STRUCTURAL DIVERSITY, CHEMOSYSTEMATICS, AND BIOLOGICAL POTENTIAL OF BORNEAN LIVERWORTS (ORDER JUNGERMANNIALES)

NG SHEAN YEAW

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE FOR TROPICAL BIOLOGY AND CONSERVATION UNIVERSITI MALAYSIA SABAH 2017

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: STRUCTURAL DIVERSITY, CHEMOSYSTEMATICS, AND BIOLOGICAL POTENTIAL OF BORNEAN LIVERWORTS (ORDER JUNGERMANNIALES)

IJAZAH: DOCTOR OF PHILOSOPHY (ADVANCEMENT OF BIODIVERSITY)

Saya **NG SHEAN YEAW**, Sesi **2013/2014 – 2016/2017**, mengaku membenarkan tesis Doktor falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

> Disahkan Oleh, NURULAIN BINTI ISMAIL LIBRARIAN COMMENSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

Prof. Dr. Charles S. Vairappan) Renvelia

(Assoc. Prof. Dr. Monica Suleiman) Penyelia bersama

(Dr. Takashi Kamada) Penyelia bersama

Tarikh: 07 Ogos 2017

NG SHEAN YEAW

DX1311003T

DECLARATION

I declare that this dissertation is based on my original work, except for quotations and summaries, each of which has been fully acknowledged.

7th AUGUST 2017

Ng-

NG SHEAN YEAW DX1311003T

CERTIFICATION

NAME : NG SHEAN YEAW

MATRIC NO : DX1311003T

- TITLE :STRUCTURAL DIVERSITY, CHEMOSYSTEMATICS, AND BIOLOGICAL POTENTIAL OF BORNEAN LIVERWORTS (ORDER JUNGERMANNIALES)
- **DEGREE** : DOCTOR OF PHILOSOPHY (ADVANCEMENT OF BIODIVERSITY)

VIVA DATE : 19th July 2017

CERTIFIED BY

SIGNATURE

SUPERVISOR Prof. Dr. Charles S. Vairappan

CO-SUPERVISOR

Assoc. Prof. Dr. Monica Suleiman

CO-SUPERVISOR

Dr. Takashi Kamada

ACKNOWLEDGEMENT

The completion of this research dissertation is to fulfill the requirement for Doctor of Philosophy degree in Advancement of Biodiversity. Several parties have involved in giving support, advice and guidance throughout the research's period.

First of all, I would like to express my heartfelt gratitude to my supervisor, Prof. Dr. Charles Santhanaraju Vairappan, my co-supervisors Assoc. Prof. Dr. Monica Suleiman and Dr. Takashi Kamada, who gave endless guidance and valuable advice throughout the research investigation and preparation of this dissertation. I sincerely appreciate all the opportunities and exposure given as well as time spent in nurturing me into a mature, independent and knowledgeable person.

Next, I wish to thank Sabah Parks and Sabah Forestry Department for giving the permission to collect the precious liverworts specimens. Thanks are also given to Prof. Dr. Tatsuwo Furuki (Natural History Museum and Institute, Chiba, Japan), Dr. Matt von Konrat (The Field Museum, Chicago, USA) and Miss Laura Briscoe (New York Botanical Garden, New York, USA) for the liverworts species identification. In addition, I would like to thanks Ministry of Higher Education for the MyBrains15 (MyPhD) scholarship for the past three years.

I would like to express my deepest appreciation towards all the staffs of Institute for Tropical and Biological Conservation (ITBC) who involved and helped me for the completion of this research. My appreciation is also extended to Prof. Dr. Jeon You-Jin from Jeju National University for his supervision in conducting cytotoxic assay. I would also convey my gratitude to Prof. Dr. Tatsufumi Okino from Hokkaido University, Japan for his assistance in high resolution mass spectroscopy analysis.

My appreciation also goes to Ms. Ang Mei Yan and Dr. Zhan Zhaoqi from Shimadzu in providing training for liquid chromatography mass spectroscopy and gas chromatography mass spectroscopy.

iv

Finally, I would like to say thank you to my fellow labmates for always being there to give suggestions and share knowledge whenever I encountered problems.

