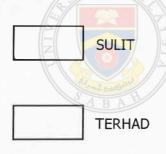
HYDROLOGICAL AND SUSPENDED SEDIMENT DYNAMICS IN CATCHMENTS OF DIFFERING LAND-USE HISTORY IN THE TROPICS – AN EXPERIMENT IN SABAH (NORTH BORNEO)

ANAND NAINAR

THESIS SUBMITTED AS A FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SCIENCE)

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2017

UNIVERSITI MALAYSIA SABAH


BORANG PENGESAHAN STATUS TESIS

JUDUL: HYDROLOGICAL AND SUSPENDED SEDIMENT DYNAMICS IN CATCHMENTS OF DIFFERING LAND USE HISTORY IN THE **TROPICS – AN EXPERIMENT IN SABAH (NORTH BORNEO)**

IJAZAH: DOCTOR OF PHILOSOPHY (ENVIRONMENTAL SCIENCE)

Saya ANAND NAINAR, Sesi 2011 – 2017, mengaku membenarkan tesis Sarjana Kedoktoran ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi yang maklumat berdariah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh,

ANAND NAINAR PS20118028

Tarikh: 14 Mei 2017

NURULAIN BINTI ISMAIL LIBRARIAN **VERSITI MALAYSIA SABAH** (Tandatangan Pustakawan) (Prof. Dr. Kawi Bidin) Penvelia

DECLARATION

I hereby declare that this thesis is my own work and that to the best of my knowledge it contains no materials previously published or produced by another party except where due acknowledgement has been made in the text.

4th May 2017

Anand Nainar PS2011-8028

CERTIFICATION

NAME : ANAND NAINAR

MATRIC NO. : **PS20118028**

- TITLE : HYDROLOGICAL AND SUSPENDED SEDIMENT DYNAMICS IN CATCHMENTS OF DIFFERING LAND USE HISTORY IN THE TROPICS – AN EXPERIMENT IN SABAH (NORTH BORNEO)
- DEGREE : DOCTOR OF PHILOSOPHY (ENVIRONMENTAL SCIENCE)
- VIVA DATE : 14th FEBRUARY 2017

CERTIFIED BY

ACKNOWLEDGEMENT

The author would like to thank both supervisors, Professor Dr. Kawi Bidin (Universiti Malaysia Sabah) and Professor Dr. Rory P. D. Walsh (Swansea University) for their endless support, guidance, patience, teaching and involvement in this research project.

The author would also like to thank and acknowledge the Sime Darby Foundation as the main funder of this research as well as other funders and participating institutions namely the Royal Society of London, South East Asia Rainforest Research Partnership (SEARRP), Imperial College London, the Sabah Foundation, Benta Wawasan Sdn. Bhd. and the Sabah Forestry Department. Also, thank you to Datuk Dr. Glen Reynolds MBE (Director of SEARRP) and Dr. Robert M. Ewers (Principal Investigator of the SAFE Project, Imperial College London) for conceptualising and the overall directing of the Stability of Altered Forest Ecosystems (SAFE) Project.

The author would like to specially mention the names of Scientific Coordinators Dr. Edgar C. Turner, Khoo Minsheng, Ryan Gray; Manager Johnny Larenus; as well as excellent Research Assistants Samsudi Mastor and Mohd. Jamal Hanapi.

To his parents Muthu Nainar and Mary Lau; his sister Meera Michele Nainar, the author understands that it has been a painfully long, stealthy nevertheless necessary journey for the completion of this thesis. Thank you for the patience and understanding especially to mother Mary Lau who never once questioned regarding the progress of this soul-crushing work but only offered her silent prayers, because she always trusts her son to finish what he started.

This thesis is now finished but the science will grow. Cheers to Science.

