CHANGES OF CHOLINESTERASE ACTIVITY, HISTOLOGY AND PROTEOME OF *Puntius javanicus* LIVER UPON EXPOSURE TO COPPER

MOHD KHALIZAN BIN SABULLAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF FOOD SCIENCE AND NUTRITION UNIVERSITI MALAYSIA SABAH 2015

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: CHANGES OF CHOLINESTERASE ACTIVITY, HISTOLOGY AND PROTEOME OF *Puntius javanicus* LIVER UPON EXPOSURE TO COPPER

IJAZAH: IJAZAH KEDOKTORAN FALSAFAH

Saya <u>Mohd Khalizan bin Sabullah</u>, Sesi pengajian <u>2012-2015</u> mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tanda (/)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972.)

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.)

TIDAK TERHAD

AN penulis) (Tandata

(Tandata pagn penulis) SB Disahkan oleh, NURULAIN BINTI ISMAIL LIBRARIAN UNIVESETIMALAYSIA SABAH

(Tandatangan Pustakawan)

(Prof. Madya Dr. Mohd Rosni Sulaiman) Penyelia

Tarikh: 8 September 2015

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

Mohd khalizan bin Sabullah PN20119176

5 March 2015

CERTIFICATION

NAME : MOHD KHALIZAN BIN SABULLAH

MATRIC NO. : PN20119176

TITLE : CHANGES OF CHOLINESTERASE ACTIVITY, HISTOLOGY AND PROTEOME OF *Puntius javanicus* LIVER UPON EXPOSURE TO COPPER

DEGREE : DOCTOR OF PHILOSOPHY (FOOD CHEMISTRY AND BIOCHEMISTRY)

VIVA DATE : 17 AUGUST 2015

DECLARED BY

1. CHAIRMAN

Assoc. Prof. Dr. Mohd Rosni bin Sulaiman

2. COMMITTEE MEMBER 1

Assoc. Prof. Dr. Azlan @ Jualang Gansau

3. COMMITTEE MEMBER 2

Assoc. Prof. Dr. Mohd Yunus Abd Shukor

4. COMMITTEE MEMBER 3

Dr. Siti Aqlima Ahmad

Signatu

ACKNOWLEDGEMENT

I would like to express my warmest and greatest gratitude towards my main supervisor (chairman), Assoc. Prof. Dr. Mohd Rosni bin Sulaiman for his never ending support until the completion of this thesis entitle "Changes of cholinesterase activity, histology and proteome of *Puntius javanicus* liver upon exposure to copper". I wish to thank to my wonderful and precious co-supervisors (committee members) namely Assoc. Prof. Dr. Azlan @ Jualang Gansau, Assoc. Prof. Dr. Mohd Yunus Abd Shukor and Dr. Siti Aqlima Ahmad who passionately teach, encourage, critics, motivate and keep pushing me during laboratory research work from the beginning of this project until the end of this thesis writing to ensure the quality of my project reach to the standard.

Special thanks are dedicated to my beloved wife, Suhailija Musa, my beloved mother, Khalijah Md Raya, and my beloved father, Sabullah Jaafar for their endless love, encourage, be patient with my weird behaviour and always be my side during my study session. I'm also would like to express my appreciation to my beloved brother, Mohd Khalid Sabullah for his full support, advise and cheering me up to ensure my every day happiness especially when losing myself during the project was carried out.

Finally, a million thanks to those who have helped through this project and thesis, and for their kindness, moral support and information sharing during my study especially Prof. Dr. Nor Aripin Shamaan, and my labmates namely Fisal, Hidayah, Kak Mariam, Rahim, Sabrina, Baskaran, Sharmala, Salihu, Kabiru, Ibrahim and others. Thanks for wonderful friendship and memories.