Ng Shean Yeaw

21th July 2017

ABSTRACT

Natural products played a critical role in the development of modern drugs. Over the past 30 years, up to 50 percent of the approved drugs are derived from natural products and more than 75 percent of them are derived from plants. High incidence of cancer, rising rate of infection and inflammation due to antibiotic-resistant bacteria have admonished scientists to look for alternative ways to combat these major medical concerns, Marchantiophyta (liverworts), representing lower plant which are grouped under Bryophytes, has been reported to synthesize diverse array of chemical structures and show several interesting biological activities, Although there are many reports pertaining to liverworts chemistry, yet the information about Bornean liverworts is still scarce. Present study aimed i) to evaluate the structural diversity of selected Bornean liverworts ii) to investigate the chemosystematics of isolated secondary metabolites from collected populations iii) to determine the antibacterial property of pure compounds against human pathogenic bacteria and iv) to investigate the anti-proliferative effect of pure compounds on selected cancer cell lines. Secondary metabolites present in five species of liverworts (Order Jungermanniales) were isolated using chromatographic technique and their spectral data obtained via NMR, HRMS, FTIR and polarimeter. A total of 29 compounds were isolated; a total of 10 new compounds, with another 19 known metabolites. These compounds were sesquiterpenes and diterpenes with interesting chemical skeleton and functionalities. Some of these compounds excellent profiles as chemotaxonomical markers, particularly for showed Mastigophora diclados. Isolated compounds were also subjected to bioassay against antibiotic resistant clinical bacteria and cancer cell lines (HL-60, B16-F10, A549, and HT-29). Chandonanol (CH-1) isolated from Chandonanthus hirtellus exhibited bactericidal activity against Staphylococcus aureus and Escherichia coli where the MIC/MBC ratio was less than four. In addition, herbertene-1,2-diol (MD-5) isolated from Mastigophora diclados showed inhibition against HL-60 cells in a dose-dependent manner through induction of apoptosis. The underlying mechanism of action was via intrinsic mitochondrial pathway by up-regulation of p53 and regulated the ratio of Bax/Bcl-xL in the cells. The compound cis-3,14-clerodadien-13-ol (SA-2) isolated from Schistochila acuminata displayed weak cytotoxic inhibition against B16-F10 cells and was not taken forward for other in-depth analysis. In conclusion, this study has provided valuable information pertaining to the diversity of secondary metabolites in the species studied. It is apparent that information obtained could be used for taxonomical interpretation and as reference in the formulation of lead pharmaceutical candidates.

ABSTRAK

Kepelbagaian Struktur, Kimosistematik, dan Potensi Aktiviti Biologi Metabolit Kedua daripada Lumut Hati di Borneo (Order Jungermanniales)

Produk semula jadi memainkan peranan penting dalam penghasilan ubat-ubtan moden. Sejak 30 tahun yang lalu, sebanyak 50 peratus ubat-ubtan yang diluluskan adalah diperolehi daripada produk semula jadi dan lebih daripada 75 peratus produk semula jadi tersebut adalah berasal daripada tumbuh-tumbuhan. Kejadian kes kanser yang tinggi, peningkatan kadar jangkitan dan keradangan yang disebabkan bakteria yang tahan antibiotik telah menggesa para saintis untuk mencari jalan alternatif untuk memerangi kebimbangan utama ini dalam bidang perubatan. Marchantiophyta (lumut hati), mewakili tumbuhan rendah dibawah kumpulan Briofit telah dilaporkan memiliki kepelbagaian struktur kimia yang tinggi dan menunjukkan beberapa aktiviti biologi yang menarik. Walaupun banyak kajian tentang lumut hati telah dijalankan, namun maklumat tentang lumut hati dari Borneo adalah masih terhad. Matlamat kajian ini adalah i) untuk menyiasat kepelbagaian struktur kimia lumut hati Borneo yang terpilih ii) untuk mengkaji kimosistematik daripada metabolit sekunder yang terpencil dari populasi yang dikumpulkan iii) untuk menentukan antibakteria aktiviti sebatian tulen terhadap bakteria patogenik manusia iv) untuk mengkaji kesan anti-kanser sebatian tulen terhadap sel kanser yang terpilih. Metabolit sekunder di dalam lima spesies lumut hati (Order Jungermanniales) telah dipencilkan melalui teknik kromatografi dan data spektrum tersebut diperolehi melalui NMR, HRMS, FTIR dan polarimeter. Sebanyak 29 sebatian tulen telah dipencilkan termasuk 10 sebatian baru dan 19 metabolit dikenali. Sebatian ini adalah sesguiterpenes dan diterpenes dengan rangka kimia dan fungsi yang menarik. Beberapa sebatian ini menunjukkan profil yang sangat baik sebagai penanda kimotaksonomi, terutamanya bagi Mastigophora diclados. Sebatian terpencil juga tertakluk kepada bioesei terhadap bakteria klinikal tahan antibiotic dan sel kanser (HL-60, B16-F10, A549 dan HT-29). Chandonanol (CH-1) yang dipencilkan daripada Chandonanthus hirtellus telah menunjukkan aktiviti pembunuhan bakteria terhadap Staphylococcus aureus dan Escherichia coli di mana nisbah MIC/MBC adalah kurang daripada empat. Selain itu, herbertene-1,2-diol (MD-5) yang dipencilkan dari Mastigophora diclados telah menunjukkan perencatan terhadap sel-sel HL-60 dengan cara yang bergantung kepada dos sebatian melalui induksi apoptosis. Mekanisme mendasari tindakan adalah melalui laluan mitokondria intrinsic dengan pertambahan p53 dan mengawal selia nisbah Bax/Bcl-xL dalam sel. Sebatian cis-3,14-clerodadien-13-ol (SA-2) yang dipencilkan dari Schistochila acuminata telah menunjukkan perencatan sitotoksik yang lemah terhadap sel-sel B16-F10, dan analisis yang mendalam tidak dijalankan. Kesimpulannya, siasatan telah memberikan maklumat berharga yang berkaitan dengan kepelbagaian metabolit sekunder dalam species yang dikaji. Maklumat ini boleh digunakan dalam tafsiran taksonomi dan sebagai rujukan calon farmaseutikal.

