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ABSTRACT 

Agroforestry systems have a promising potential in climate change mitigation by 
storing carbon in the multistorey planted trees and crops. However, there has been 
very few research on quantifying aboveground carbon (AGC) stock of agroforestry 
systems in Malaysia. Thus, this study was conducted in Balung Plantation, Tawau, 
Sabah, with the aims to determine the AGC stock potential and also to evaluate the 
performance of LiDAR data in assisting AGC stock estimation of the agroforestry 
systems. Three types of teak-based agroforestry systems combination were studied 
mainly polyculture system 1 (teak + agarwood + snake fruit), polyculture system 2 
(teak + coffee) and polyculture system 3 (teak + agarwood). In addition, teak 
monoculture plantation and natural forest reserve (Tawau Hill FR) was treated as 
controls. A total of 20 square plots (50 m x 50 m) was established in the 
agroforestry systems while 3 square plots (50 m x 50 m) was established in the teak 
monoculture plantation and 6 square plots (30 m x 30 m) in the natural forest 
reserve. Aboveground biomass (AGB) was calculated from the field measured DBH 
and height using allometric equations and converted into AGC stock using a 
conversion factor of 0.50. The results showed that the accumulation of AGC stock is 
in the following order: natural forest reserve (213.84 t C/ha) > polyculture system 3 
(69.94 t C/ha) > polyculture system 2 (37.75 t C/ha) > polyculture system 1 (37.34 t 
C/ha) > teak monoculture plantation (34.53 t C/ha). The findings have demonstrated 
that the agroforestry systems are capable to store about a quarter percent of the 
total AGC stock of a natural forest reserve which is relatively better than the 
monoculture plantation. For the AGC estimation using airborne LiDAR data, two 
estimation approaches were used (Approach 1: AGC estimation based on the layering 
of species-specific AGC models developed through vertical canopy stratification; and 
Approach 2: AGC modelling through the combination of all sample plots). LiDAR 
metrics such as height metrics, cover density metrics, strata density metrics and 
canopy cover percentage metrics was extracted from the LiDAR point clouds data (all 
returns) and regressed with field AGC to establish the AGC estimation models. 
Through the layering of the best AGC estimation models for teak trees (Adj-R2 cv= 

0.92, %RMSE01 = 12.65 %), agarwood trees (*2 outlier removed; Adj-R2
cv

= 0.86, 
%RMSE01 = 44.21 %) and understorey crops (Adj-R2

cv
= 0.40, %RMSEcv = 15.88 %), 

the approach 1 method were able to explain 81 % (%RMSEcv = 17.65 %) of the AGC 
variance in the agroforestry systems. Through linear regression model without 
transformation, the approach 2 method has improved the estimation by 3 % with 
AGC estimation performance of 84 % (%RMSEcv = 13.45 %). Overall, this study 
showed that the teak trees have a great potential in transforming a low biomass land 
cover into a carbon-rich tree based agroforestry systems, with the capability to store 
more than 60 % of the total AGC stock in the agroforestry systems. This study also 
demonstrated that airborne LiDAR data was capable in estimating AGC of 
agroforestry systems at the plot level with high accuracy. 
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ABSTRAK 