Anand Nainar 4th May 2017 ABSTRACT

Land use change has been the main driver of adverse changes in hydrological and suspended sediment characteristics especially in the tropics. Several notable studies on the hydrological and erosional impacts from logging and agriculture were done in Southeast Asia and Sabah, especially during logging operations around the Danum Valley. However, paired catchment studies are few - especially those investigating a few land use on a scale of increasing disturbance while taking into account the history of the land. This study was conducted for that purpose. Five different catchments from the Kalabakan and Segama area with increasing historical land-use disturbance were selected – primary forest (PF), virgin jungle reserve (VJR), twice-logged forest (LF2), repeatedly-logged forest (LF3) and an oil palm plantation (OP). Streams in each catchment has been instrumented with a depth sensor, turbidity sensor, conductivity sensor, temperature sensor and a tipping bucket rain gauge all connected to a "Campbell CR850" solar powered datalogger that records data every 5 minutes. Values of water depth, turbidity and conductivity were converted to discharge (Q), suspended sediment concentration (SSC) and total dissolved solids respectively. For computation of annual yields, data gap predictions were attempted using relationship curves derived from intracatchment and inter-catchment regression of stream variables. However, it was found that the regression relationships were unsuitable and hence three-month vields were presented instead. Three-month water vield was found to be highest in the LF3 and lowest in the OP. Mean suspended sediment concentration is highest in the OP and lowest in the LF3. Three-month sediment yield is highest in the OP and lowest in the LF2 (most likely caused by better interception, better hydrological characteristics and sediment exhaustion). At the event scale, subsurface flow was found to be highest in the PF and lowest in the OP. Peak discharge has no significant difference between the catchments. Water yield is highest in the LF3 and lowest in the OP. The baseflow, peak and end SSC at the event scale are highest in the OP and lowest in the PF. Clockwise hysteresis was found to be the dominant type in the PF, LF2 and LF3 (40.00%, 40.00% and 53.33% occurrence respectively) indicating source of sediment within the stream channel. The VJR has anticlockwise hysteresis as the dominant type (46.67% occurrence) whereas the OP has similar counts of clockwise, anticlockwise and anticlockwise figure-eight - VJR has distant sediment source while OP has multiple sources of sediment. The modified Lawler hysteresis index [HImean] that was used to quantify the magnitude of hysteresis shows no significant difference between the different land uses. The classification of hysteresis patterns in the tropics, especially figure-eights and complex hysteresis are mostly generalised. With high intra-event variability, each hysteresis requires a separate analysis to best describe its pattern and to derive a "story" of sediment delivery. Key findings that are directly applicable to management practices: (i) suspended sediment concentration is highest in the oil palm plantation but sediment yield can be greatly minimised with careful selection of areas for oil palm cultivation (lower rainfall and relief); and (ii) there is still a high value in repeatedly logged forest from a water and soil conservation aspect. The common practice of converting repeatedly-logged forest into plantations based on the assumption that there is little ecological function left has to be re-considered.

ABSTRAK

CIRI-CIRI HIDROLOGI DAN SEDIMEN TERAMPAI DI KAWASAN TADAHAN AIR DENGAN PENGGUNAAN TANAH YANG BERBEZA DI KAWASAN KHATULISTIWA – EKSPERIMEN DI SABAH (BORNEO UTARA)

Perubahan penggunaan tanah adalah faktor utama kemerosotan ciri-ciri hidrologi dan sedimen terampai terutamanya di kawasan khatulistiwa. Terdapat beberapa penyelidikan mengenai kesan-kesan hidrologi dan hakisan daripada kegiatan pembalakan dan pertanian di Asia Tenggara dan negeri Sabah, terutamanya dari operasi pembalakan di kawasan Lembah Danum. Walau bagaimanapun, bilangan kajian kawasan tadahan berpasangan adalah sedikit – terutamanya kajian yang membandingkan beberapa penggunaan tanah berbeza yang terletak pada skala gangguan tanah yang meningkat. Untuk tujuan itu, kajian ini telah dijalankan. Lima tadahan air di kawasan Kalabakan dan Segama dengan sejarah gangguan tanah yang meningkat telah dipilih – hutan primer (PF), hutan rizab (VJR), hutan yang telah dibalak dau kali (LF2), hutan yang telah dibalak berulang kali (LF3) dan ladang kelapa sawit (OP). Di setiap kawasan tadahan, pengesan kedalaman, pengesan kekeruhan, pengesan kekonduksian, pengesan suhu dan tolok hujan jenis "tipping bucket" dipasang berdekatan sungai dan disambungkan ke alat merekod data jenis "Campbell CR850" yang merekod dan menyimpan data setiap lima minit. Bacaan-bacaan kedalam air, kekeruhan dan kekonduksian ditukar ke luahan sungai, kepekatan sedimen terampai dan kepekatan pepejal terlarut masing-masing. Untuk pengiraan hasil tahunan, percubaan untuk melengkapkan data tercicir menggunakan graf-graf hubungan yang diperolehi dari regresi pembolehubah dalam sunga<mark>i dan re</mark>gresi pembolehubah antara sungai telah dilakukan. Walaubagaimanapun, kaedah ini didapati kurang sesuai dan oleh sebab itu, nilai hasil tiga-bulan dilaporkan sebagai alternatif. Nilai hasil luahan air tiga-bulan didapati paling tinggi di PF dan paling rendah di OP. Kepekatan purata sedimen terampai adalah paling tinggi di OP dan paling rendah di LF3. Bagi hasil sedimen tiga-bulan, OP merekodkan nilai tertinggi manakala LF2 merekodkan nilai terendah (kemungkinan besar hasil daripada pemintasan dan ciri-ciri hidrologi yang baik; dan juga kekurangan sedimen). Pada skala kejadian hujan pula, aliran bawahpermukaan mencatatkan nilai tertinggi di PF dan terendah di OP. Puncak luahan sungai tidak mempunyai perbezaan yang besar antara kawasan tadahan air. Hasil luahan air diadapati paling tinggi di LF3 dan paling tendah di OP. Kepekatan permulaan, puncak dan pengakhiran sedimen terampai adalah tertinggi di OP dan terendah di PF. PF, LF2 dan LF3 mempunyai corak histeresis arah jam sebagai histeresis yang utama (kekerapan 40.00%, 40.00% dan 53.33% masing-masing) yang menunjukkan sumber sedimen dari saluran sungai. VJR mempunyai histeresis lawan jam sebagai histeresis utama (kekerapan 46.67%) manakala OP mempunyai kekerapan yang serupa bagi histeresis arah jam, lawan jam dan bentuk-lapan lawan jam – VJR mempunyai sumber sedimen yang jauh dari sungai manakala OP mempunyai beberapa sumber sedimen. Index histeresis Lawler yang diubahsuai [HImean] yang dipakai untuk mengukur magnitud histeresis menunjukkan bahawa tidak ada perbezaan yang besar antara penggunaan tanah yang berbeza. Kaedah semasa pengenalpastian dan klasifikasi bentuk histeresis terutamanya histeresis bentuk-lapan dan histeresis kompleks di kawasan khatulistiwa adalah tidak