LIST OF CONTENTS

	Page
TITLE	i
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	vi
ABSTRAK	vii
LIST OF CONTENT	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xx
LIST OF ABBREVIATIONS	xxi
LIST OF APPENDICES	xxii

СНА	PTER 1 INTRODUCTION	
1.1	Natural Products Chemistry	1
1.2	Natural Products in Drugs Discovery	2
1.3	Sources of Natural Product-Derived Compounds	3
1.4	Liverwort Biology	4
1.5	Objectives I INIVERSITI MALAYSIA SARAH	7

CHAPTER 2 LITERATURE REVIEW

2.1	Liverwo	rt Botany	8
2.2	Seconda	ary Metabolites in Liverworts	9
	2.2.1	Sesquiterpenoids; Aromadendranes	10
	2.2.2	Sesquiterpenoids; Bisabolanes	12
	2.2.3	Sesquiterpenoids; Eudesmanes	14
	2.2.4	Sesquiterpenoids; Herbertanes	16
	2.2.5	Diterpenoids; Cembranes	18
	2.2.6	Diterpenoids; Clerodanes	20
	2.2.7	Diterpenoids; Dolabellanes	22
	2.2.8	Diterpenoids; Pimaranes	24
	2.2.9	Triterpenoids	26
	2.2.10	Aromatic Compounds; Bibenzyls	28
	2.2.11	Aromatic Compounds; Bis-bibenzyls	30
	2.2.12	Flavonoids; Flavones, Flavanones, and Anthocyanins	32
	2.2.13	Acetogenins	34

2.3	Chemosys	stematics Significance of Liverworts	36
	2.3.1	Chemosystematics of Porellaceae	36
	2.3.2	Chemosystematics of Radulaceae	38
	2.3.3	Chemosystematics of Schistochilaceae	39
2.4	Biological	Activities of Secondary Metabolites from Liverworts	41
	2.4.1	Antioxidant Activity	41
	2.4.2	Antimicrobial Activity	42
	2.4.3	Cytotoxic Activity	43
	2.4.4	Neuroprotective Activity	44
	2.4.5	Muscle Relaxant Activity	44
	2.4.6	Inhibition of Nitric Oxide Production	44
	2.4.7	Liver X-Receptor (LXR) α Agonist and LXR β Antagonist	45
		Activity	
2.5	Liverwort	Lead Pharmaceutical Resource	45

CHAPTER 3 STRUCTURAL DIVERSITY OF FIVE SPECIES OF BORNEAN LIVERWORTS

3.1	Introdu	ction	47
3.2	Method	lology	49
	3.2.1	Collection of Specimens	49
	3.2.2	Chemical Extraction	51
	3.2.3	Chemical Profiling UNIVERSITI MALAYSIA SABAH	52
		3.2.3(i) High Performance Thin Layer Chromatography (HPTLC) Profiling	52
		3.2.3(ii) High Performance Liquid Chromatography (HPLC) Profiling	53
	3.2.4	Isolation and Purification of Compounds	53
		3.2.4(i) Preparative Thin Layer Chromatography (PTLC)	54
		3.2.4(ii) High Performance Liquid Chromatography (HPLC)	54
	3.2.5	Spectroscopic Data Measurement and Chemical Structure Elucidation	54
3.3	Results	and Discussion	55
	3.3.1	Chemical Profiling of Bornean Liverworts	55
	3.3.2	Structural Diversity of Bornean Liverworts	58
		3.3.2(i) Secondary Metabolites Composition in Mastigophora diclados	59
		3.3.2(ii) Secondary Metabolites Composition in <i>Chandonanthus hirtellus</i>	73
		3.3.2(iii) Secondary Metabolites Composition in <i>Gottschelia schizopleura</i>	82

