COMPARISON OF FUCOSYLATED CHONDROITIN SULFATE STRUCTURE FROM THREE HOLOTHURIAN SPECIES IN SABAH, MALAYSIA

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

MYRON PANG JYAN YU

UNIVERSITI MALAYSIA SABAH

BORNEO MARINE RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2016

COMPARISON OF FUCOSYLATED CHONDROITIN SULFATE STRUCTURE FROM THREE HOLOTHURIAN SPECIES IN SABAH, MALAYSIA

MYRON PANG JYAN YU

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

BORNEO MARINE RESEARCH INSTITUTE

UNIVERSITI MALAYSIA SABAH

2016

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: COMPARISON OF FUCOSYLATED CHONDROITIN SULFATE STRUCTURE FROM THREE HOLOTHURIAN SPECIES IN SABAH, MALAYSIA

IJAZAH: SARJANA SAINS

Saya, <u>MYRON PANG JYAN YU</u>, Sesi pengajian <u>2012-1016</u>, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibernakan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh, NURULAIN BINTI ISMAIL LIDPARIAN AYSIA SABAH (Tandatangan Pustakawan)

(Tandatangan Penulis)

Dr. SUJJAT AL ZAD) Penyelia

(Assoc. Prof. Dr. MD. SHAFIQUZZAMAN SIDDIQUEE) Penyelia bersama

Tarikh:

18 February 2016

PERPUSTAKAAN UNIVERSHTI MALAYSIA SABAH

CERTIFICATION

NAME	: MYRON PANG JYAN YU
MATRIK NO.	: MY1221012T
TITLE	: COMPARISON OF FUCOSYLATED CHONDROITIN
	SULFATE STRUCTURE FROM THREE HOLOTHURIAN
	SPECIES IN SABAH, MALAYSIA
DEGREE	: MASTER OF SCIENCE (MARINE BIOTECHNOLOGY)
VIVA-VOCE DATE	: 6 NOVEMBER 2015

CERTIFIED BY

UNIVERSITI MALAYSIA SABAH

2. CO-SUPERVISOR

Dr. SUJJAT AL-AZAD

Assoc. Prof. Dr. MD. SHAFIQUZZAMAN SIDDIQUEE

DECLARATION

I, MYRON PANG JYAN YU, hereby declare that the presented work represents largely my original ideas and work in my own words. I certify that, to the best of my knowledge my thesis does not infringe upon anyone's copyright nor violate any proprietary rights and that any idea, techniques, quotations, or any other material from the work of other party included in my thesis, published or otherwise, are fully acknowledged in accordance with standard referencing practices. This thesis has been prepared without resorting to plagiarism by adhering to all principals of academic honesty and integrity. Furthermore, neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I authorise Universiti Malaysia Sabah to reproduce for the purpose of research either whole or any portion of the contents in any manner whatsoever.

am

MYRON PANG JYAN YU MY1221012T

A B A H

30 July 2015

UNIVERSITI MALAYSIA SABAH

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my supervisor, Dr. Sujjat Al Azad, who provided me the most essential supports in pursuing this master thesis's topic. Also to my co-supervisor, Dr. Md. Shafiquzzaman Siddiquee, who spent much guidance, efforts and patience over the course of this project.

Appreciation is also dedicated to my esteemed colleagues: Yong, Jaclyn, Fernandes and Ms. Bo Eng from Biotechnology Research Institute, who assisted me on mastering my research tools. I extend my appreciation to Dr. John Barry from BMRI for some very useful statistical lesson and suggestions. To the BRI laboratory assistant and staffs, Mr. Moni, Mrs. Marlenny and Mrs. Christina, a big thank you for your tireless assistance. I would also like to express my gratitude to Joseph Koh and Charles, for some useful manuscript writing skills during the early days of my master's journey. Special thanks to Cheah and Kevin for providing me much needed excess using their university journal databases. My appreciation also goes to the examiners of this thesis work, Prof. Julian (UMS) and Prof. Md. Zaidul (IIUM) for their comments and suggestions on improving thesis structure. I am also deeply grateful to the many postgraduate students of Borneo Marine Research Institute and Biotechnology Research Institute for their laughter and joyous moment throughout the past few years.