mencukupi. Dengan kebolehubahan yang tinggi dalam suatu peristiwa hujan, setiap histeresis memerlukan analisis yang berasingan untuk mengulas bentuknya dan memperoleh penjelasan untuk penghanyutan sedimen. Penemuan utama yang boleh diaplikasikan secara langsung ke dalam kegiatan pengurusan: (i) nilai kepekatan sedimen terampai adalah paling tinggi di ladang kelapa sawit tetapi hasil sedimen boleh dikurangkan dengan pemilihan kawasan penanaman kelapa sawit secara teliti (kawasan dengan hujan dan kecerunan yang rendah); dan (ii) hutan yand telah dibalak berulang kali masih mempunyai nilai yang tinggi dari aspek pemuliharaan air dan tanah. Amalan biasa untuk menukar hutan yang berulang kali dibalak kepada ladang yang berasaskan andaian bahawa hutan yang dibalak tidak mempunyai nilai ekologi perlu dipertimbangkan semula.

TABLE OF CONTENTS

		Page
TIT	LE	i
DEC	CLARATION	ii
VER	RIFICATION	
ACK	NOWLEDGEMENT	iv
ABS	STRACT	v
ABS	TRAK	vi
ТАВ	LE OF CONTENTS	viii
LIS	r of tables	xii
LIST	T OF FIGURES	xvii
LIST	T OF PHOTOGRAPHS	xxii
LIST	OF ABBREVIATIONS	xxiii
LIST	OF SYMBOLS	xxvi
LIST	OF UNITS UNIVERSITI MALAYSIA SABAH	xxvii
LIST	OF FORMULAS	xxviii
LIST	OF APPENDICES	xxxi
CHA 1.1 1.2 1.3 1.4 1.5	PTER 1: INTRODUCTION Background Problem Statement and Gap in Knowledge Research Aims Significance of Study Scope of Study	1 1 3 4 5 6
	PTER 2: LITERATURE REVIEW	8
2.1	Tropical Rainforests 2.1.1 Distribution and Classification 2.1.2 Vegetation 2.1.3 Climate	8 9 10 11
	2.1.4 Importance/Function2.1.5 Threat and Decline2.1.6 Scenario in Malaysia and Sabab	11 12 14