		3.3.2(iv)Secondary Metabolites Composition in <i>Schistochila</i> acuminata	94
		3.3.2(v) Secondary Metabolites Composition in <i>Acrobolbus</i> saccatus	103
	3.4	Conclusion	116
СНАР	TER 4	CHEMOTYPE DIFFERENCES OF BORNEAN LIVERWORTS	5
4.1	Introd	uction	118
4.2	Metho	dology	120
	4.2.1	Collection of Specimens, Chemical Extraction	
		and Chemical Profiling	120
	4.2.2	Isolation and Structural Elucidation	120
		4.2.2(i) Preparative Thin Layer Chromatography (PTLC)	121
4.3	Results	s and Discussion	121
4.4	Conclu	sion	127

CHAPTER 5 ANTIBACTERIAL PROPERTIES OF SECONDARY METABOLITES FROM BORNEAN LIVERWORTS

5.1	Introdu	Iction	128
5.2	Method	lology	131
	5.2.1	Collection of Specimens, Extraction, Isolation and Structure	131
	522		121
	5.2.2	5.2.2(i) Minimim Inhibitory Concentration (MIC)	131
		Determination	
		5.2.2(ii) Minimum Bactericidal Concentration (MBC)	133
		Determination	
5.3	Results	and Discussion	133
	5.3.1	Antibacterial Activity of Bornean Liverwort <i>Mastigophora</i> <i>diclados</i> Derived Compounds	133
	5.3.2	Antibacterial Activity of Bornean Liverwort <i>Chandonanthus</i> hirtellus Derived Compounds	135
	5.3.3	Antibacterial Activity of Bornean Liverwort <i>Gottschelia</i>	137
	5.3.4	Antibacterial Activity of Bornean Liverwort <i>Schistochila</i> acuminata Derived Compounds	138
	5.3.5	Antibacterial Activity of Bornean Liverwort <i>Acrobolbus</i> saccatus Derived Compounds	139
	5.3.6	Mechanism of Action	140
5.4	Conclu	sion	141

CHAPTER 6 CYTOTOXIC PROPERTIES OF SECONDARY METABOLITES FROM BORNEAN LIVERWORTS

6.1	Introdu	uction	142
6.2	Method	dology	144
	6.2.1	Collection of Specimens, Extraction, Isolation and Structure Elucidation	144
	6.2.2	Cytotoxic Assay	144
		6.2.2(i) Chemical and Cancer Cell Lines	144
		6.2.2(ii) Cell Culture	145
		6.2.2(iii) Cell Growth Inhibition Assay	145
		6.2.2(iv)Nuclear Staining with Hoechst 33342	146
		6.2.2(v) Cell Cycle Analysis	146
		6.2.2(vi)Western Blot Analysis	147
		6.2.2(vii) Statistical Analysis	148
6.3	Results	s and Discussion	148
	6.3.1	Cytotoxic Potential of Mastigophora diclados Derived	148
		Secondary Metabolites	
	6.3.2	Cytotoxic Potential of Chandonanthus hirtellus Derived	150
		Secondary Metabolites	
	6.3.3	Cytotoxic Potential of Gottschelia schizopleura Derived	150
		Secondary Metabolites	
	6.3.4	Cytotoxic Potential of <i>Schistochila acuminata</i> Derived Secondary Metabolites	151
	635	Cytotoxic Potential of Acrobolbus saccatus Derived	152
	0.515	Secondary Metabolites	152
	6.3.6	Cytotoxicity of Herbertane-1,2-diol (MD-5) Against	152
		HL-60 Cell Line	
6.4	Conclu	sion	157
СНАР	PTER 7 C	CONCLUSION	159
REFE	RENCES		163
	NDICES		177