Last but not least, my greatest gratitude goes to my family and especially Lau Jen Shi, whom they blessed me with abundance of love, grace and moral support in whatever right obsessions I pursue.

iv

ABSTRACT

Fucosylated chondroitin sulfate (FuCS) is a unique compound from commercially important holothurians that possess pharmaceutical bioprospect through its many physicochemical activities but was not explored in non-targeted species of Stichopus horrens, Holothuria atra and Holothuria arenicola. This study has examined the levels and structure of FuCS in these three holothurian species of Sabah using combination of spectrometry, spectroscopy and chemometrics techniques. Through extraction and purification, the FuCS levels for H. arenicola was 66.24±0.307 µg/ml, *H. atra* was 73.16±0.293 µg/ml and *S. horrens* was 104.47±0.338 µg/ml. High performance liquid chromatography analysis confirmed each of the extracts had approximately equimolar of D-glucuronic acid (GlcUA) and D-N-acetylgalactosamine (GalNAc), resembling chondroitin sulfate analogs. Stichopus horrens had significant higher fucose ratio at 0.78 per mol GalNAc followed by H. atra at 0.45 per mol GalNAc and H. arenicola at 0.44 per mol GalNAc. Liquid chromatography quadrupole time-of-flight mass spectrometry (LCQTOF/MS) analysis had deduced the mode of mass breakage of the FuCS components and determined the extracts purity of >96.1%. Gas chromatography mass spectrometry (GCMS) analysis suggested sulfation was on the fourth and sixth carbon of acetylgalactosamine. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) analysis showed additional evidence of sulfate and sulfation positions on the compound. The second derivatives IR spectra of each holothurian species had distinct absorptions difference in the region 860-800 cm⁻¹, indicating the sulfation position from each species was different. Principal component analysis (PCA) models had facilitated the IR discrimination and found the greatest influential variables were from carbonyl region, seconded by sulfation region and to a lesser extend of ring vibration region. Both PCA models and hierarchical clustering analysis (HCA) clustered the samples precisely to three clusters. The HCA analysis showed low degree of heterogeneity among the sample branches while samples from S. horrens forming an isolated branch at distance height of 285.234 using classical PCA scores and 0.057 using robust PCA scores. In conclusion, these three previously unexplored holothurian species had been proven to possess analogous FuCS chemical structure from commercially important species counterparts.

ABSTRAK

PERBANDINGAN STRUKTUR KONDROITIN SULFAT FUCOSYLATED DARIPADA TIGA SPECIES TIMUN LAUT DI SABAH, MALAYSIA

Kondroitin sulfat fucosylated (FuCS) merupakan sebatian unik daripada timun laut bermutu tinggi malah mempunyai nilai bioprospek farmaseutikal melalui pelbagai aktiviti fizikokimia tetapi belum dikaji dalam spesies kurang mutu seperti Stichopus horrens, Holothuria atra and Holothuria arenicola. Kajian ini meneliti tahap dan struktur FuCS dalam ketiqa-tiga spesies timun laut daripada Sabah menggunakan kombinasi teknik spektrometri , spektroskopi dan chemometrik. FuCS telah diekstrak daripada Holothuria arenicola, Holothuria atra dan Stichopus horrens dengan memperolehi kepekatan 66.24±0.307, 73.16±0.293 dan 104.47±0.338 µq/ml, masing-masing. Analisis kromatografi cecair berprestasi tinggi menunjukkan kesemua ektrak timun laut mempunyai asid D-glucuronic dan D-Nacetylgalactosamine dengan nisbah yang eguimolar, menyerupai struktur kondroitin sulfate. Stichopus horrens mempunyai nisbah fucose yang lebih tinggi pada nisbah 0.78/mol GalNAc diikuti H. atra pada nisbah 0.45/mol GalNAc dan H. arenicola pada nisbah 0.44/mol GalNAc. Analisis kromatografi cecair spektrometri jisim (LCQTOF/MS) berjaya menyimpulkan mod pecahan jisim komponen FuCS dan menghitungkan ketulenan ekstrak adalah lebih daripada 96.1%. Analisis kromatografi gas spektrometri jisim (GCMS) mencadangkan bukti ikatan ester sulfat pada karbon keempat dan keenam acetylgalactosamine. Analisis pelemahan jumlah pantulan - jelmaan Fourier spektroskopi inframerah (ATR-FTIR) menunjukkan corak sulfat dan kewujudan sulfat pada sebatian. Terbitan kedua IR spektrum setiap species mempunyai perbezaan penyerapan inframerah sekitar 860-800cm⁻¹, menunjukkan corak sulfat setiap species timun laut adalah berbeza. Model analisis principal component (PCA) telah memudahkan pembezaan IR dan mendapati pembolehubah paling berpengaruh merangkumi rantau karbonil, sulfat dan getaran cincin. Kedua-dua model PCA dan analisis pengelompokan hierarki (HCA) mengumpulkan sampel tepat kepada tiga kumpulan. Analisis HCA menunjukkan tahap rendah kepelbagaian di kalangan cawangan sampel manakala sampel dari S. horrens membentuk cawangan tersendiri pada jarak paksi-y 285.234 menggunakan skor PCA klasik dan 0.057 menggunakan skor PCA teguh. Kesimpulannya, ketigatiga spesies timun laut ini telah terbuki mempunyai ciri-ciri FuCS yang sama dengan spesies timun laut yang bernilai komersial tinggi.