2.2	Loggi	na	17
		Overview	17
	2.2.2	Techniques of Logging	17
		Adverse Effects	19
		Conservation Measures	22
	2.2.5		23
2.3		Im Plantation	25
210		Overview	25
		Production	26
	2.3.3		27
	2.3.4		29
		Palm Oil versus Other Oils	29
		Scenario in Malaysia and Sabah	31
2.4		logical Processes in Forests	31
2.5		nded Sediment	33
2.5	•	Overview	33
		Origin and Dynamics	33
		Adverse Effects	35
	2.5.4		36
	2.3.1	Suspended Sediment	50
	2.5.5		39
		Previous Studies on Suspended Sediment	41
2.6	Hyster		57
210	•	Discharge, Loads and Hysteresis	57
	2.6.2		58
		Forms and Patterns	59
		Previous Studies on Hysteresis Loops	64
		Hysteresis Indices	69
		Challen and Challe	
CHA	PTER 3:	METHODOLOGY UNIVERSITI MALAYSIA SABAH	73
3.1		mental Design	73
3.2	•	f Study	74
0.2		Location	74
		Catchment Characteristics	75
3.3		ng Stations	88
3.4	Discha		90
		Relative Dilution Gauging	90
		Manning's Equation Method	93
		Weir Method	99
	3.4.4		100
3.5		nded Sediment Concentration	103
5.5	3.5.1		104
	3.5.2		107
	5.5.2	Calibration	107
	353	SSC-Turbidity Calibration Experiment	107
	3.5.4	Calculation of SSC and Production of the SSC-Turbidity	109
	5.5.1	Relationship	105
	3.5.5	Minimisation of Error	110
	3.5.6	Suspended Sediment Loads and Yields	111
	3.5.7		112

3.6	Total Dissolved Solids	113
	3.6.1 Sampling and Storage	114
	3.6.2 Procedure	114
	3.6.3 Calculation of TDS and Production of the TDS-Conductivity Conversion Factor	115
	3.6.4 Minimisation of Error	115
3.7	Data Processing and Storm Identification	116
3.8	Storm Selection	118
3.9	Hydrograph Separation – The Hewlett-Hibbert Slope Technique	119
3.10	Predicting Data Gaps and Computation of Annual Yields	122
	3.10.1 The Attempted Regression Method for Filling Gaps	122
	3.10.2 Rainfall	127
3.11	Lawler Hysteresis Index	128
CHA	PTER 4: RESULTS AND DISCUSSION – DATA AVAILABILITY, PREDICTION AND YIELDS	130
4.1	Attempts in Filling Data Gaps	127
	4.1.1 Attempts in Using Intra-Catchment Yield Relationships	128
	4.1.2 Attempts in Using Inter-Catchment Yield Relationship	140
	4.1.3 Confidence of Using the Attempted Regression Equations	145
4.2	General Statistics and Yields	146
	4.2.1 Discharge	148
	4.2.2 Suspended Sediment Concentration	151
	4.2.3 Total Dissolved Solids	157
	4.2.4 Water Yield 4.2.5 Sediment Yield	158 160
4.2		160
4.3	Synthesis and Summary of Chapter 4	162
	4.3.1 Attempts in Filling Data Gaps 4.3.2 General Statistics and Yields	162
	4.3.2 General statistics and Tields SITI MALAYSIA SABAH	105
CHAF 5.1	PTER 5: DISCHARGE AT THE EVENT SCALE Primary Forest (PF)	164 164
5.2	Virgin Jungle Reserve – Lightly Logged Old Growth (VJR)	166
5.3	Twice-Logged and Regenerating (LF2)	168
5.4	Thrice-Logged and Regenerating (LF3)	171
5.5	Oil Palm Plantation (OP)	173
5.6	Inter-Catchment Analysis	175
5.7	Synthesis and Summary of Chapter 5	178
	5.7.1 Intra-Catchment Analysis	178
	5.7.2 Inter-Catchment Analysis	180
СНАР	PTER 6: SUSPENDED SEDIMENT AT THE EVENT SCALE	182
6.1	Primary Forest (PF)	182
6.2	Virgin Jungle Reserve (VJR)	187
6.3	Twice-Logged and Regenerating (LF2)	190
6.4	Repeatedly-Logged and Regenerating (LF3)	193
6.5	Oil Palm Plantation (OP)	196
6.6	Inter-Catchment Comparison of Variables	200
6.7	Synthesis and Summary for Chapter 6	205
	6.7.1 Intra-Catchment Analysis	205

СНАР	TER 7: SUSPENDED SEDIMENT CONCENTRATION-DISCHARGE HYSTERESIS LOOPS	211
7 4		211
7.1	Introduction	211
7.2	Primary Forest (PF) Catchment	213
7.3	Virgin Jungle Reserve (VJR) Catchment	215
7.4	Twice-Logged Forest (LF2) Catchment	217
7.5	Repeatedly-Logged Catchment (LF3) Catchment	219
7.6	Oil Palm (OP) Catchment	220
7.7	Inter-Catchment Analysis	222
7.8	Additional Analysis	226
7.9	Discussion: Variations of Figure-eight Hysteresis	228
	7.9.1 Subtype 4a – Anticlockwise-clockwise-anticlockwise	229
	7.9.2 Subtype 4b – Straight-clockwise-anticlockwise	231
	7.9.3 Subtype 5a – Clockwise-anticlockwise	235
	7.9.4 Subtype 5b – Clockwise-straight-anticlockwise	238
	7.9.5 Classifying and Interpreting Complex Hysteresis	243
7.10	Synthesis and Summary of Chapter 7	246
	7.10.1 Intra-Catchment Analysis	246
	7.10.2 Inter-Catchment Analysis	248
	7.10.3 Additional Analysis	248
	7.10.4 Unique Variations of Figure-Eight Hysteresis	249
СНАР	TER 8: CONCLUSION	250
8.1	Data Gap Prediction and Computation of Yields	250
8.2	Discharge and Water Yield – Event scale	251
8.3	Suspended Sediment and Sediment Yield – Event Scale	252
8.4	Hysteresis Analysis	252
8.5	Concluding Findings	254
8.6	Proposed Future Research	255
REFEF	RENCES	257
APPE	NDICES	298