Mohd Khalizan Sabullah 5 March 2015

ABSTRACT

The present study was carried out to investigate the effect of copper sulfate (CuSO₄) exposure on cholinesterase (ChE) activity, histology, and proteome of Puntius javanicus liver. Acute toxicity test to obtain lethal concentration (LC) values $(LC_{50} \text{ and } LC_{10})$ of CuSO₄ was initially done by exposing eight groups of fish for 96 hours with 2.0, 4.0, 6.0, 8.0, 10, 13, 15 and 20 mg/L of CuSO₄, respectively. Based on Finney method (Probit analysis) of calculation, LC₅₀ and LC₁₀ of CuSO₄ were determined as at 10.30 mg/L and 6.11 mg/L, respectively. Sublethal CuSO₄ concentrations of 0, 0.1, 0.3, 0.5, 1.0 and 5.0 mg/L (Lower than LC_{10} value i.e. with 100% fish survival) were used to treat six groups of *P. javanicus* fish including a control for 96 hours. The liver of each treated and control fish was subjected to cholinesterase activity test, histology, and proteomic studies. For ChE activity study, an optimal assay condition of purified ChE was determined as at the pH 7.5 and at the temperature in the range of 25 to 35°C in 0.1M Sodium Phosphate buffer. As compared to other synthetic substrate, butyrylthiocholine iodide (BTCi) was selected as ChE specific substrate with the highest maximal activity (V_{max}), lowest biomolecular constant (K_m) and the highest catalytic efficiency ratio at the value of 53.49 (50.12 to 56.87)µmol/min/mg, 0.23 (0.16 to 0.31) mM, and 232.57, respectively. Storage condition showed that ChE need to be preserved in refrigerated condition. Metal ion *in-vitro* test showed that Cu, chromium and mercury had the capability to lowering the activity of ChE more than 50%. The combination of pairwise metal ion enhanced the inhibitory effect of more than 60%. Half inhibitory effect (IC₅₀) of Cu ion towards the ChE In vitro was found as at 0.0948 (0.06797 to 0.1628) mg/L. In vivo effect showed that at 0.1 mg/L of CuSO₄, the activity of ChE was increased significantly (p<0.05) by 6% compared to the control. However, the percentage activity of ChE was decreased to 95.41, 87.60, 84.60 and 73.00 % at the Cu concentration treatment of 0.3, 0.5, 1.0 and 5.0 mg/L, respectively. The toxicity effect of Cu on *P. javanicus* liver was visualized using light microscope and transmission electron microscope (TEM). Histology on the affected cells showed abnormalities of nucleus polygonal shape along with parenchymal vacuolation, dilation and congestion of sinusoid. At the higher CuSO₄ exposure (0.5,

٧

1.0 and 5.0 mg/L), hepatostructure was significantly affected as indicated by the increasing number of dilation and congestion of sinusoids, vacuolation, macrophage activities and peliosis. The damage level and HSI value were increased and in contrast the number of hepatic nuclei per mm² were decreased as again associated with the increasing Cu treatment concentrations. Through an observation of selected hepatocyte ultrastructure (liver of treated goups with 0.5, 1.0 and 5.0 mg/L $CuSO_4$) using TEM, other abnormalities i.e. the development of pyknotic nucleus along with damaged organelles such as mitochondria, Golgi apparatus and endoplasmic reticulum disorientation were determined. Irreversible cell injury was also determined, in which hepatic nuclei had seen to undergo for karvorrhexis with the formation of apoptotic body that consisted of free scattered damaged organelles. Proteomic study based on second dimension electrophoresis (2D-PAGE) was performed whereby the patterns of resolved protein spots on the gels were visualized using calibrated densitometer G-800 after stained with a modified silver staining method. The estimated total number of protein spots of 1791 were matched and compared among the control and treated gels. Subsequently, 10 unique protein spots on the coomasie blue G-250 stained gels were selected (based on fold change more than 2.0) and subjected to identificaton by using MALDI-TOF-TOF mass spectrometry combined with data mining in SwissProt, UniProt and NCBInr. The identity and putative function of five upregulated (Gastrotropin, VAT-1L, hemogobin- β , two subunit of hemoglobin-g), four downregulated (Trypsin, ZC4H2, Islet-2A and hemoglobin- β A/B) and one up and downregulated (Parvalbumin) protein spots were determined in this study as shown in their individual bracket, respectively. In conclusion, Cu is evident to significantly affects the ChE activity, histology and proteome of *P.javanicus* liver. This study has generated several novel fundamental knowledge of the adverse effects of Cu on a fish model, which is potentially being used in future as an alternative biomarker or biosensor for the presence of contaminant especially Cu in the environment.