PENGANGGARAN STOK SIMPANAN KARBON ATAS TANAH DI DALAM 

SISTEM PERHUTANI DI LADANG BALUNG, TAWA� SABAH 

MENGGUNAKAN DATA LIDAR BAWAAN UDARA 

Sistem perhutani mempunyai potensi yang besar dalam mitigasi perubahan 1klim dengan 
menyimpan karbon di dalam pokok dan tanaman pettanian yang ditanam secara 
berbilang tingkat Walaubagaimanapun/ tidak banyak kajian yang dfjalankan mengenai 
simpanan stok karbon atas tanah (AGC} di dalam sistem perhutani di Malaysia. Oleh itt.4 
kajian ini telah dfjalankan di Balung Tawat.4 Sabah dengan tujuan untuk menilai 
keupayaan penyimpanan stok AGC dan Juga menilai keupayaan data LiDAR dalam 
menganggar stok AGC sistem perhutani. Tiga jenis kombinasi sistem perhutani 
berasaskan Jati telah dikaji iaitu polikultur sistem 1 {jati + gaharu + salakJ polikultur 
sistem 2 {jati + kopi) dan polikultur sistem 3 (jati + gaharu). Selain it� ladang Jati 
monokultur setta hutan simpan semulajadi (Hutan Simpan Taman Bukit Tawau) 
dfjadikan sebagai kawalan. Sebanyak 20 plot segi empat tepat (50 m x 50 m) telah 
dibuat di sistem perhutani manakala 3 plot segi empat tepat (50 m x 50 m) dibuat di 
ladang Jati monokultur dan 6 plot segi empat tepat (30 m x 30 m) di hutan simpan 
semulajadi. Biojisim atas tanah {AGB) dikira menggunakan rumus alometri berdasarkan 
ukuran DBH dan tinggi yang direkod di lapangan dan ditukar kepada stok AGC 
menggunakan faktor penukaran 0.50. Keputusan menunjukkan pengumpulan stok AGC 
adalah dalam turutan berikut: hutan simpan semulajadi (213.84 t C/ha) > polikultur 
sistem 3 (69.94 t C/ha) > poliku!tur sistem 2 (37.75 t C/ha) > poliku!tur sistem 1 (37.34 t 
C/ha) > ladang Jati monokultur (34.53 t C/ha). Hastl kajian menunjukkan sistem 
perhutani mampu menyimpan sebanyak satu per empat peratus daripada Jumlah stok 
AGC yang terdapat di dalam hutan simpan semulajadi yang secara relatifnya adalah lebih 
baik berbanding ladang monokultur. Bagi penganggaran simpanan stok AGC 
menggunakan data UDAR/ dua Jenis pendekatan telah digunakan (Pendekatan 1: 
penganggaran stok AGC berdasarkan pelapisan model AGC spesis-spesifik yang 
dihasilkan melalui stratifikasi kanopi secara menegak/ dan Pendekatan 2: pemodelan 
AGC melalui kombinasi kesemua sampel plot lapangan). Metrik LiDAR seperti metrik 
ketinggian metrik kepadatan lttupan metnk kepadatan strata serta metrik peratusan 
litupan diekstrak daripada data LiDAR (kesemua pantulan) dan diregresikan dengan data 
AGC lapangan bagi menghasilkan model anggaran AGC Melalui pe!apisan model AGC 
yang terbaik bagi pokok jati (Adj-R2 cv= 0.9Z %RMSEcv = 12.65 %)✓ pokok gaharu (*2 
outlier dike/uarkan/ Adj-R2 cv= 0.86✓ %RMSEcv = 44.21 %) dan tanaman pettanian di 
kanopi bawah (Adj-R2 cv= 0.44 %RMSEcv 

= 15.88 %)✓ kaedah pendekatan 1 mampu 
menjelaskan sebanyak 81 % (%RMSEcv = 17.65 %) varians stok AGC di dalam sistem 
perhutani. Menggunakan model regresi linear tanpa transformasl kaedah pendekatan 2 
telah meningkatkan kebo/ehanggaran sebanyak 3 % dengan prestasi penganggaran stok 
AGC mencapai 84 % (%RMSEcv = 13.45 %). Secara keseluruhannya/ kajian ini 
menunjukkan bahawa pokok jati mempunyai potensi besar da!am mengubah kawasan 
berbiojisim rendah kepada sistem perhutani berasaskan pokok yang kaya dengan 
karbon dengan keupayaan untuk menyimpan sebanyak 60 % daripada jumlah 
keseluruhan stok AGC di dalam s1"stem perhutani. Kajian ini Juga telah menunjukkan 
bahawa UDAR bawaan udara mampu menganggarkan AGC sistem perhutani pada 
peringkat plot dengan ketepatan yang tinggi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Study Background 

Carbon is the fourth most abundant element in the universe and serves as a 

common element for all living organisms. Similar to the nitrogen and water cycle, 

the carbon cycle is important for sustaining life. Carbon sequestration refers to the 

carbon capture and long term storage of atmospheric carbon dioxide (CO2) gas. On 

earth, carbon is sequestered and stored in the terrestrial and marine ecosystems 

whereas a small portion of carbon constitutes within the earth's atmosphere. It was 

estimated that about 2500 Gt carbon are stored in the terrestrial ecosystems 

compared to 750 Gt carbon within the atmosphere (Convention on Biological 

Diversity [CBD], 2009). Forest ecosystems such as the primary tropical rainforest, 

sequesters the most carbon of any terrestrial ecosystems and it is considered as 

the main natural break in mitigating climate change (Gibbs et al./ 2007). Forest 

sequesters carbon dioxide from the atmosphere through photosynthesis process 

and acts as a carbon sink in which it prevents the carbon from being released back 

to the atmosphere by storing it up for good. At present, forest covers 

approximately 30.6 % of the total global land area and stores a massive amount of 

carbon (289 Gt C) in their biomass alone (MacDicken et al., 2016; Food and 

Agriculture Organization of the United Nations [FAO], 2010). 