208

APPENDICES

LIST OF TABLES

		Page
Table 2.1	Area (ha $\times 10^{-8}$), and maximum, minimum and mean Net Primary Production (NPP, t ha ⁻¹ year ⁻¹), of selected forest Biomes	12
Table 2.2	Functions and areas of permanent forest reserves in Sabah, 1996	16
Table 2.3	World production of selected oils and fats (million tonnes) including predicted productions up to 2020	27
Table 2.4	Water quality variables measured during 35 hydrological events in two catchments. SS – total suspended sediment, DOC – dissolved organic carbon, TPC – total particulate carbon	45
Table 2.5	Actual and normalised yields of SS, DOC and TPC in the two study catchments for an eight month period	45
Table 2.6	Estimated sediment yield over a period of 51 months of monitoring	50
Table 2.7	Relationship between stream stage and suspended sediment concentration from Sungai Segama and DVFC	51
Table 2.8	Number of storms with peak SSC above 500, 1000 and 4000 mg L^{-1} as well as hours per annum of SSC above 200 mg L^{-1} for the years 1995-2009	52
Table 2.9	Sediment yield and erosion values from different studies in Southeast Asia. Sediment yield is measured at the catchment scale while erosion, at the plot scale	55
Table 3.1	Compiled and summarised forest quality variables	81
Table 3.2	Above ground forest parameters measured in the riparian zones of the SAFE Project catchments	82
Table 3.3	Major species composition (%) of trees across different catchments	83
Table 3.4	Species composition of trees in the Danum Valley Conservation Area (PF catchment)	83
Table 3.5	Rainfall in the SAFE Project and Danum Valley Conservation Area	87

Table 3.6	Channel slope and catchment slope gradient	88
Table 3.7	Water depth, sensor depth, cross-sectional area, wetted perimeter and hydraulic radius for the OP stream	98
Table 3.8	The multiple stage-discharge conversion equation, their respective stage applicability and their consolidated Microsoft Excel equation for streams in each catchment	102
Table 4.1	Spearman's rank-order correlation coefficient (ρ) values of in-stream variables from a.) monthly data; and b.) daily data for the PF catchment	131
Table 4.2	The difference of measured and derived yields over 252 days (24th February 2012 to 31st August 2013)	133
Table 4.3	Spearman's rank-order correlation coefficient (ρ) values of in-stream variables from a.) monthly data; and b.) daily data for the VJR catchment	134
Table 4.4	Spearman's rank-order correlation coefficient (ρ) values of in-stream variables from a.) monthly data; and b.) daily data for the LF2 catchment	135
Table 4.5	Spearman's rank-order correlation coefficient (ρ) values of in-stream variables from a.) monthly data; and b.) daily data for the LF3 catchment	137
Table 4.6	Spearman's rank-order correlation coefficient (ρ) values of in-stream variables from daily data for the OP catchment	139
Table 4.7	Spearman's rank-order correlation coefficient (ρ) between daily data of in-stream variables from the VJR and the 15m catchment	141
Table 4.8	Spearman's rank-order correlation coefficient (ρ) between daily data of in-stream variables from the LF2, LF3, 5m and VJR catchments	142
Table 4.9	Spearman's rank-order correlation coefficient (ρ) between daily data of in-stream variables from the LF3, VJR, 5m and 15m catchments	142
Table 4.10	Spearman's rank-order correlation coefficient (ρ) between daily data of in-stream variables from the OP and VJR catchments	145
Table 4.11	The minimum, maximum, mean as well as annual yields for hydrological, sediment and dissolved solid variables	148