LIST OF TABLES

		Page
Table 3.1:	Biomass of the crude extracts obtained from liverwort specimens	57
Table 3.2:	¹ H- and ¹³ C-NMR data for dicladoic acid (MD-1) at 600 and 150 MHz in CDCl ₃ .	65
Table 3.3:	¹ H- and ¹³ C-NMR data for <i>ent</i> -chlorantene G (MD-2) at 600 and 150 MHz in C_6D_6 .	67
Table 3.4:	¹ H- and ¹³ C-NMR data for chandonanol (CH-1) at 600 and 150 MHz in CDCl ₃ .	78
Table 3.5:	¹ H- and ¹³ C-NMR data for (-)-(5 <i>R</i> ,8 <i>S</i> ,9 <i>R</i> ,10 <i>S</i>)- <i>cis</i> - cleroda-3,13-dien-15-methoxy-16-oic acid-16,15- olide-18-ol (GS-1) at 600 and 150 MHz in CDCl ₃ .	86
Table 3.6:	¹ H- and ¹³ C-NMR data for (-)-(5 <i>R</i> ,8 <i>S</i> ,9 <i>R</i> .10 <i>S</i>)- <i>cis</i> - cleroda-3,13-dien-15-methoxy-16-oic acid-16,15- olide-18-al (GS-2) at 600 and 150 MHz in CDCl ₃ .	89
Table 3.7:	¹ H- and ¹³ C-NMR data for schistochilic acid D (SA-1) at 600 and 150 MHz in CDCl ₃ .	98
Table 3.8:	¹ H- and ¹³ C-NMR data for saccatene A (AS-1) at 600 and 150 MHz in CDCl ₃ .	108
Table 3.9:	¹ H- and ¹³ C-NMR data for saccatene B (AS-3) at 600 and 150 MHz in CDCl ₃ .	110
Table 3.10:	¹ H- and ¹³ C-NMR data for saccatene C (AS-4) at 600 and 150 MHz in $CDCl_3$.	112
Table 3.11:	¹ H- and ¹³ C-NMR data for saccatene D (AS-5) at 600 and 150 MHz in CDCl ₃ .	114
Table 4.1:	Chemotype Variations of <i>Mastigophora diclados</i> from Borneo Island.	126

Table 5.1:	Antibacterial activity of compounds from <i>Mastigophora diclados</i> .	134
Table 5.2:	Antibacterial activity of compounds from <i>Chandonanthus hirtellus</i> .	135
Table 5.3:	Antibacterial activity of compounds from <i>Gottschelia schizopleura</i> .	137
Table 5.4:	Antibacterial activity of compounds from Schistochila acuminata.	138
Table 5.5:	Antibacterial activity of compounds from Acrobolbus saccatus.	140
Table 6.1:	Cytotoxic activities of compounds from <i>Mastigophora diclados.</i>	149
Table 6.2:	Cytotoxic activities of compounds from <i>Schistochila acuminata</i> .	151

UNIVERSITI MALAYSIA SABAH

LIST OF FIGURES

		Page
Figure 1.1:	Compound structures of approved drugs derived from natural products.	4
Figure 1.2:	Taxonomy classification of studied liverworts species.	6
Figure 2.1:	Oil bodies of the liverwort, <i>Bazzania harpago</i> (De Not.) Schiffn.	9
Figure 2.2:	Chemical structure of lunularic acid.	10
Figure 2.3:	Aromadendrane-type sesquiterpenoids from liverworts.	11
Figure 2.4:	Bisabolane-type sesquiterpenoids from liverworts.	13
Figure 2.5:	Eudesmane-type sesquiterpenoids from liverworts.	15
Figure 2.6:	Her <mark>bertane-</mark> type sesquiterpenoids from liverworts.	17
Figure 2.7:	Cembrane-type diterpenoids from liverworts.	19
Figure 2.8:	Clerodane-type diterpenoids from liverworts.	21
Figure 2.9:	Dolabellane-type diterpenoids from liverworts.	23
Figure 2.10:	Pimarane-type diterpenoids from liverworts.	25
Figure 2.11:	Several triterpenoids from liverworts.	27
Figure 2.12:	Several bibenzyls from liverworts.	29
Figure 2.13:	Several bis-bibenzyls from liverworts.	31
Figure 2.14:	Several flavonoids from liverworts.	33
Figure 2.15:	Several acetogenins from liverworts.	35