ABSTRAK

PERBANDINGAN STRUKTUR KONDROITIN SULFAT FUCOSYLATED DARIPADA TIGA SPECIES TIMUN LAUT DI SABAH, MALAYSIA

Kondroitin sulfat fucosylated (FuCS) merupakan sebatian unik daripada timun laut bermutu tinggi malah mempunyai nilai bioprospek farmaseutikal melalui pelbagai aktiviti fizikokimia tetapi belum dikaji dalam spesies kurang mutu seperti Stichopus horrens, Holothuria atra and Holothuria arenicola, Kajian ini meneliti tahap dan struktur FuCS dalam ketiga-tiga spesies timun laut daripada Sabah menggunakan kombinasi teknik spektrometri , spektroskopi dan chemometrik. FuCS telah diekstrak daripada Holothuria arenicola, Holothuria atra dan Stichopus horrens dengan memperolehi kepekatan 66.24±0.307, 73.16±0.293 dan 104.47±0.338 µq/ml, masing-masing. Analisis kromatografi cecair berprestasi tinggi menunjukkan kesemua ektrak timun laut mempunyai asid D-glucuronic dan D-Nacetylgalactosamine dengan nisbah yang eguimolar, menyerupai struktur kondroitin sulfate. Stichopus horrens mempunyai nisbah fucose yang lebih tinggi pada nisbah 0.78/mol GalNAc diikuti H. atra pada nisbah 0.45/mol GalNAc dan H. arenicola pada nisbah 0.44/mol GalNAc. Analisis kromatografi cecair spektrometri jisim (LCQTOF/MS) berjaya menyimpulkan mod pecahan jisim komponen FuCS dan menghitungkan ketulenan ekstrak adalah lebih daripada 96.1%. Analisis kromatografi gas spektrometri jisim (GCMS) mencadangkan bukti ikatan ester sulfat pada karbon keempat dan keenam acetylgalactosamine. Analisis pelemahan jumlah pantulan - jelmaan Fourier spektroskopi inframerah (ATR-FTIR) menunjukkan corak sulfat dan kewujudan sulfat pada sebatian. Terbitan kedua IR spektrum setiap species mempunyai perbezaan penyerapan inframerah sekitar 860-800cm⁻¹, menuniukkan corak sulfat setiap species timun laut adalah berbeza. Model analisis principal component (PCA) telah memudahkan pembezaan IR dan mendapati pembolehubah paling berpengaruh merangkumi rantau karbonil, sulfat dan getaran cincin. Kedua-dua model PCA dan analisis pengelompokan hierarki (HCA) mengumpulkan sampel tepat kepada tiga kumpulan. Analisis HCA menunjukkan tahap rendah kepelbagaian di kalangan cawangan sampel manakala sampel dari S. horrens membentuk cawangan tersendiri pada jarak paksi-y 285.234 menggunakan skor PCA klasik dan 0.057 menggunakan skor PCA teguh. Kesimpulannya, ketigatiga spesies timun laut ini telah terbuki mempunyai ciri-ciri FuCS yang sama dengan spesies timun laut yang bernilai komersial tinggi.

TABLE OF CONTENTS

TTTU	-		Page
CEDT			
CERI	IFICATIO		11
DECL	ARATIO		iii
ACK	NOWLEDO	SEMENT	iv
ABST	RACT		v
ABS	TRAK		vi
LIST	OF CONT	ENTS	vii
LIST	OF FIGU	RES	x
IIST		FS	xiii
LIGT			viv
LIST	OF SYME	OLS & ABBREVIATIONS	XIV
СНА	TER 1: I	NTRODUCTION	
1.1	Overvie	ew W	1
1.2	A uniq	ue bioactive compound: fucosylated chondroitin sulfate	2
1 2	(FuCS)	in sea cucumber	2
1.5	Resear	ch objectives	5 64
CHAF	PTER 2: L	ITERATURE REVIEW	0
2.1	Sea cu	cumber status in Sabah ERSI II MALAYSIA SABAH	4
2.2	Import	ance of sea cucumber in Asia	5
2.3	A brief	history of proteoglycans and glycosaminoglycans	6
	2.3.1	Proteoglycan diversity	7
	2.3.2	Glycosaminoglycan diversity	10
	2.3.3	Marine glycosaminoglycan	13
2.4	Holothu	urian glycosaminoglycans	14
	2.4.1	Anticoagulant studies	19
		a. Effect of structural heterogeneity on	20
	242	anticoaguiant	20
	2.4.2	Antithrombosis studies	20
		a. Anuthrombosis effect through oral administration	21
	242	D. Possible antidote for Fulls overdoses	22
	2.4.3	Anti-selectin activities, A precursor for anti-cancer	22
		a. Anti-tumor metastasis	22
		D. Inflamation preventive properties of FuCS during tumor metastasis	23
		c. Immunomodulatory effect of FuCS on treating	24
	2.4.4	Antihyperlipidemic studies	25
		/	