However, due to the extensive needs of area for urbanization, community 

settlement, establishment of plantation, agricultural areas and many other 

activities, forested land clearing has become highly inevitable. Over the past 

decades, large areas of forest have been destroyed, cleared, overharvested or 

burned, and converted to non-forest use. A considerable extent of forest areas was 

reported to already been lost, especially in less developed and developing countries 

all over the world (Kumar and Nair, 2011). The conversion of forest areas to other 



land uses was identified as the source of carbon emission. In 2016, Food and 

Agriculture Organization of the United Nations (FAQ) have reported that the annual 

rate of deforestation was 0.08 % during the period of 2010 to 2015 (MacDicken et 

al., 2016). Deforestation activities have been widely accepted as one of the major 

contributors to global climate change which is the most serious environmental 

issues affecting the environment and also human lives (Hairiah et al., 2001). 

Deforestation activities increase the concentration of greenhouse gases 

(GHGs) in the atmosphere as the deforested landscapes fails to capture and stores 

C02 which is the main GHGs components. According to Intergovernmental Panel on 

Climate Change, IPCC (2013), C02 has contributed more than any other driver to 

climate change between 1750 and 2011 as a result of human anthropogenic 

activities, as well as land use change. Approximately 20 % of all carbon emissions 

were attributed from deforestation and forest degradation. High concentrations of 

C02 within the atmosphere are associated with global warming, that is the increase 

in the earth's temperature due to the fact that C02 is a heat-trapping gas. C02 

remains in the atmosphere longer than other major heat-trapping gases emitted in 

which, after a pulse of C02 is emitted into the atmosphere, 40 % will remain for 

100 years and 20 % will reside for 1000 years, while the final 10 % will take 

10,000 years to turn over (Union of Concerned Scientist [UCS], 2017). This literally 

means that the heat-trapping emissions that were released at present are setting 

the future climate. According to the National Aeronautics and Space Administration, 

NASA (2016), their ongoing temperature analysis shows that the average annual 

global temperature has increased about 0.8 °C since 1880. Although the figures 

may seem small, but the effect on the environment are highly noticeable. The rising 

of sea levels, melting of glacier in the north and south poles, frequent flooding and 

drought, stronger typhoon, are among the negative effects of the increasing earth's 

temperature (Cowie, 2007). 

Climate change has threatened the economic system, livelihoods and the 

availability of natural resources in several regions of the world (Hansen et al., 

2006), and it has become a crucial challenge in adaptating to the unavoidable 

climate change. As a way of mitigating climate change, it is important to reduce the 
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concentration of CO2 within the atmosphere and putting it into an equilibrium state. 

However, stabilization of CO2 levels in the atmosphere takes decades and can only 

be achieved by reducing CO2 emissions and increase the carbon pool areas. Indeed, 

there were strategies established to restore major degraded and deforested land 

into a rich carbon pool system. Afforestation, reforestation and deforestation 

avoidance strategies have been carried out as a way of mitigating climate change 

(Reyer et a( 2009). These actions can contribute in reducing of up to 25 % of 

atmospheric CO2 by 2050 by reducing emissions, increase CO2 removals through 

sinks at low costs and have synergies with adaptation and sustainable development 

(Niles et al., 2002; Barker et al./ 2009). Massive reforestation would be the best 

solution proposed in stabilizing the concentration of CO2 in the atmosphere. In spite 

of that, it is facing difficulties in implementation considering the current rates of 

deforestation in the tropics and the high demands on the use of large area 

especially for agricultural purposes. Halting deforestation remains a challenge 

largely due to unsustainable agriculture practices that degrades natural 

ecosystems. It was reported that 90 % of deforestation was driven by agriculture 

activities in which 60 % are attributed from the extension of agro-industrial farming 

(i.e. oil palm and rubber plantations) while the remaining 30 % are caused by small 

scale and subsistence farmers (Laporte et al., 2007). 

Realizing the important roles of trees to capture and store carbon in 

vegetation, soils and biomass products (Malhi et al., 2008), and understanding the 

inevitability to prevent the loss of forest ecosystems, there were needs in 

transforming low biomass land uses of agricultural land to a carbon-rich tree based 

agroforestry (Kumar and Nair, 2011). In the agricultural sector, many plantation 

areas practices monoculture (single species) planting while short-term annual crops 

is cultivated in the agricultural farm. It may carry out some carbon sink functions, 

but at a very minimal rate. Agroforestry systems has a great potential in carbon 

storing primarily in agricultural dominated landscapes compared to monoculture 

plantation and agricultural crop farm (Nair et al., 2009). Agroforestry systems has 

been found to have a significant role for carbon storage and sequestration, which 

provides an aided solution, apart from rehabilitation and restoration of forest areas, 

for climate change mitigation strategies (Morgan et al., 2010). Agroforestry 

3 