ABSTRAK

PERUBAHAN-PERUBAHAN AKTIVITI KOLINESTERES, HISTOLOGI DAN PROTEOM HATI Puntius javanicus TERHADAP PENDEDAHAN KEPADA KUPRUM

Kajian ini telah dijalankan untuk menyelidiki kesan-kesan kesan kuprum sulfat (CuSO₄) ke atas aktiviti kolinesteres (ChE), histologi dan proteom pada hati Puntius javanicus. Pengujian ketoksikan akut untuk mendapat nilai kepekatan letal (LC50 dan LC₁₀) mula-mula telah dijalankan dengan mendedahkan lapan kumpulan ikan untuk 96 jam dengan CuSO₄ iaitu masing-masing 2.0, 4.0, 6.0, 8.0 10, 15 dan 20 mg/L. Berdasarkan pada kaedah Finney (analisis Probit) CuSO4 keatas kehidupan ikan, kesan LC₅₀ dan LC₁₀ masing-masing telah ditentukan pada 10.30 mg/L dan 6.11 mg/L. Kepekatan sublethal CuSO₄ pada 0, 0.1, 0.3, 0.5, 1.0 dan 5.0 mg/L (lebih bawah daripada nilai LC_{10}) telah digunakan untuk merawat enam kumpulan ikan P. javanicus termasuk satu kawalan untuk 96 jam. Hati daripada setiap ikan rawatan dan kawalan telah diteruskan untuk mengkaji aktiviti kolinesteres, histologi dan proteome. Untuk pengkajian aktiviti ChE, satu keadaan assai optimum ke atas ChE tulen telah ditentukan pada pH 7.5 dan pada suhu dalam julat 25 hingga 35°C di dalam 0.1M sodium phosphate buffer. Perbandingan pada subtrat sintetik yang berlainan, butirilthiokolin iodida (BTCi) telah dipilih sebagai substrat spesifik ChE aktiviti maksimum tertinggi (V_{max}), pemalar biomolekul (K_m) terendah dan kecekapan pemangkin tertinggi masing-masing pada 53.49 (50.12 ke 56.87)µmol/min/mg, 0.23 (0.16 ke 0.31) mM, dan 232.57. Keadaan penyimpanan menunjukkan ChE perlu untuk disimpan dalam keadaan yang sejuk. Ujian In vitro ion logam menunjukkan Cu, kromium dan merkuri mempunyai kemampuan untuk menurunkan aktiviti ChE lebih daripada 50%. Gabungan pasangan samatara logam ion telah meningkatkan kesan perencetan lebih daripada 60%. Nilai IC₅₀ ion Cu ke atas In vitro ChE telah dijumpai pada 0.0948 (0.06797 to 0.1628) mg/L. Kesan in vivo menunjukkan pada 0.1 mg/L CuSO4, aktiviti ChE meningkat secara ketara (p < 0.05) sebanyak 6% berbanding pada kawalan. Walau bagaimanapun, pada kepekatan CuSO₄ yang tinggi, peratusan aktiviti telah menurun ke 95.41, 87.60,