		a. Attenuation of atherosclerosis by FuCS	25
	2.4.5	Antidiabetic studies	26
	2.4.6	Angiogenesis activity on endothelial cells	27
	2.4.7	Anti-HIV properties	27
2.5	Glycosa	minoglycan detection and quantification	28
	2.5.1	Direct glycosaminoglycan quantification using colorimetric methods	28
		a. Alcian blue, A direct quantification method	28
		b. 1,9-dimethylmethylene blue (DMMB) dye	30
		c. Carbazole/metahydroxybiphenyl assay	31
		d. Phenol-sulfuric acid (Dubois) reaction	32
	2.5.2	Chromatographic methods	33
		a. High-Performance Liquid Chromatography Mass Spectrometry (HPLC-MS)	33
		b. Gas-Chromatography Mass Spectrometry (GCMS)	36
		c. High-Performance Anion Exchange Chromatography (HPAEC)	38
	2.5.3	FuCS identification: NMR and IR spectrosopy	39
2.6	Summa	ry of study gaps	41

CHAPTER 3: METHODOLOGY

3.1	Collection of sea cucumber samples	42
3.2	Extraction of crude sulfated polysaccharides from sea cucumber	43
3.3	Crude glycosaminoglycan purification	44
3.4	Phenol-Sulfuric acid test for carbohydrate fraction monitoring	45
3.5	Determination of carbohydrate concentration	46
3.6	Optimization of separation parameters for monosaccharide analysis	46
3.7	Hydrolysis protocol for monosaccharide analysis	47
3.8	Conventional 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization protocol	48
3.9	Optimized 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization protocol	48
3.10	Determination of chemical compositions of FuCS	49
3.11	Validation test of optimized derivatized method	49
3.12	Liquid chromatography mass spectrometry analysis	51
3.13	Gas chromatography mass spectrometry analysis	52
3.14	Fourier transform infrared (FTIR) spectroscopy imaging	53
3.15	FTIR chemometric analysis	54
3.16	Univariate statistical analysis for FuCS chemical composition	55
3.17	Multivariate statistical analysis for FuCS discrimination	55
СНАР	TER 4: RESULTS AND DISCUSSIONS	
4.1	Collection and identification of sea cucumber species	57
4.2	Isolation and purification	60
4.3	Determination of total carbohydrate in fraction S-1 and S-2	67
4.4	PMP optimization for HPLC analysis	69

4.5	Validation assay of the developed method	73	
4.6	Chemical compositions of FuCS by HPLC Analysis		
4.7	Liquid chromatography mass spectrometry study of saccharides components	77	
4.8	Gas chromatography mass spectrometry study of saccharides components	81	
4.9	IR spectra of holothurian glycosaminoglycans	85	
	4.9.1 FTIR analysis of <i>Holothuria atra</i>	87	
	4.9.2 FTIR analysis of <i>Holothuria arenicola</i>	90	
	4.9.3 FTIR analysis of <i>Stichopus horrens</i>	94	
4.10	FTIR spectra data pre-processing for chemometric analysis	98	
4.11	Principal component analysis of FTIR	101	
4.12	Robust principal component analysis of FuCS	105	
4.13	Hierarchical clustering analysis of FuCS	109	
СНАР	TER 5: CONCLUSIONS	111	
REFER	RENCES	113	
AFFLI	Annendiy I	131	
		134	
DI IRI T		174	
I	Fucosylated chondroitin sulfate diversity in sea cucumbers: A	135	
II ,	Tributylamine Facilitated Separations of Fucosylated Chondroitin Sulfate (Fucs) by High Performance Liquid Chromatography	141	
	(HPLC) into its Component Using 1-Phenyl-3-Methyl-5- Pyrazolone (PMP) Derivatization		
III	Partial Structural Studies of Fucosylated Chondroitin Sulfate (FuCS) from Sea Cucumber using Attenuated Total Reflectance	145	
	Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Chemometrics.		

