family has been found in various 

plants, although its function remains unknown (Yusuf et al., 2015; Pantaleo et al., 

2016). This miRNA family have been reported to be expressed in pineapple, while more 

than 50 members have been found in plants as catalogued in the miRNA database 

(miRBase, Release 21.0). 



AmiRNA is a genetic-based technology developed to mimic gene silencing by 

miRNA. Its difference, however, also represents an advantage over the use of miRNA, 

whereby it can be custom-designed to silence a specific target gene within an 

organism. An amiRNA is a ~21 nt oligonucleotide with a sequence that is 

complimentary to the targeted mRNA sequence (Schwab et al., 2006). It has been 

reported that, when the sequence was inserted into the endogenous pre-miRNA 

(backbone), thus replacing the natural ~21 nt miRNA, it was able to function normally 

(i.e., able to produce amiRNA). AmiRNA then bound to the target mRNA and silenced it 

(Schwab et al., 2006). 

1.2 Problem Statement 

Among the constraints faced in the production of pineapple is the cultivation of the 

seedlings themselves, as the parent plant requires a significant length of time to 

produce slips or suckers. In the future, focused breeding will be essential to the 

economy, but the dependency on one cultivar (MD2) indirectly contributes to the 

limitations in pineapple production. Therefore, the production of new varieties or the 

improvement of the current MD2 variety through genetic modification may be needed. 

Crop improvement and development of new variety is not solely about knocking 

or inserting one particular gene. It's about knocking or inserting the 'key' 

gene/genes/gene family of that particular pathway. However, current practice in plant 

breeding relies on conventional techniques such as conventional crossing or chemically 

induced mutations. Although these techniques have long been reported as effective, 

however they are time consuming and occurs in a random manner. This is the limitation 

that can be addressed by amiRNA technique. The establishment of amiRNA technique 

holds significant potential for development of new varieties in pineapple through large 

scale yet specific gene silencing, for this case silencing each gene on one particular 

pathway (individually or the whole family). 

AmiRNA has been established and widely used for the creation of loss-of­

function mutants/lines in plants and commercial crops such as Oryza sativa, Arabidopsis 

thaliana/ Zea mays and Vitis vinifera (Schwab et al., 2006; Warthmann et al., 2008; 

Meng et al., 2011). However, since pre-miRNA is known to be species specific, 

precursors used as amiRNA backbones in these plants may or may not be compatible 

with pineapple. And up until now, amiRNA system for gene silencing in pineapple has 

yet to be established. 
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