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ABSTRACT 

Above-ground Biomass (AGB) estimation in tropical forest is challenging due to the 
complex forest structure. Evolving technology in remote sensing especially airborne 
Light Detection and Ranging (LiDAR) is a promising technology that construct a three 
dimensional model of the complex forest canopy. The application of airborne LiDAR 
data was examined to estimate AGB of the primary and the logged over forest near 
to Danum Valley Conservation Area (DVCA). Field based AGB was calculated using 
the allometric equations of Yamakura (Yamakura et al. 1986) and Chave (Chave et 
al., 2014). A total of 50 plots were collected in the primary (n=20) and logged-over 

(n= 30) forests. The structure of the forests were analyzed using the airborne LiDAR 
data acquired in October 2013. LiDAR metrics were calculated from the first and last 
returns of the point clouds at plot level to generate the height metrics and laser 
penetration (LPs). From the result of the stepwise regression analysis, maximum DBH 
was explained by a multivariate model with height metric H70 as predictor (R2 

= 

0.62, RMSE = 16.59 cm). A single predictor model with height metric H90 was 
effective to estimate maximum tree height (R2 

= 0.88, RMSE = 3.6 m) for both 
forests combined while a multivariate model comprised of H10, H70 and H90 
explained 87% of the Lorey's Height (LH) of the combined forest. For AGB estimation, 
a stepwise multiple regression analysis was used to develop an AGB model by relating 
the height metrics and LPs. Natural log transformation model of AGB (Chave) for 
both forests combined improved the AGB estimation with R2 of 0. 70 
(RMSEcv=26.16%). The predictors Hmean, LP0, LP1 and LP14 were selected in this 
regression model. The results suggest that airborne LiDAR is a reliable and accurate 
technology to estimate AGB in tropical forest in Sabah. 
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ABSTRAK 

ANGGARAN BIOJISIM ATAS TANAH DI LEMBAH DANUM MENGGUNAKAN 

DATA LIDAR BAWAAN UDARA 

Penganggaran biojisim atas tanah {AGB) di hutan tropika ada/ah sangat mencabar 
kerana mempunyai profil struktur hutan yang kompleks. Penggunaan teknologi 
penderiaan jauh terutamanya airborne Light Detection and Ranging (LiDAR) adalah 
teknologi yang berkesan dalam membina model tiga dimensi untuk kanopi hutan 
yang kompleks. Penggunaan LiDAR udara diperiksa dalam kajian ini untuk 
menganggarkan biojisim atas tanah (AGB) bagi hutan primer dan hutan telah dibalak 
yang terletak di kawasan berdekatan dengan kawasan Lembah Danum (DVCA). AGB 
di lapangan telah dikira dengan menggunakan persamaan alometrik daripada 
Yamakura et al. (1986) dan Chave et al./ (2014). Sejumlah 50 plot telah dibuat di 
dalam hutan primer (n=20) dan hutan bekas dibalak (n=30). Struktur hutan daripada 
plot kawasan kajian dianalisis dan dikaitkan dengan metrik LiDAR yang telah 
diperolehi masa Oktober 2013. Metrik UDAR dikira menggunakan pulangan titik laser 
pertama dan terakhir di peringkat plot untuk menjana metrik ketinggian LiDAR dan 
kadar penembusan laser {LP). Berdasarkan keputusan yang diperolehi daripada 
analisis regrest DBH maksima telah dijelaskan daripada model multivariate dengan 
menggunakan peramal metrik ketinggian H70 (R2 = 0.62/ RMSE = 16.59cm). Model 
peramal yang tunggal dengan Metrik ketinggian H90 sangat efektif untuk 
menganggarkan ketinggian maksima pokok {R2 = 0.88) bagi gabungan hutan primer 
bersama hutan bekas dibalak manakala Hl0/ H70 and H90 menje!askan 87% adalah 
daripada ketinggian Lorey {LH) di kawasan kajian. Untuk anggaran AGB/ analisis 
regresi berganda digunakan untuk membina model ramalan AGB yang 
menghubungkaitkan metrik ketinggian LiDAR dan LPs. Model transformasi Logaritma 
asli {LN) dengan alometrik Chave meningkatkan kuasa ramanalan AGB denagan R2 