Figure 2.16:	Several chemical types from <i>Porella</i> species.	37
Figure 2.17:	Several chemical structures from <i>Radula</i> species.	38
Figure 2.18:	Several chemical types from <i>Schistochila</i> species.	40
Figure 3.1:	Photographs of the collected liverworts species. A: <i>Mastigophora diclados</i> ; B: <i>Chandonanthus hirtellus</i> ; C: <i>Gottschelia schizopleura</i> ; D: <i>Schistochila acuminata</i> ; E: <i>Acrobolbus saccatus</i>	50
Figure 3.2:	Map of sampling sites.	51
Figure 3.3:	Photographs, oil bodies, HPLC and HPTLC chromatogram crude extract profiles of the collected liverwort specimens (Left; $\lambda = 254$ nm, Right; $\lambda = 366$ nm); A: <i>Mastigophora diclados</i> , B: <i>Chandonanthus hirtellus</i> ,	56
	C: <i>Gottschelia schizopleura</i> , D: <i>Schistochila acuminata</i> , E: <i>Acrobolbus saccatus.</i>	
Figure 3.4:	Chemical structures of the isolated secondary metabolites from <i>Mastigophora diclados</i> .	60
Figure 3.5:	Isolation scheme of <i>Mastigophora diclados</i> (Mount Kinabalu).	61
Figure 3.6:	Isolation scheme of <i>Mastigophora diclados</i> (Mount Alab).	62
Figure 3.7:	Isolation scheme of <i>Mastigophora diclados</i> (Mount Trus Madi)	. 62
Figure 3.8:	Key COSY and HMBC correlations of dicladoic acid (MD-1).	64
Figure 3.9:	Chemical structures of dicladoic acid (MD-1) with assigned chemical shifts.	65
Figure 3.10:	Key COSY and HMBC correlations of <i>ent</i> -chlorantene G (MD-2).	67
Figure 3.11:	Chemical structures of <i>ent</i> -chlorantene G (MD-2) with assigned chemical shifts.	67
Figure 3.12:	Chemical structures of herbertene (MD-3) with assigned chemical shifts.	69

Figure 3.13:	Chemical structures of α -herbertenol (MD-4) with assigned chemical shifts.	70
Figure 3.14:	Chemical structures of herbertene-1,2-diol (MD-5) with assigned chemical shifts.	70
Figure 3.15:	Chemical structures of <i>ent</i> -7-hydroxyeudesm-4-en-6-one (MD-6) with assigned chemical shifts.	71
Figure 3.16:	Chemical structures of 4- <i>epi</i> -sandaracopimaric acid (MD-7) with assigned chemical shifts.	72
Figure 3.17:	Chemical structures of rosa-1(10),15-dien-18-säure (MD-8) with assigned chemical shifts.	73
Figure 3.18:	Chemical structures of the isolated secondary metabolites from <i>Chandonanthus hirtellus</i> .	74
Figure 3.19:	Isolation scheme of Chandonanthus hirtellus.	75
Figure 3.20:	Key COSY and HMBC correlations of chandonanol (CH-1).	77
Figure 3.21:	Chemical structures of chandonanol (CH-1) with assigned chemical shifts.	77
Figure 3.22:	Chemical structures of anastreptene (CH-2) with assigned chemical shifts.	79
Figure 3.23:	Chemical structures (6 <i>R</i> , 7 <i>S</i>)-sesquiphellandrene (CH-3) with assigned chemical shifts.	80
Figure 3.24:	Chemical structures of chandonanthone (CH-4) with assigned chemical shifts.	81
Figure 3.25:	Chemical structures of iso-chandonanthone (CH-5) with assigned chemical shifts.	82
Figure 3.26:	Chemical structures of the isolated secondary metabolites from <i>Gottschelia schizopleura</i> .	83
Figure 3.27:	Isolation scheme of Gottschelia schizopleura.	84

Figure 3.28:	Key COSY and HMBC correlations of (-)-(5 <i>R</i> ,8 <i>S</i> ,9 <i>R</i> ,10 <i>S</i>)- <i>cis</i> -cleroda-3,13-dien-15-methoxy-16-oic acid-16,15- olide-18-ol (GS-1).	86
Figure 3.29:	Chemical structures of (-)-(5 <i>R</i> ,8 <i>S</i> ,9 <i>R</i> ,10 <i>S</i>)- <i>cis</i> -cleroda-3,13-dien-15-methoxy-16-oic acid-16,15- olide-18-ol (GS-1) with assigned chemical shifts.	86
Figure 3.30:	Key COSY and HMBC correlations of (-)-(5 <i>R</i> ,8 <i>S</i> ,9 <i>R</i> .10 <i>S</i>)- <i>cis</i> -cleroda-3,13-dien-15-methoxy-16-oic acid-16,15- olide-18-al (GS-2).	89
Figure 3.31:	Chemical structures of (-)-(5 <i>R</i> ,8 <i>S</i> ,9 <i>R</i> .10 <i>S</i>)- <i>cis</i> -cleroda-3,13-dien-15-methoxy-16-oic acid-16,15- olide-18-al (GS-2) with assigned chemical shifts.	89
Figure 3.32:	Chemical structures of (-)-5- <i>epi</i> -hardwickiic acid (GS-3) with assigned chemical shifts.	91
Figure 3.33:	Chemical structures of (-)-(5 <i>R</i> ,8 <i>S</i> ,9 <i>R</i> ,10 <i>S</i>)-15,16-epoxy- <i>cis</i> -cleroda-3,13(16),14-trien-18-al (GS-4) with assigned chemical shifts.	92
Figure 3.34:	Chemical structures of (-)-(5 <i>R</i> ,8 <i>S</i> ,9 <i>R</i> ,10 <i>S</i>)-15,16- epoxy- <i>cis</i> -cleroda-3,13(16),14-trien-ol (GS-5) with assigned chemical shifts.	93
Figure 3.35:	Chemical structures of (-)-(15-hydroxy- <i>cis</i> - <i>ent</i> -cleroda- 3,(13 <i>E</i>)-diene)(GS-6) with assigned chemical shifts.	94
Figure 3.36:	Chemical structures of the isolated secondary metabolites from <i>Schistochila acuminata</i> .	95
Figure 3.37:	Isolation scheme of Schistochila acuminata.	96
Figure 3.38:	Key COSY and HMBC correlations of schistochilic acid D (SA-1).	98
Figure 3.39:	Chemical structures of schistochilic acid D (SA-1) with assigned chemical shifts.	98
Figure 3.40:	Chemical structures of <i>cis</i> -clerod-3,13(16),14-trien-19-oic acid (SA-2) with assigned chemical shifts.	100