vii

84.60 dan 73.00 % masing-masing untuk rawatan pada 0.3, 0.5, 1.0 dan 5.0 mg/L. Kesan keracunan Cu ke atas hati P. javanicus telah diperhatikan menggunakan mikroskop cahaya dan mikroskop elektron transmisi (TEM). Histologi ke atas sel yang terjejas menunjukkan bentuk poligon nukleus yang tidak normal selari dengan vacuolasi parenkimal, pengembangan dan kesesakan sinusoid. Pada pendedahan CuSO₄ yang lebih tinggi (0.5, 1.0 dan 5.0 mg/L), hepatostruktur telah terjejas secara ketara seperti ditunjukkan dengan meningkatnya beberapa pengembangan dan kesesakan sinusoids, vacuolasi, aktiviti macrophage dan peliosis. Tahap kerosakan dan nilai HSI telah meningkat dan berbeza dengan jumlah hepatik nukleus setiap mm² telah menurun lagi berkaitan dengan peningkatan rawatan kepekatan Cu. Melalui pemerhatian ke atas ultrastruktur (hati yang telah dirawat 0.5, 1.0 dan 5.0 mg/L CuSO₄) menggunakan TEM, terdapat kecacatan dengan kata lain pengembangan nukleus piknotic seiring dengan kerosakan organel seperti mitokondria, alat golgi dan disorientasi endoplasmik retikulum. Kecederaan sel tidak dapat dipulihkan juga telah ditentukan dimana nukleus hepatik telah mengalami karyorrhexis dengan pembentukan badan apoptotik terdiri daripada organel rosak yang bebas bertaburan. Kajian proteomik berdasarkan elektroforesis dua dimensi (2D-PAGE) telah dijalankan dimana corak tompok protein ke atas gel telah digambarkan dengan menggunakan densitometer ditentukur G-800 selepas diwarnakan dengan kaedah pewarnaan perak yang telah diubahsuai. Anggaran sejumlah 1791 tompok protein daripada telah dipadankan dan dibandingkan antara gel kawalan dan rawatan. 10 tompok yang unik pada gel yang diwarnakan dengan coomasie G-250 telah dipilih (berdasarkan perubahan lebih daripada 2.0 kali ganda) dan tertakluk untuk dikenalpasti dengan menggunakan spektrometri jisim MALDI-TOF-TOF digabungkan dengan penggalian data dalam pengkalan data SwissProt, UniProt dan NCBInr. Identiti dan fungsi putatif ke atas lima penjanaan naik (Gastrotropin, VAT-1L, hemogobin-β, dua subunit hemoglobin-α), empat penjanaan turun (trypsin, ZC4H2, Islet-2A dan hemoqlobin-β A/B) dan satu penjanaan naik dan turun (Parvalbumin) telah ditentukan di dalam kajian ini seperti yang telah ditunjukkan di dalam kurungan individu masing-masing. Sebagai kesimpulan, Cu terbukti memberi kesan ketara terhadap aktiviti ChE, histologi dan proteome hati P. javanicus. Kajian ini telah menjana beberapa pengetahuan asas yang baharu ke atas kesan buruk Cu pada model ikan, yang berpotensi digunakan pada masa akan

datang sebagai biopenanda dan biosensor alternatif untuk mengesan kehadiran bahan cemar terutamanya Cu di dalam persekitaran.

TABLE OF CONTENT

			Page		
TITL	E		i		
DECI	LARAT	ION	ii		
CER	TIFICA	TION	iii		
ACKI	NOWL	EDGEMENT	iv		
ABS	FRACT		V		
ABS	TRAK		vii		
TABI	LEOF	CONTENTS	х		
LIST	OF TA	BLES	xv		
LIST	OF FI	GURES	xvii		
LIST	OF AE	BREVIATIONS	xxii		
LIST	OF AF	PPENDICES	XXV		
CHA	PTER :	L: INTRODUCTION	1		
СНА	PTER 2	2: LITERATURE REVIEW	6		
2.1	Heavy	Heavy metal			
2.2	Heavy	metal contamination status in Malaysia aquatic environment	8		
2.3	Coppe	r offening to de se facers en se	11		
	2.3.1	Cu for biological regulation and toxicity	12		
	2.3.2	Cu toxic to aquatic life	13		
	2.3.3	Cu distribution in body metabolism	17		
	2.3.4	Cu detection in Malaysian fish	19		
2.4	Detection of toxicant				
	2.4.1	Advance instruments	21		
	2.4.2	Biomarker and biosensor developement	22		
2.5	Fish a	s environmental biomarker for Cu and other toxic metal ion	24		
2.6	Liver I	Function and abnormalities	26		
	2.6.1	Enzymatic reaction	28		
		a. Cholinesterase for biomarker and biosensor	29		
	2.6.1	Cellular stage; Parenchymal abnormalities	36		
	2.6.2	Proteomic analysis for Unique PES	39		