LIST OF FIGURES

		Page
Figure 2.1	External morphology of holothurians (dorsal view).	4
Figure 2.2	Example of intracellular, extracellular and plasma	8
Figure 2.2	Major types of CACs	12
Figure 2.5	Major types of GAGS.	12
Figure 2.4	sulfate.	17
Figure 2.5	Structure of Alcian-blue in MgCl ₂ electrolytes.	30
Figure 2.6	Structure of 1,9-dimethylmethylene blue (DMMB) dye.	30
Figure 2.7	Structure of carbazole and metahydroxybiphenyl.	31
Figure 2.8	Dehydration transformation of D-Glucose and Reaction pathway of phenol-sulfuric acid.	33
Figure 2.9	Generation of an Isoindole from OPA and 3-MPA.	34
Figure 2.10	1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization reaction on carbohydrates	35
Figure 2.11	Acylation and silvlation process of D-glucose.	37
Figure 3.1	Sampling location of sea cucumber in Sabah.	43
Figure 4.1	External morphology of <i>Stichopus horrens</i> .	57
Figure 4.2	External morphology of <i>Holothuria atra</i> .	58
Figure 4.3	External morphology of <i>Holothuria arenicola</i> .	59
Figure 4.4	Ossicles from <i>S. horrens</i> , <i>H. atra</i> , and <i>H. arenicola</i> .	60
Figure 4.5	Crude polysaccharide and EuCS appearance	61
Figure 4.6	Strong anion exchange chromatogram of <i>H. arenicola</i>	63
	crude polysaccharide.	
Figure 4.7	Strong anion exchange chromatogram of <i>H. atra</i> crude polysaccharide.	64
Figure 4.8	Strong anion exchange chromatogram of <i>S horrens</i> crude polysaccharide.	64
Figure 4.9	Mean Dubois reaction fractions of FuCS and fucan from	65
Figure 4.10	Mean Dubois reaction fractions of FuCS and fucan from	66
Figure 4.11	Mean Dubois reaction fractions of FuCS and fucan from	66
Figure 4.12	S. norrens. Standard curve of MMS and Fuc were measured at 480	68
	and 482nm, respectively.	
Figure 4.13	Absorption spectra of fraction S-1, S-2, MMS and Fuc.	68
Figure 4.14	Chromatogram of H. arenicola using conventional derivatization method and improved derivatization	70
FI	method	
Figure 4.15	Conventional and developed method in determining monosaccharide standards.	72
Figure 4.16	Reaction pathway of monosaccharides with PMP reagents in presence of catalyst.	73
Figure 4.17	Monosaccharide standards stacked chromatogram, top to	74

	bottom: 10, 50, 100, 250, 500, 1000 µa/ml.	
Figure 4.18	Chromatogram of fraction S-1 for <i>H. atra, S. horrens</i> and <i>H. arenicola</i>	77
Figure 4.19	Overlaid total ion chromatogram (TIC) of FuCS from bolothurian	78
Figure 4.20	MS analysis of representative GlcUA-PMP derivative.	79
Figure 4.21	MS analysis of representative Fuc-PMP derivative. Inset	79
Figure 4.22	MS analysis of representative GalNAc-PMP derivative.	80
Figure 4.23	Mode of mass breakage representing GlcUA-PMP, Fuc- PMP and GalNAc-PMP	80
Figure 4.24	TIC of GCMS separation of BSTFA labelled hydrolyzed	83
Figure 4.25	Mass spectral analysis of trimethylsilyl derivatives of a, fucose: b, GlcUA and: c, GalNAC.	84
Figure 4.26	IR spectra of FuCS isolated from <i>Holothuria atra</i> , <i>Holothuria arenicola</i> and <i>Stichopus horrens</i> .	86
Figure 4.27	Normal FTIR spectra of FuCS from <i>H. atra</i> .	87
Figure 4.28	Normal IR and second derivative IR spectra of FuCS Holothuria atra.	88
Figure 4.29	Normal FTIR spectra of FuCS from Holothuria arenicola.	91
Figure 4.30	Normal FTIR and second derivative FTIR spectra of Holothuria arenicola.	92
Figure 4.31	Normal FTIR spectra of FuCS from <i>Stichopus horrens</i> .	95
Figure 4.32	Normal IR and second derivative FTIR spectra of FuCS	96
Figure 4.33	Original NIR (near infrared, 650-1800cm-1) spectra of 15 FuCS samples grouped before data processing.	99
Figure 4.34	Multiplicative signal corrected original near infrared (650- 1800cm-1) spectra of 15 FuCS samples grouped by samples	100
Figure 4.35	Removed region of FTIR and baseline corrected of FTIR	100
Figure 4.36	Scatter plot of the first two principal components using classical PCA algorithm.	101
Figure 4.37	Importance of components (screeplot) in classical PCA computations for FuCS group.	102
Figure 4.38	Determination of potential outliers by orthogonal diagnostic plot and score distance diagnostic plot.	102
Figure 4.39	Variable loading plot for PC1 and PC2.	103
Figure 4.40	S-plot (loading plot) for PC1 and PC2 of classical PCA.	104
Figure 4.41	Scatter plot of FuCS spectra using robust PCA.	105
Figure 4.42	Screeplot of robust PCA.	106
Figure 4.43	Determination of potential outliers by orthogonal diagnostic plot and score distance diagnostic plot in robust estimator.	106
Figure 4.44	Loading plot of PC1 and PC2.	107