= 0.70 (RMSEcv = 26.16%) untuk gabungan hutan primer dengan hutan yang telah 
dibalak. Peramal Hmean LP0/ LPl/ dan LP 14 telah dipilih dalam model analisis 
regresi tersebut. Keputusan menunjukkan bahawa LiDAR bawaan udara ada/ah 
teknologi yang boleh dipercayai dan tepat untuk menganggarkan AGB di dalam hutan 
tropika utama di Sabah. 
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CHAPTER 1 

INTRODUCTION 

Increasing anthropogenic pressure on the tropical rainforest in recent decades 

received a great attention from various parties due to the issues of global climate 

change. Tropical forest covers an extensive area of the equatorial region with 1770 

million hectares (Mha) recorded in Global Forest Resource Assessment (FRA) of 

2015 (FAQ 2015, Sloan and Sayer 2015), making it as an important carbon sink and 

source in global carbon sequestration. Above-ground biomass (AGB) is classified as 

one of the main carbon pools (Gibbs et al., 2007) with carbon fraction of 0.47 of 

the tree biomass (IPCC, 2006). Most of the biomass estimation studies focus on 

AGB because it accounts for most of the total forest biomass. Tropical forest 

biomass has declined to a critical condition due to anthropogenic activity. According 

to FAQ (2015), about 5.5 Mha of tropical forests were destroyed annually between 

2010 and 2015. Therefore, studies on AGB are very important to understand the 

carbon storage and sequestration in the tropical region under anthropogenic 

pressure. 

Tropical rainforests of Southeast Asia with coverage 236.3 Mha represent a 

large carbon reservoir (Stibig et al., 2014). However, continues deforestation in 

Southeast Asia with an annual change of 1.45 Mha during 2000 to 2010 (Stibig et 

al. 2014) enhanced the released of carbon dioxide (CQ2) into the atmosphere 

(Houghton et al., 2005; Brown, 2002). To counterbalance the level of greenhouse 

gases (GHG) in the atmosphere and to resolve the global climate change issue, a 

framework of the United Nations Framework Convention on Climate Change 

(UNFCCC) was developed in 1992 (UNFCCC, 1992). Along with adopted Kyoto 

Protocol in 1997 to mitigate GHG emjssion effect, forests in developing countries 

were excluded from mitigation target in Kyoto protocol with the limited amount of 

GHG released. Nevertheless, flexibility mechanism under Kyoto Protocol provided 
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an option of Clean Development Mechanism (CDM) for developed countries to meet 

their emission reduction by investing "offset project" in developing countries. 

Under the framework of UNFCCC, Reducing Emission from Deforestation 

and forest Degradation (REDD) was proposed at the Conference of Parties 11 (COP 

11) in 2005 as a mitigation strategy (UNFCCC, 2009). COP 13 at Bali in 2007

agreed on the Decision 2/CP.13 regarding to the "policy approaches and positive 

incentives" resulted mitigation program of Reducing Emission from Deforestation 

and forest Degradation and the role of conservation, sustainable forest 

management and enhancement of carbon stock in developing countries (REDD+). 

In COP21, REDD+ was included in the Paris agreement to conserve and enhance 

the sink and reservoirs of GHG in forested area. Implementation of REDD+ in Paris 

Agreement in helps to strengthen the response of the threat of climate change in 

global level. The main objective of Paris Agreement is to maintain the average 

global temperature increase less than 2 ° C above pre-industrial levels. Participated 

countries in the REDD+ mechanism established a national forest monitoring system 

to support "Measurement, Reporting and Verification" (MRV) under the guidance of 

Intergovernmental Panel on Climate Change (IPCC). Accurate estimation and 

monitoring of carbon stock is important for the REDD+ to commence. 