Figure 3.41:	Chemical structures of (-)-3,12 <i>E</i> ,14- <i>cis</i> -clerodatrien-18-oic acid (SA-3) with assigned chemical shifts.	101
Figure 3.42:	Chemical structures of <i>cis</i> -3,14-clerodadien-13-ol (SA-4) with assigned chemical shifts.	102
Figure 3.43:	Chemical structures of 12-hydroxydolabella-(3 <i>E</i> ,7 <i>E</i>)-diene (SA-5) with assigned chemical shifts.	103
Figure 3.44:	Chemical structures of the isolated secondary metabolites from <i>Acrobolbus saccatus</i> .	104
Figure 3.45:	Isolation scheme of Acrobolbus saccatus.	105
Figure 3.46:	Key COSY and HMBC correlations of saccatene A (AS-1).	107
Figure 3.47: assi	Chemical structures of saccatene A (AS-1) with gned chemical shifts.	108
Figure 3.48:	Key COSY and HMBC correlations of saccatene B (AS-3).	109
Figure 3.49:	Chemical structures of saccatene B (AS-3) with assigned chemical shifts.	110
Figure 3.50:	Key COSY and HMBC correlations of saccatene C (AS-4).	112
Figure 3.51:	Chemical structures of saccatene C (AS-4) with assigned chemical shifts.	112
Figure 3.52:	Key COSY and HMBC correlations of saccatene D (AS-5).	114
Figure 3.53:	Chemical structures of saccatene D (AS-5) with assigned chemical shifts.	114
Figure 3.54:	Chemical structures of radulanin A-5-one (AS-2) with assigned chemical shifts.	115
Figure 3.55:	Chemical structures of isolated new secondary metabolites.	117
Figure 4.1:	Chemical structures of isolated secondary metabolites from <i>Mastigophora diclados</i> collected from different countries.	119

Figure 4.2:	HPTLC profiling of <i>Mastigophora diclados</i> crude extracts (Top λ = 254 nm, Bottom λ = 366 nm; A1 = Mount Kinabalu, A2 = Mount Alab, A3 = Mount Trus Madi)	124
Figure 4.3:	HPLC profiling of <i>Mastigophora diclados</i> crude extracts (A1 = Mount Kinabalu, A2 = Mount Alab, A3 = Mount TrusMac	125 li)
Figure 4.4:	Chemical structures of the isolated secondary metabolites from <i>Mastigophora diclados</i> .	126
Figure 4.5:	Morphological differences of leaves from <i>Mastigophora diclados</i> .	127
Figure 5.1:	Structures of compounds with positive inhibition against antibiotic-resistance microbes.	130
Figure 6.1:	Chemical structure of compound herbertene-1,2-diol (MD-5).	153
Figure 6.2:	Cell viability of HL-60 upon compound treatment.	153
Figure 6.3:	Microscopic image of apoptotic bodies upon compound treatment.	154
Figure 6.4:	Percentage of apoptotic sub-G ₁ DNA content.	155
Figure 6.5:	Apoptosis-related protein expressions in HL-60 cells upon treatment.	156
Figure 6.6:	A proposed model for isolated compound-induced apoptosis in HL-60 cells.	157
Figure 7.1:	Chemical structures of isolated new secondary metabolites.	160