Table 5.1	Discharge variables in the storms of the PF catchment	164
Table 5.2	Pearson correlation matrix for discharge variables in the PF catchment	165
Table 5.3	Discharge variables in the storms of the VJR catchment	167
Table 5.4	Pearson correlation matrix for discharge variables in the VJR catchment	168
Table 5.5	Discharge variables in the storms of the LF2 catchment	169
Table 5.6	Pearson correlation matrix for discharge variables in the LF2 catchment	169
Table 5.7	Discharge variables in the storms of the LF3 catchment	172
Table 5.8	Pearson correlation matrix for discharge variables in the LF3 catchment	172
Table 5.9	Discharge variables in the storms of the OP catchment	173
Table 5.10	Pearson correlation matrix for discharge variables in the OP catchment	174
Table 5.11	The Kruskal-Wallis Test results for discharge variables between the catchments	175
Table 5.12	Catchments that display significant relationships between discharge variables ($n=20$)	181
Table 6.1	Discharge variables in the storms of the PF catchment	185
Table 6.2	Pearson correlation matrix for discharge and suspended sediment variables in the PF catchment	186
Table 6.3	Discharge variables in the storms of the VJR catchment	188
Table 6.4	Pearson correlation matrix for discharge and suspended sediment variables in the VJR catchment	189
Table 6.5	Discharge variables in the storms of the LF2 catchment	191
Table 6.6	Pearson correlation matrix for discharge and suspended sediment variables in the LF2 catchment	192
Table 6.7	Discharge variables in the storms of the LF3 catchment	194
Table 6.8	Pearson correlation matrix for discharge and suspended sediment variables in the LF3 catchment	195

Table 6.9	Discharge variables in the storms of the OP catchment	198
Table 6.10	Pearson correlation matrix for discharge and suspended sediment variables in the OP catchment	199
Table 6.11	Kruskal-Wallis Test results for discharge variables between the catchments	201
Table 6.12	catchments that display significant relationships between variables	209
Table 7.1	Hysteresis categorisation for storms 6 to 20; and the count For each hysteresis type in the PF catchment	213
Table 7.2	Kruskal-Wallis analysis of the different stream variables for different types of hysteresis loops in the PF catchment	214
Table 7.3	Hysteresis categorisation for storms 6 to 20; and the count for each hysteresis type in the VJR catchment	215
Table 7.4	Kruskal-Wallis analysis of the different stream variables for different types of hysteresis loops in the VJR catchment	216
Table 7.5	Hysteresis categorisation for storms 6 to 20; and the count f <mark>or each h</mark> ysteresis type in the LF2 catchment	218
Table 7.6	Kruskal-Wallis analysis of the different stream variables for different types of hysteresis loops in the LF2 catchment	218
Table 7.7	Hysteresis categorisation for storms 6 to 20; and the count for each hysteresis type in the LF3 catchment	219
Table 7.8	Kruskal-Wallis analysis of the different stream variables for different types of hysteresis loops in the LF3 catchment	220
Table 7.9	List of hysteresis categorisation for storms 6 to 20; and the count for each hysteresis type in the OP catchment	221
Table 7.10	Kruskal-Wallis analysis of the different stream variables for different types of hysteresis loops in the OP catchment	221
Table 7.11	Types of hysteresis in each selected storm and the count of hysteresis type in each catchment	223
Table 7.12	Hysteresis indices [HImid] and [HImean] for storms 6 – 20 in the different catchments	225
Table 7.13	Kruskal-Wallis analysis of the different stream variables among different types of hysteresis loops in all catchments	225

Table 7.14Kruskal-Wallis analysis of [HImid] and [HImean] among
different types of hysteresis loops in all catchments226Table 7.15Kruskal-Wallis analysis of the [HImid] and [HImean] among
different storm ranks in all catchments228

LIST OF FIGURES

		Page
Figure 2.1	Worldwide distribution of tropical rainforest tropical climate	8
Figure 2.2	Natural forest, plantation forests and major crops in Sabah	15
Figure 2.3	Production of palm oil (million tonnes) from 1973 to 2005 in Indonesia, Malaysia and the rest of the world	26
Figure 2.4	Increase in mature oil palm area from 1973 to 2005, in Indonesia, Malaysia and the rest of the world	27
Figure 2.5	Land area required to produce 1 t of vegetable oil in the year 1990	30
Figure 2.6	Energy input and output ration for selected oil producing crops	31
Figure 2.7	Key hydrological processes on a forested hillslope	32
Figure 2.8	Relative duration and recovery rates for increased suspended sediment yield associated with forest harvesting and other disturbances	38
Figure 2.9	Hypothetical root strength against time since forest harvesting and subsequent land-use conversion	39
Figure 2.12	(a) SSCs in the four study basins. (b) SSCs against discharge per unit area for the four study basins	48
Figure 2.11	Model of storm events and runoff between storm events affecting sediment availability in disturbed and undisturbed catchments	49
Figure 2.12	Stream stage and suspended sediment concentration of Sungai Segama and DVFC plotted in parallel	50
Figure 2.13	Four phase sediment yield model	52
Figure 2.14	Relationship between discharge and suspended sediment concentration	57
Figure 2.15	Classification of hysteresis types (3 types) according to Hudson (2003)	60
Figure 2.16	Classification of hysteresis types (5 types) according to Gellis (2013)	60