		a. Upregulation	42
		b. Downregulation	43
2.7	Fish b	eneficial	51
	2.7.1	Ikan Lampam Jawa (<i>Puntius javanicus</i>)	51
СНА	PTER 3	3: MATERIALS AND METHODS	54
3.1	Specin	nens of fresh water fish as a model of study	54
3.2	Chemi	cals and Instruments	55
	3.2.1	Chemicals	55
	3.2.2	Instruments	55
3.3	Experi	mental design	56
	3.3.1	P. javanicus treatments	56
	3.3.2	Statistical analysis	56
3.4	Deter	mination of sublethal dose of CuSO₄ for treatment on <i>P. javanicus</i>	58
	3.4.1	Fish mortality; 96 hours LC_{10} and LC_{50} determination	58
3.5	Deterr	nination of the copper effect on cholinesterase (ChE) activity	58
	3.5.1	Enzyme activity study	58
		a. Extraction of ChE	58
	3.5.2	Synthesis of Procainamide-Sephacryl 6B affinity gel	59
	3.5.3	Purification by Affinity Chromatography	61
	3.5.4	Enzyme assay	62
		a. Purification fold and yield calculation	64
	3.5.5	Purity determination: Native PAGE and HPLC analysis	64
	3.5.6	Enzyme parameter determination	65
		a. Substrate specificity	66
		b. pH profile	67
		c. Temperature profile	67
	3.5.7	Storage condition	68
	3.5.8	Inhibition study	68
		a. In vitro test	68
		b. Synergistic test	69
		c. Cu inhibition behaviour determination	69
		d. Half-inhibitory effects (IC50) of Cu	69

	e. In vivo test	70
	3.5.9 Secondary analysis; Cu deposition	70
3.6	Evaluation of the copper ion effect on gross histology and	71
	ultrastructure of <i>P. javanicus</i> liver hepatocyte	
	3.6.1 Sample preparation	71
	a. Semi thin sections preparation	72
	b. Ultrathin sections preparation	73
3.7	Elucidation of the effect of copper on P. javanicus liver proteome	73
	3.7.1 Extraction and Protein preparation for 1D and 2D PAGE	73
	a. Sample extraction for 1D PAGE analysis	73
	b. Sample extraction for 2D PAGE analysis	74
	c. Protein content determination	75
	3.7.2 One dimension (1D) PAGE study	75
	a. Native PAGE	76
	b. SDS PAGE	77
	c. Molecular weight standard	78
	d. Protein visualisation	78
	i. Coomasie brilliant blue G-250 staining procedure	78
	ii. Silver nitrate staining procedure	80
	3.7.3 2D-PAGE analysis	81
	a. First dimensional isoelectric focusing (IEF)	81
	b. First equilibration	82
	c. Secondary equilibration	82
	d. Second dimension (SDS-PAGE)	82
	e. Gel imaging	84
	f. Spot detection and matching	84
	g. Data mining: MASCOT search engine	86
СНА	PTER 4: RESULTS AND DISCUSSION	89
4.1	Selectioned Cu concentrations for further treatment	89
	4.1.1 Specimens of fresh water fish as a model of study	89
	4.1.2 Expected biological effect at the lower than LC_{10} of Cu	92
	concentration	
4.2	Effect of Cu toxicity on <i>P. javanicus</i> liver ChE	93