Figure 4.45	S-plot (loading plot) for PC1 and PC2 of robust PCA.				
Figure 4.46	Hierarchical clustering analysis based on classical PCA and robust PCA.	110			

LIST OF TABLES

		Page
Table 2.1	Monosaccharide components of FuCS and their sulfate groups	16
Table 2.2	Ratio of sulfated fucans from six sea cucumber species	18
Table 4.1	Percentage yield of FuCS to original dry weight for three sea cucumber species	62
Table 4.2	Carbohydrate concentration of fraction S-1 and S-2 measured from <i>Holothuria arenicola</i> , <i>Holothuria atra</i> , and <i>Stichopus horrens</i>	67
Table 4.3	Regression, detection and quantization limit and precision test for developed method	75
Table 4.4	Recovery study of modified method on three sugar standards	76
Table 4.5	Mean molar mass of FuCS monosaccharide component	76

LIST OF SYMBOLS & ABBREVIATIONS

%	-	Percentage
(S/N)		Signal to noise ratio
(v/v)	-	Volume by Volume
°C	-	degree Celsius
®	-	Registered trademark
μm		micrometer
⁶⁰ Co	-	Cobalt 60
Å	-	Angstrom
ACN		Acetonitrile
ANOVA	K e r	Analysis of Variance
aPTT	-	activated partial thromboplastin time
AT III	-	AntiThrombin type 3
ATR-FTIR	1-1	Attenuated total reflectance-Fourier transform infrared
AUFS	- 48	Absorbance Unit Full Scale
B.C.	-	Before Christ
BSTFA	1.0	N,O-Bis-trifluoroacetamide
Ca ²⁺	22 202 22	Calcium ion
CD4	A B	Clusters of Differentiation 4
CITES	-	Convention on International Trade in Endangered species
cm ⁻¹	-	Unit for wavenumber; # of waves per centimeter
CNS	-	Central Nervous System
СРС	-	Cetylpyridinium chloride
cPCA		Classical Principal Component Analysis
CS D	-	Chondroitin sulfate type D
CS E	-	Chondroitin sulfate type E or Chondroitin 4,6-di-sulfate
CS	-	Chondroitin Sulfate
CXCR4/ CC	R5-	Chemokine Receptor Type 4 or 5
DHG	Ψ.	Depolymerized holothurian glycosaminoglycan
DMMB	-	1,9-dimethylmethylene Blue
DS	-	Dermatan sulfate or Chondroitin sulfate type B
EC ₅₀	-	Effective drug concentration at 50% maximal

ECM	н. Н	Extra cellular matrix
EDTA		Ethylenediaminetetraacetic acid
FPLC	-	Fast Protein Liquid Chromatography
Fuc	-	Fucose
Fuc2S4S	-	Fucose, sulfated at carbon-2 and 4
Fuc3S	-	Fucose, sulfated at carbon-3
FuCS	2	Fucosylated chondroitin Sulfate
9	-	Relative centrifugal force to earth's gravity
GAGs	-	Glycosaminoglycans
Gal	-	Galactose
GalNAc	-	N-acetylgalactosamine
GCMS	-	Gas Chromatography Mass Spectrometry
GlcA	-	Glucuronic acid
GLUT4	н	Glucose Transporter 4
GPI	-	Glycosylphosphatidylinositol
GuHCI	11	Guanidine Hydrochloride
H ₂ SO ₄	- 223	Sulfuric acid
HAZ	10	Hyaluronic acid
HCII		Heparin Cofactor type 2
НСА	A"B A	Hierarchical Clustering Analysis AYSIA SABAH
HCI	-	Hydrochloric acid
HDL	-	High density lipoprotein
Нер	-	Heparin
HG	4	Holothurian Glycosaminoglycan
HIV	-	Human Immunodeficiency Virus
HS	-	Heparan sulfate
HUVEC	-	Human umbilical vein endothelial cell
IdoaA	-	Iduronic acid
IU/mg	-	International Unit per milligram
kDa	-	kiloDalton or atomic mass unit
KS	-	Keratan sulfate
L-/D-	-	conformation L or D
LDL	-	Low density lipoprotein