Figure 2.17	Types and classification of hysteresis employed in this study	61
Figure 2.18	SSC-Q relationships with clockwise occurring 57% of the time while coincidental, 35% and anticlockwise, 8%	65
Figure 2.19	Relationship between drainage area and lead times for positive hysteresis relationships between Q and SSC	66
Figure 2.20	Conceptual diagram of SS generation and disappearing sediment source	68
Figure 3.1	Position of the experimental catchments. The PF catchment is not in this map	74
Figure 3.2	Forest reserves and other forested land in Sabah	77
Figure 3.3	Natural vegetation in the SAFE Project area	79
Figure 3.4	Geology of SAFE project area	85
Figure 3.5	Soil type of the SAFE project area	86
Figure 3.6	Lines drawn across the streams in each catchment and their gradients measured	88
Figure 3.7	Cross section of the LF3 stream drawn on the AutoCAD software from information of width and height at every 30 cm interval	96
Figure 3.8	The small triangular area missed when measuring the cross-section of a stream	96
Figure 3.9	Cross-section of the LF3 being divided horizontally at every 10 cm interval	97
Figure 3.10	Stage-discharge relationship for the OP stream produced by the Manning's equation	99
Figure 3.11	The stage-discharge curves for streams of the VJR, LF2, LF3 and OP catchment.	102
Figure 3.12	SSC-Turbidity calibration curves and equations for all catchments	110
Figure 3.13	A hydrograph for Storm 8 showing water level against time in the VJR catchment	117

Figure 3.14	Different scenarios of missing data. (i) one or two variables missing for part of a month, (ii) all variables missing for part of a month, and (iii) all variable missing for an entire month	124
Figure 3.15	Scatter plots and regression trendlines between the daily water yield of LF3 and daily water yield of VJR a) using all data points; b) with outliers removed	126
Figure 4.1	The active periods of data-logging (at least datalogger and depth sensor in working order) for streams of each catchment throughout 23 months (1st October 2011 to 31st August 2013)	130
Figure 4.2	The strongest intra-catchment regressions available for the PF catchment	133
Figure 4.3	The strongest intra-catchment regressions available for the VJR catchment	135
Figure 4.4	The strongest intra-catchment regressions available for the LF2 catchment	136
Figure 4.5	The strongest intra-catchment regressions available for the LF3 catchment	138
Figure 4.6	The strongest intra-catchment regressions available for the OP catchment	139
Figure 4.7	The strongest inter-catchment regression available for the VJR catchment	141
Figure 4.8	The strongest inter-catchment regression available for the LF2 catchment	143
Figure 4.9	The strongest inter-catchment regression available for the LF4 catchment	144
Figure 4.10	The strongest inter-catchment regression available for the LF4 catchment	145
Figure 5.1	Hydrographs of Storm 15 from the (a) PF catchment, (b) LF2 catchment and (c) OP catchment showing the shape of the rising and falling limb	171
Figure 5.2	Box-and-whisker plots showing the minimum, first quartile, median, third quartile and maximum values of the different discharge variables in different land-uses.	175
Figure 6.1	Box-and-whiskers plots showing the minimum, first quartile, median, third quartile and maximum values of the different suspended sediment variables in different land-uses.	201