Estimation and monitoring of using ground inventory can be expensive and 

time-consuming to produce a consistent data in global scale (Chave et al. 2005). In 

order to implement REDD+ effectively, remote sensing technology is recommended 

to employ with ground inventory (UNFCCC, 2009). Remote sensing technology can 

be used to assess the forest condition in large and inaccessible areas (Saatchi et al. 

2007). Traditionally, AGB estimated using passive remote sensing in tropical region 

based on multispectral (Phua and Saito, 2003; Langner et al. 2012) and texture 

information (Lu and Batistella, 2005). There are numerous studies conducted in 

tropical forest using coarse and medium resolution images (Foody et al., 2001; 

Phua and Saito, 2003; Langner et al., 2012; Lu, 2005; Steininger, 2000; Tangki and 

Chappell, 2008) due to historical availability and extensive coverage. 

Satellite images such as Landsat, SPOT, NOAA Advance Very High 

Resolution Radiometer (AVHRR), and Moderate Resolution Imaging Spectrometer 

2 



(MODIS) were often used in continental and global-scale studies based on the 

spectral responses reflected from the vegetation cover of the forest. Vegetation 

index such as Normalized Difference Vegetation Index (NOVI) is related to field 

biomass through a statistical model (Brown, 1997) in accessing the vegetation 

cover condition. However, the performance of forest structure and AGB estimation 

using passive remote sensing is generally challenging and unsatisfied due to 

compl-ex forest structure, heterogeneity and dense canopy of tropical rainforest. 

Shadow effect from the emergent trees in mature forest often resulted data 

saturation in spectral bands and derived indices (Gibbs et al., 2007) limited the 

forest structure assessment using course resolution satellite image. Very high

resolution satellite images (1 - 5 m) such as Quickbird, IKONOS and RapidEye 

provided additional detail texture information that can improve the saturation 

problem in the coarse resolution satellite image. Shape variable of trees or forest 

structure such as tree crown were extracted from high-resolution images to 

estimate AGB in tropical forest (Palace et al., 2008; Phua et al., 2014). Although 

very high-resolution satellite images able to perform well in forest structure and 

AGB estimation, cloud cover and haze condition in passive remote sensing remain 

as a hindrance in data analysis (Foody and Curran, 1994). 

Synthetic Aperture Radar (SAR) imagining is independent from cloud and 

daylight conditions make it as a feasible way in obtaining a high-quality remote 

sensed data (Asner, 2011). SAR data including ALOS PALSAR and ERS is an active 

remote sensing that emits microwave or radar signal that penetrates clouds to 

obtain the vertical measurement of forest structure (Gibbs et al., 2007). Availability 

of vertical information in radar data is more advantage compared with passive data 

which only provide the horizontal information of tree structure (Lu et al., 2006). 

Correlation between P-band and L-band of SAR data with various forest structure 

parameters such as Diameter at Breast Height (DBH), basal area and tree height 

enable to provide an AGB estimation (Luckman et al., 1997; Kurvonen et al., 1999; 

Sader, 1987; Sun et al., 2002). The performance of SAR on forest structure and 

AGB estimation determined by the penetration depth of the wavelength. The longer 

wavelength able to penetrate deeper into the forest canopy with the increasing 

backscatter range of SAR provide a more robust AGB estimation (Castro et al., 
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2003; Dobson et al., 1992; Lu, 2006; Luckman et al., 1997). However, the signal of 

all SAR data tends to be saturated in complex forest structure and high AGB 

tropical forest, thus the usage of SAR data is limited in mature tropical forest 

(Luckman et al., 1997; Mitchard et al., 2009; Morel et al., 2011). 