LMWH	-	Low Molecular Weight Heparin
Μ	-	Mole
m/z	÷	mass per charge
Man	-	Mannose
MeOH	-	Methanol
mg/g	-	milligram per gram
mg/kg	-	milligram per kilogram
mg/ml	-	milligram per milliliter
MS	-	Mass Spectrometry
MW	-	Molecular Weight
NaCl	-	Sodium Chloride
NIST	-	National Institute of Standards and Technology
nm	-	nanometer
NMR	-	Nuclear magnetic resonance
PAD	-	Pulsed Amperometry Detector
PF4	M	Platelet Factor 4
РІЗК	-22	Phosphoinositide 3-kinase
РКВ		protein kinase B
pmol	-	Pico Mole
РМР	A B A	1-Phenyl-3-methyl-5-pyrazolone AVSIA SABAH
ppm	-	Parts per Million
QTOF	-	Quadruple Time Of Flight
rPCA	-	Robust Principal Component Analysis
RP-HPLC	-	Reverse Phase-High Performance Liquid Chromatography
rpm		Revolution per Minute
RSG	÷	Rosiglitazone drug
Ser	-	Serine, amino acid
T-20	-	Enfuvirtide drug
TFA	-	Trifluoroacetic acid
TMS	-	Trimethyl-silyl
тм	-	Trademark
UFH	-	Unfractionated Heparin
ug/ml	-	microgram per milliliter

UV	-	Ultra Violet
Xyl	-	Xylose
μL	*	microliter

CHAPTER 1

INTRODUCTION

1.1 Overview

Among the twelve "mega-biodiversity" countries, Malaysia is accounted for its great biological diversity and species endemism. It is also stated in the Malaysia National Biodiversity Policy (1998) that East Malaysia is blessed with greater diversity and endemism of holothurian species compared to Peninsular Malaysia (MOSTI, 1998). Albeit sea cucumber is considered as small scale fisheries to compared with other fisheries sectors, such as marine finfish and shrimp, the sea cucumber fisheries in Sabah remain significant in terms of commodity contribution to sea cucumber fisheries in Malaysia (Choo, 2004). Sea cucumber harvesting is considered as artisanal fisheries in Malaysia, but plays an important part as a food source and traditional remedies such as for cuts and burns, impotence and rheumatism (Bordbar et al., 2011; Choo, 2004). Out of the estimated 80 species in Malaysia, only a handful are edible (Choo, 2008) such as Holothuria scabra, Thelenota ananas, Thelenota anax and Stichopus hermanni, while Stichopus horrens and Stichopus hermanni are choice species used for making traditional medicine (Choo, 2004). The body wall or internal organs are consumed depending on traditional medicinal beliefs or serves as a food source (Hartati and Yanti, 2006).

Sea cucumber possesses wide array of bioactive components such as saponins, proteoglycans, sulfated polysaccharides, sterols, phenolics, cerebrosides, lectins and fatty acids (Bordbar et al., 2011). These bioactives are gaining recognition in modern biomedical research to explain the properties exhibited in traditional medicine practices such as wound healing, rheumatism, body nourishment and asthma (Chen, 2003). The compound fucosylated chondroitin sulfate (FuCS) is a characteristic sulfated polysaccharide belonging to sea cucumber species (Yamada et al., 2011). This compound is unique in various bioactivities having a research record for the last three decades from many research groups covering the structural characterization to physicochemical activities (Pomin, 2014a; Myron et al., 2014a). However, structural characterization of FuCS were mainly addressed in a few commercially important species such as *Thelenota ananas* (Wu et al, 2012), *Ludwigothuria grisea* (Mourão, 1996), *Apostichopus japonicus* (Kariya et al, 1997) and *Holothuria forskali* (Panagos et al., 2014).