	4.2.1	ChE purification	93
	4.2.2	Purity level	96
	4.2.3	Optimum assay condition	99
		a. Kinetic Study	99
		b. Optimum pH	102
		c. Optimum temperature	103
	4.2.4	Storage condition selection	106
	4.2.5	Metal Ion Inhibition Study	107
		a <i>. In vitro</i> data	108
		b. Synergistic effects	109
		c. Inhibition behaviour profile	111
		d. IC_{50} determination	113
	4.2.6	In vivo effect analysis	115
	4.2.7	Cu composition in P. javanicus liver	117
	4.2.8	Summary the effect of Cu on ChE activity	119
4.3	Effect	of Cu on <i>P. javanicus</i> hepatocytes	119
	4.3.1	General visual observation	119
	4.3.2	Parenchymal structure observation	120
	4.3.3	Ultrastructure observation	128
	4.3.4	Summary the effect of Cu on hepatocyte histology	135
4.4	Elucida	ation of the effect of Cu on <i>P. javanicus</i> liver proteome	135
	4.4.1	Native protein bands pattern	135
	4.4.2	Resolved protein on SDS PAGE	138
	4.4.3	2D-PAGE analysis	141
	4.4.4	Spot identifications	144
		a. Spot ID 1	146
		b. Spot ID 2	148
		c. Spot ID 3	151
		d. Spot ID 4	153
		e. Spot ID 5	155
		f. Spot ID 6,7,8,9	156
		g. Spot ID 10	159
	4.4.5	Hierarchical cluster analysis	161

4.4.6 Summary the effect of Cu on <i>P. javanicus</i> liver proteome	164		
CHAPTER 5: CONCLUSION AND RECOMMENDATION FOR FUTURE			
RESEARCH			
5.1 Overall summary	165		
5.2 Future prospect	167		
REFERENCES	169		
APPENDICES	245		

LIST OF TABLES

		Page
Table 2.1	Estimated categorize of toxicity of metals ion in descending order order (adapted from Hellawell, (1986) updated by Gunasekaran, 2011)	15
Table 2.2	Guideline of Cu for food safety set by different country	20
Table 2.3	The advantageous and disadvantageous of bioassay using ChE to detect the existence of toxicant in a sample.	31
Table 2.4	The literature reports of analysis by ChE from various sources for toxicant detections	32
Table 2.5	The effect of Cu toxicity on organ at proteome level based on proteomic approch (2D-PAGE).	44
Table 3.1	Preparation of Native PAGE solution for purity determination	65
Table 3.2	Preparation of Native PAGE solution	76
Table 3.3	Solution mixtures for stacking and resolving gels of SDS-PAGE.	77
Table 3.4	Preparation of staining and destaining solution.	79
Table 3.5	Preparation and procedure of silver nitrate staining (Adapted from Sabullah <i>et al.,</i> 2014a based on modified method of Yan <i>et al.,</i> 2000).	80
Table 3.6	Solution mixtures for running gels of SDS-PAGE for 17 cm length of IPG strip.	83
Table 4.1	Comparison between extraction and purification method of <i>P. javanicus</i> ChE. The enzyme activity was expressed in U (µmole/min) from each purification step.	95
Table 4.2	Kinetic analysis of ChE on hydrolysis of three types of substrate to compare the maximal velocity (V_{max}) and biomolecular constant (K_m).	101
Table 4.3	The comparison of kinetic study of ChE with untreated and treated copper with BTC as the specific substrate.	112
Table 4.4	Determination of IC_{50} value of Cu affecting <i>P. javanicus</i> ChE activity using GraphPad Pirism 5 Software.	114

- Table 4.5Heavy metal content in normal *P. javanicus* liver.
- Table 4.6Calculation of Hepatosomotic index (HSI) and the number of
hepatocyte nucleus per mm² (Hepat. nucl/mm²) of *P. javanicus*
treated with different concentrations of copper sulfate for 96
hours (**see the note).

