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ABSTRACT 

The effect of carburisation process utilizing Na2e03-NaCI as electrolyte on the 

microstructure and sliding wear behavior of mild steel had been investigated. The 

carburisation process was conducted at a constant voltage supply of 4.5 V at 

860
°

e for 1 and 3 hours. Sliding tests of the carburised steels were conducted at 

different loads and speeds under dry, vacuum and oil lubrication conditions. The 

wear morphology of the sliding tests were analysed. Increasing duration of the 

carburisation process led to a significant increase in the peak hardness and case 

depth. The steel specimen carburised for 1 hour had a peak hardness of 910 HV 

and a case depth of 450 µm. Three hours of carburisation produced higher peak 

hardness and case depth of 1014 HV and 690 µm, respectively. The hardness were 

significantly higher than the non-carburised specimen with the hardness of 520 HV. 

The surface of the carburised specimen was dominated by retained austenite with 

grain boundaries along with some martensite. Towards the peak hardness, the 

grain boundaries gradually diminished, and the amount of retained austenite 

decreased while the amount of martensite increased. In the initial stage of sliding 

wear test at 10 m/min speed, patches of nascent cavities on the worn surfaces 

produced by adhesion were formed. These acted as preferential sites for fracture to 

take place, resulting in a marked increase in the frictional force. Longer 

carburisation duration also resulted in higher tendency of the carburised layer to 

form a better anti-wear oxide during sliding. The oxide formed on the worn surface 

of the specimen carburized for 1 hours was hematite. Both hematite and magnetite 

known for its better lubricity, were detected on the worn surface of the specimen 

carburised for 3 hours. The increase in peak hardness and formation of the 

magnetite enhanced the adhesive wear resistance which in turn reduced the 

tendency of the specimen to fracture. Longer carburisation duration also resulted in 

the formation of expanded martensite and shallower grain boundaries with lesser 

cementite which further enhance the fracture resistance of the carburised specimen. 

The wear of the counterpart we ball reflected the severity of fractured worn 

surface on sliding specimen. At 10 m/min speed, severe fracture caused the 

formation of severe grooving, cavities, undermined and cracked we grains. 
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Whereas, micro-fracture resulted in wear characterised by fine grooves and fewer 

cavities and undermined we grains. 

Sliding at 70 m/min speed induced formation of magnetite and hematite on 

the worn surface of specimen carburised for 1 hour. Surface fracturing was 

hindered when sliding on carburised specimen. The effect of matrix softening was 

greatly reduced as compared with non-carburised specimens sliding at the same 

speed. Protrusion was formed on the we ball sliding on the carburised specimen 

which replicated from the narrow and deep groove formed on the worn carburised 

specimen. Under lubricated condition, carburised specimen showed formation of 

magnetite and hematite on the worn surface at very high load. Cavities was formed 

owing to the fracture of the oxide on the sliding surface. The oxide debris would 

either rolled between the gap of the sliding surface, causing reduction in the 

coefficient of friction or adhered on the mating we ball that induced groove marks 

on the worn sliding surface. The results obtained, either in dry or lubrication 

condition, concluded that carburised 3 hours specimen showed better wear and 

fatigue resistance during sliding. 
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ABSTRAK 

KESAN PROCESS ELEKTRO-KARBURISASI PADA KESAN TRIBOLOGI 

KELULI LEMBUT 

Kesan proses pengkarbonan dengan menggunakan Na2COrNaCI sebagai elektrolit 

kepada mikrostruktur dan kesan gelongsor haus keluli lembut telah dikaji. Proses 

pengkarbonan dijalankan di bawah bekalan voltan berterusan 4.5 V pada 860 °C 

selama 1 dan 3 jam. Ujian gelongsor untuk kelu!i yang dikarbonkan dijalankan 

untuk beban dan kelajuan yang berlainan dalam keadaan kering/ vakum dan !incir. 

Permukaan haus selepas ujian gelongsor telah dikaji. Tempoh pengkarbonan yang 

!ebih lama meningkatkan kedalaman dan kekerasan puncak. Spesimen yang

dikarbonkan se/ama satu jam mempunyai kekerasan puncak sebanyak 910 HV and 

kedalaman sebanyak 450 µm. Pengkarbonan selama tiga Jam menghasilkan 

kekerasan puncak sebanyak 1014 HV dan kedalaman sebanyak 690 µm. Kekerasan 

ini lebih tinggi daripada specimen yang tidak dikarbonkan dengan kekerasan 

sebanyak 520 HV. Permukaan specimen yang dikarbonkan menpunyai banyak 

austenit dan sempadan bijirin dengan sedikit martensit. Sempadan bijirin semakin 

hilang/ austenit menjadi kurang/ martensit semakin banyak ke arah kekerasan 

puncak. Di peringkat awal ujian haus gelongsor pada kelajuan 10 m/min terbentuk 

kumpu!an rongga yang dihasi/kan oleh lekatan. lni bertindak sebagai tempat 

keutamaan untuk keretakan berlaku/ menyebabkan peningkatan yang ketara dalam 

daya geseran. Proses pengkarbonan yang lebih lama menyebabkan meningkat 

kecenderungan untuk lapisan dikarbonkan membentuk anti haus oksida. Oksida 

yang dibentuk atas permukaan haus spesimen dikarbonkan selama 1 jam ialah 

hematit. Kedua-dua hematit dan magnetit kenal dengan lubrisity yang lebih tinggi, 

dikesan atas permukaan haus spesimen dikarbonkan selama 3 jam. Peningkatan 

dalam puncak kekerasan dan pembentukan magnetit meningkatkan rintangan 

kehausan pelekat dan mengurangkan kebarangkalian spesimen untuk meretak. 

Tempoh pengkarbon yang !ebih lama juga menyebabkan pembentukan martensit 

berkembang dan sempadan bijirin yang cetek dengan sikit simentit yang 

meningkatkan rintangan retakan spesimen yang dikarbonkan. Retakan teruk 

dicerminkan oleh kehausan bola pasang WC. Pada kelajuan 10 m/min retakan 

teruk disebabkan pembentukan a/ur teruly rongga/ pe!emahan dan peretakan bijirin 
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we Manakala, m1kro-retakan menyebabkan kehausan da!am bentuk alur ha/us, 

kurang rongga dan pelemahan bijirln we

Gelongsor pada ke!ajuan 70 m/min membentuk hematit dan magnetit di 

atas permukaan haus spesimen dikarbonkan selama 1 jam. Peretakan di 

permukaan telah dihalang apabila menggelongsor atas spesimen yang dikarbonkan. 

Kesan pelembutkan matriks banyak direndahkan berbanding dengan spesimen 

yang tidak dikarbonkan pada ke!ajuan yang sama. Penonjolan yang terbentuk di 

bola we apabi/a mengelonsor atas spesimen yang dikarbonkan merupakan replikasi 

dari alur yang sempit dan da!am atas spesimen haus yang dikarbonkan. Dalam 

keadaan pelinciran spesimen yang dikarbonkan membentuk hematit dan magnetit 

di atas permukaan haus pada beban yang sangat tinggi. Rongga terbentuk 

disebabkan retakan oksida atas permukaan gelongsor. Serpihan oksida akan 

menggolek antara celah gelongsor, mengurangkan eOF atau melekat di pasangan 

bola we dan menyebabkan tanda alur di permukaan haus specimen yang 

digelongsor. Keputusan yang diperoleh1� sama ada da/am keadaan kering atau lincir, 

menyimpulkan spesimen yang dikarbonkan selama 3 jam menunjuk rintangan 

kehausan dan keretakan yang /ebih tinggi semasa gelongsor. 
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