In contrast to SAR data, airborne Light Detection and Ranging (LiDAR) able 

to overcome the saturation problem in providing a robust forest structure and AGB 

estimation. Airborne LiDAR is an active remote sensing that emits laser pulses from 

the sensor on the aircraft towards the ground surface and measured the time 

traveled by the return signal. Return signal reflected from the canopy surface, 

within canopy layer and some from the ground provides three-dimensional 

structure information of the forest (Dubayah and Drake, 2000; Lefsky et al., 2002). 

Emitted laser pulses from airborne LiDAR are able to retrieve various kinds of forest 

structure parameters such as tree height, crown size, canopy density and crown 

volume (Means et al., 1999, 2000; Magnussen et al., 1999). These parameters 

retrieved from the airborne LiDAR were highly related to AGB estimation. High 

sampling data and precise geolocation of LiDAR data make it able to estimate AGB 

in multiple scales (Nasset, 2005; Reutebuch et al., 2005). Although airborne LiDAR 

is comparatively expensive and relatively limited in geographic coverage, this 

technology remains the most promising approach in estimating AGB in complex and 

dense tropical forest. 

The purpose of this study is to examine the performance of discrete 

airborne LiDAR to estimate the forest structure and AGB of a lowland tropical forest 

in Sabah, Malaysia. The relationships of LiDAR variables such as LiDAR metrics and 

Laser penetration with field based forest structure and AGB in the primary and 

secondary lowland dipterocarp forest were examined. 

1.1 Statement of Problem 

The alarming rate of deforestation and forest degradation in recent years 

highlighted the importance of biomass estimation in tropical rainforest. Tropical 

rainforest degradation contributed to the significant GHG emission where the 

deforestation accounted for one-fourth of all anthropogenic carbon emissions 
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(Houghton, 1999). Therefore, an estimate of biomass change in tropical forest is 

necessary to validate the carbon cycle model and to quantify the impact of 

deforestation and forest degradation on global climate change. 

The Significant role of tropical rainforest in CO2 mitigation led to 

development of REDD+ mechanism in developing countries to reduce carbon 

emission with the consistent national monitoring system (Sasaki et al., 2011). 

According to 'Warsaw Framework for REDD+" in COP 19, data and information 

used in estimation of anthropogenic emission and removals under REDD+ have to 

be transparent, consistent over time with the Forest Reference Emission Level 

(FRELs) and Forest Reference Levels (FRLs). Data and methodology improvements 

were encouraged in MRV whilst maintaining the consistency with FRELs and FRLs. 

Using remote sensing combination with ground inventory data is 

recommended to improve the data and methodologies in MRV and to meet the 

requirement of IPCC guideline. Three method tiers were published under guidelines 

of IPCC 2003 to monitor the National Greenhouse Gas Inventories and to promote 

the engagement of different countries (IPCC 2003, 2006; Baker et al., 2010). 

Different combination of tiers can be used for national reporting. In conjunction 

with REDD+ mechanism, Tier 3 and Tier 2 involved combination of ground 

inventory and remote sensing technology to reduce the uncertainty of carbon stock 

estimation. Thus, a combination of ground inventory and remote sensing is 

important to obtain an accurate AGB estimation. 

There has been increasing research on the utilization of remote sensing 

technology in estimating forest structure and AGB in tropical forest. Spot-5 satellite 

images were used in the study of Castillo-Santiago et al. (2010) to estimate the 

tropical forest structure. Spectral and texture variable were used to predict the 

forest structural basal area, canopy height, timber volume and biomass in the 

forest of Mexico. Avitabile et al. (2016) estimated the AGB of the pan-tropical forest 

using 1 Km resolution multiple reference datasets of moderate-resolution imaging 

spectroradiometer (MODIS). The coarse resolution of the AGB map remain a 

hindrance to provide a transparent and accurate estimated from MRV REDD+. 

Therefore, airborne LiDAR used as an alternative by providing three dimensional 
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