1.2 A unique bioactive compound: fucosylated chondroitin sulfate (FuCS) in sea cucumber

Fucosylated chondroitin sulfate is an anionic mucopolysaccharide found in the body wall of holothurian (Pomin et al, 2014a). The origin of the compound is thought to be an integral part of holothurian stiffening-liquidation mechanism by being the complex glycosaminoglycan that interacts with core proteins to form proteoglycans found in the cellular environment (Mourão, 1991; Trotter et al., 1998; Koob et al., 1999). FuCS has demonstrated various biological activities such as antithrombotic and anticoagulant (Mourão et al., 1996; Kariya et al., 1997; Wu et al., 2012), angiogenesis and anti-angiogenesis (Tapon-Bretaudière et al., 2000), antitumor (Borsig et al., 2007; Zhang et al., 2009; Lu et al., 2010; Zhao et al., 2013a), wound healing (Masre et al., 2010; Patar et al., 2012a; Patar et al., 2012b), antihyperlipidemic (Tovar and Mourão, 1996; Liu et al., 2002; Liu et al., 2012), antidiabetic (Hu et al., 2013; Hu et al., 2014a) and anti-human immunodeficiency virus-HIV (Hoshino and Heiwamachi, 1990; Huang et al., 2013; Lian et al., 2013). Among the biomedical effects, anticoagulation-related physicochemical activity has been well documented in two species of holothurian namely: Ludwigothurea grisea (Mourão et al., 1996), and Stichopus japonicus (Kariya et al., 1997). Moreover, the sulfation patterns on the fucose side chain are responsible for the biomedicinal properties (Pomin, 2014a). Zhao et al. (2012) mentioned the elucidation of whole molecular sequence of FuCS remains a challenge and FuCS structures related to its physicochemical activity was only partially known.

Studies in Malaysia have covered some promising results from the sulfated polysaccharide of three locally available species namely *Holothuria scabra, Stichopus hermanii* and *Holothuria leucospilota*. Extracts from *S. hermanii* have

shown potent bioactivity on wound healing (Masre et al., 2010; Patar et al., 2012b) and spinal astrocytes cell line growth (Patar et al., 2012a); An unknown sulfated polysaccharides compound from *H. leucospilota* exhibited antitumor metastasis (Zhang et al., 2009); and extracts from *H. scabra* showed hypolipidemic activity (Liu et al., 2002). The structural characteristics of their extract were not identified in aforementioned studies. Nevertheless, the authors suggested the active compound could be FuCS or FuCS analogs (Masre et al., 2010; Patar et al., 2012a; Liu et al., 2002; Zhang et al., 2009). The general aim of this study is to explore the structural characteristics and levels of FuCS in non-targeted holothurian species found in Sabah using separation techniques and infrared spectroscopy. Understanding the structural characteristics of FuCS will provide fundamental information for future pharmaceutical applications in regards to drug synthesis.

1.3 Research objectives

This study were focused on two main objectives to achieve the aim of providing fundamental structural characterization of FuCS from non-targeted holothurian species:-

- I. To compare the FuCS fine structure extracted from three non-targeted local holothurian species.
- II. To Determine the FuCS levels in three non-targeted local holothurian species.

The specific objectives of this study were:

- a. To optimize FuCS extraction method.
- To determine FuCS monosaccharide composition using 1-phenyl-3-methyl-5pyrazolone (PMP) derivatization through reverse phase high performance liquid chromatography (RP-HPLC).
- c. To elucidate the structure of FuCS using mass spectrometry techniques.
- d. To elucidate the structure of FuCS using ATR-FTIR technique.
- e. To compare amongst the FuCS IR spectra of three holothurian species using chemometric analysis.

CHAPTER 2

LITERATURE REVIEW

2.1 Sea cucumber status in Sabah

Sea cucumber or its interchangeable common name, holothurian belongs to the taxonomy class Holothuroidea. The class is further subdivided into three subclass namely Aspidochirotacea, Apodacea and Dendrochirotacea. The usual external morphology of the body shape is elongated longitudinally with different height of papillae. The stout, thick and firm body has a variable degree of tegument roughness dorsally and usually darker than the ventral (Figure 2.1). Microscopic spicules or "ossicles" are enclosed within the connective tissues in the dermis and used as identification key of species.

Figure 2.1: External morphology of holothurians (dorsal view).

Source: Purcell et al., 2012

A total of 62 species belonging to three Orders and five families were reported by Choo (2008) in Malaysian waters. Kamarudin et al., (2010) reviewed the species diversity and estimated there were more than 80 species in Malaysia. The Southeastern coast of Sabah around Semporna which located in the Wallace's