LIST OF SYMBOLS

δ	Delta
°C	Degree Celsius
%	Percentage
λ	Wavelength
v/v	Volume/volume
/	Or
g	Gram
mg	Milligram
μg	Microgram
mm	Millimeter
nm	Nanometer
ml	Milliliter
μΙ	Microliter
mM	Millimolar
μΜ	Micromolar
cm ⁻¹	Reciprocal wavelength
rpm	Revolutions per minute
µg/ml	Microgram per millilitre
ml/min	Milliliter per minute
U/ml	Unit/milliliter
m/z	Mass per charge

LIST OF ABBREVIATIONS

Hz	Hertz
MHz	Megahertz
IC ₅₀	Half maximal inhibitory concentration
CHCl₃	Chloroform
CDCl ₃	Deuterated chloroform
C ₆ D ₆	Deuterated benzene
dH ₂ O	Distilled water
D ₂ O	Deuterium oxide
DMSO	Dimethyl sulfoxide
EtOAc	Ethyl Acetate
Hex	Hexane
MeCN	Acetonitrile
MeOH	Methanol
Tol	Toluene
TMS	Tetramethylsilane
CO ₂	Carbon dioxide
UV	Ultraviolet
NA ₂ SO ₄	Anhydrous sodium sulphate
SiO ₂	Silicon dioxide
MIC	Minimum inhibitory concentration
MID	Minimum inhibitory dose
MBC	Minimum bactericidal concentration
CC	Column Chromatography
TLC	Thin Layer Chromatography
PTLC	Preparative Thin Layer Chromatography
HPTLC	High Performance Thin Layer Chromatography
HPLC	High Performance Liquid Chromatography
NMR	Nuclear magnetic resonance
1D-NMR	One-dimensional nuclear magnetic resonance
2D-NMR	Two-dimensional nuclear magnetic resonance
¹ H-NMR	Proton nuclear magnetic resonance
¹³ -NMR	Carbon-13 nuclear magnetic resonance
DEPT	Distortionless enhancement by polarization transfer

HSQC	Heteronuclear single-quantum correlation spectroscopy
НМВС	Heteronuclear multiple-bond correlation spectroscopy
¹ H- ¹ H COSY	Proton-proton correlation spectroscopy
NOESY	Nuclear Overhauser effect spectroscopy
HRMS	High resolution mass spectroscopy
FTIR	Fourier Transform Infra Red
LC-MS-IT-TOF	Liquid chromatography mass spectroscopy-ion trap-time-of-
	flight
LC-SPE-NMR-MS	Liquid chromatography-solid phase extraction-nuclear
	magnetic resonance-mass spectroscopy
BORH	BORNEENSIS Herbarium
DPPH	1,1-Diphenyl-2-picryl-hydrazyl
MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide
CAPE	Phenethyl ester
DMEM	Dulbecco's modified eagle's medium
DPBS	Dulbecco's phosphate buffer saline
FBS	Fetal bovine serum
NO	Nitric oxide
iNOS	Nitric oxide synthase
LPS	Lipopolysaccharide
HDL	High density lipoprotein
КВ	Human pharyngeal squamous carcinoma
HL-60	Human promyelocytic leukimia
MCF-7	Human breast adenocarcinoma
A549	Human lung carcinoma
B16-F10	Mus musculus skin melanoma
HL-60	Human promyelocytic leukemia
HT-29	Human colorectal adenocarcinoma
HIV	Human immunodeficiency virus

LIST OF APPENDICES

		Page
Appendix 1:	¹ H-NMR Spectrum of MD-1 .	177
Appendix 2:	¹³ C-NMR Spectrum of MD-1 .	178
Appendix 3:	HSQC Spectrum of MD-1 .	179
Appendix 4:	HMBC Spectrum of MD-1 .	180
Appendix 5:	COSY Spectrum of MD-1 .	181
Appendix 6:	NOESY Spectrum of MD-1.	182
Appendix 7:	¹ H-NMR Spectrum of MD-2 .	183
Appendix 8:	¹³ C-NMR Spectrum of MD-2 .	184
Appendix 9:	HSQC Spectrum of MD-2.	185
Appendix 10:	HMBC Spectrum of MD-2 .	186
Appendix 11:	COSY Spectrum of MD-2 .	187
Appendix 12:	NOESY Spectrum of MD-2.	188
Appendix 13:	¹ H-NMR Spectrum of CH-1 .	189
Appendix 14:	¹³ C-NMR Spectrum of CH-1 .	190
Appendix 15:	HSQC Spectrum of CH-1 .	191
Appendix 16:	HMBC Spectrum of CH-1.	192