Figure 7.1	Examples of erratic and unclear hysteresis from the smaller storms	212
Figure 7.2	VJR selected event 8. Note that the rising and falling limb and close together but with sufficient clarity and fewer spikes and dips of data points	213
Figure 7.3	Normal forms of (a) clockwise and (b) anticlockwise figure-eight hysteresis	229
Figure 7.4	Subtype-4a – Anticlockwise-clockwise-anticlockwise hysteresis	230
Figure 7.5	Subtype-4a hysteresis in storm 8 of the LF2 catchment	230
Figure 7.6	Hydrograph, sedigraph and hyetograph for Storm 8 of the LF2 catchment	231
Figure 7.7	Subtype-4b – Straight-clockwise-anticlockwise hysteresis	231
Figure 7.8	Subtype-4b hysteresis in a) storm 14; b) storm 15; c) storm 16 of the VJR catchment	232
Figure 7.9	Hydrograph, sedigraph and hyetograph for Storm 14 of the VJR catchment	233
Figure 7.10	Hydrograph, sedigraph and hyetograph for Storm 15 of the VJR catchment	233
Figure 7.11	Hydrograph, sedigraph and hyetograph for Storm 16 of the VJR catchment	234
Figure 7.12	Subtype-5a – Straight-clockwise-anticlockwise hysteresis	235
Figure 7.13	Subtype-5a hysteresis in a) storm 17 and b) storm 18 of the LF2; and c) storm 9 of the LF3 catchment	236
Figure 7.14	Hydrograph, sedigraph and hyetograph for Storm 17 of the LF2 catchment	237
Figure 7.15	Hydrograph, sedigraph and hyetograph for Storm 18 of the LF2 catchment	237
Figure 7.16	Hydrograph, sedigraph and hyetograph for Storm 9 of the LF3 catchment	238
Figure 7.17	Subtype 5b – Straight-clockwise-anticlockwise hysteresis	239

Figure 7.18	Subtype 5a in a) storm 12 and b) storm 20 from the PF; c) storm 17 from the VJR; d) storm 12 and e) storm 19 from the LF2; f) storm 16 and g) storm 20 from the LF3; and h) storm 19 from the OP	240	
Figure 7.19	Hydrograph and sedigraph for a.) Storm 12 and b.) Storm 20 from the PF catchment		
Figure 7.20	Hydrograph and sedigraph for Storm 17 from the VJR catchment (rainfall information not available)	241	
Figure 7.21	Hydrograph, sedigraph and hyetograph for a.) Storm 12 and b.) Storm 19 from the LF2 catchment (rainfall information not available for storm 12)	241	
Figure 7.22	Hydrograph, sedigraph and hyetograph for a.) Storm 16 and b.) Storm 20 from the LF3 catchment (rainfall information not available for storm 16)	242	
Figure 7.23	Hydrograph, sedigraph and hyetograph for Storm 19 from the OP catchment	242	
Figure 7.24	Complex hysteresis in a.) Storm 19 of the LF3; b) Storm 9 of the PF; c.) storm 7 and d.) Storm 10 of the VJR; and e.) Storm 9 of the OP catchment	246	
Figure 7.25	Hysteresis loop of Storm 19 from the LF3 catchment with Datalogging interval modified to every a.) 10 minutes, b.) 15 Minutes, c.) 20 minutes and d.) 30 minutes from 2.7 m3 s-1 on the rising limb to 2.9 m3 s-1 on the falling limb	246	
Figure 7.26	Hydrograph, sedigraph and hyetograph for Storm 9 from	246	

LIST OF PHOTOGRAPHS

		Page
Photograph 3.1	Gauging station. (a) Datalogger and raingauge at bankside; (b) reinforcements by concrete and metal frames; (c) sensors and stageboard	89
Photograph 3.2	Installing a stake on one side of the bank	94
Photograph 3.3	A measuring tape being stretched across the stream to be tied onto the second stake	95
Photograph 3.4	Measuring height of the tape from the bed (depth of cross section) at every 30cm interval	95
Photograph 3.5	Example of a good sampling location	105
Photograph 3.6	Examples of a poor fluvial sediment sampling location	106
Photograph 3.7	The right way and wrong way of collecting sediment samples	106
Photograph 4.1	Bare un-vegetated banks in the OP stream	155
Photograph 4.2	Inconsistent ground cover along stream banks	155
Photograph 4.3	Tractor roads built right into and across the stream at different locations (a, b, and c) in the OP catchment	157

LIST OF ABBREVIATIONS

вмр	-	Best management practices
DBH		Diameter at breast height
DSY	-	Dissolved Solids Yield
DVCA	-	Danum Valley Conservation Area
DVFC	-	Danum Valley Field Centre
Ei	-	Interception loss
EIA	-	Environmental Impact Assessment
ET	-	Evapotranspiration
Et	-	Transpiration
et al.	TI	And others
GDP	4	Gross domestic product
HI _{mean}	-	Average value of hysteresis index at $k = 0.25$, $k = 0.5$ and $k = 0.75$
HI _{mid}	SA 1	Lawler Hysteresis Index TI MALAYSIA SABAH
HOF	-	Hortonian Overland Flow
HSA	÷	Hydrologically Sensitive Area
LCD	-	Liquid Crystal Display
LF2	-	Twice-Logged Forest
LF3	*	Repeatedly-Logged Forest
MBSC	-	Maliau Basin Studies Centre
NPP	÷	Net primary production
ОР	-	Oil Palm Plantation
Ρ	-	Precipitation
ра	-	Per annum