117

Table 4.7List of identified protein spots using MASCOT search engine on145databases from SwissPROT, UniprotTrembl and NCBInr

LIST OF FIGURES

		Page
Figure 2.1:	The toxicant distribution after entry into biological system (Friberg and Elinder, 1993).	8
Figure 2.2:	The presence of metal ion in in Malaysian marine water from 2006 to 2008 reported by Malaysian Environment Quality (DOE, 2008).	10
Figure 2.3:	The enterance of copper via ingestion or from secretory fluid transported into the liver follow by excretion via urinary or feces (Langley and Dameron, 2013).	19
Figure 2.4:	Number of papers published in last 5 years. The research was carried out on Scopus by using five research queries, respectively: (Gill) "Fish gill" and "Heavy metal toxicity,"(Liver) "Fish liver" and "Heavy metal toxicity,"(Brain) "Fish brain" and "Heavy metal toxicity,"(Kidney) "Fish kidney" and "Heavy metal toxicity,"(Muscle) "Fish muscle" and "Heavy metal toxicity." (Scopus, Febuary 2014).	25
Figure 2.5:	The local freshwater fish namely P. javanicus	52
Figure 3.1:	Source of <i>P. javanicus</i> was obtained from a hatchery unit at Agricultural Development Centra, Bukit Tinggi, Pahang.	55
Figure 3.2:	The flow chart to study the effect of copper on histology, proteome and cholinesterase activity of <i>P. javanicus</i> liver.	57
Figure 3.3:	The mechanism of synthesis of Procainamide–Sephacryl 6B affinity gel.	61
Figure 3.4a:	Analysis of 2D gels using Progenesis SameSpots software. Blue box show unarrange gels. Red arrow marked to the gel which has been arrange in the group of first replicate due to CuSO ₄ concentration.	85
Figure 3.4b:	Screenshot of an example of the alignment process done between a reference gel and 5.0 mg/l CuSO ₄ treated gel.	85
Figure 3.5:	Spot calibration for pI and molecular weight determination.	86

- Figure 3.6:Screenshot of MASCOT MS/MS ions search engine obtained88from www.matrixscience.comor the registered data wasdirectlysearchat:https://sysbio-mascot.wehi.edu.au/mascot.
- Figure 4.1: The effect of $CuSO_4$ concentration on the survival 90 percentage (%) of *P. javanicus* after 96 hour exposure periods. Values are mean \pm SD (n = 3).
- Figure 4.2: The percentage mortality (%) of *P. javanicus* after 96 hour 90 exposure with selected $CuSO_4$ concentration. Values are mean \pm SD (n = 3).
- Figure 4.3: Shematic view of probit analysis plot generated by Biostat 91 professional version 9 software based on Finney Method (Lognormal Distribution).
- Figure 4.4: Shematic view of probit analysis plot generated by Biostat 92 professional version 9 software based on least squares (Normal Distribution).
- Figure 4.5: Expected different stages of biological effect of Cu 93 concentration ranging from 0 to 5.0 mg/L on *P. javanicus* survival.
- Figure 4.6: Profile of purified ChE from liver extract of *P. javanicus* on 94 Procainamide–Sephacryl 6B affinity column. Values are mean \pm SD (n = 3).
- Figure 4.7a: Native-PAGE of purified ChE from the liver of *P. javanicus* in 97 a 10% polyacrylamide gel.
- Figure 4.7b: Purified ChE was detected based on broad protein range 97 standard curve at 66.267 kDa while X at 72.750 kDa.
- Figure 4.8a: Profile of purified ChE from liver extract of *P. javanicus* 98 using Zorbax GF-250 column attached to HPLC.
- Figure 4.8b: The logarithm data (Log₁₀ MW) was ploted versus RT and 98 molecular weight of purified ChE was estimated at 69.715 kDa.
- Figure 4.9: Michaelis-Menten plot of P. javanicus ChE incubated with 100 different synthetic substrate; acetylthiocholine iodide (ATC), butyrylthiocholine iodide (BTC), and propionylthiocholine iodide (PTC), at vary concentration ranging from 0 to 2.5 mM. Values are mean ± SD (n=3).

- Figure 4.10: Optimisation studies of pH for the ChE from *P. javanicus* 102 liver using three different buffers. Values are mean \pm SD (n=3).
- Figure 4.11: Optimization of temperature for ChE from *P. javanicus* liver. 104 Values are mean \pm SD (n=3).
- Figure 4.12: ChE were stored separately at different temperature 106
- Figure 4.13: Remaining activity of ChE after exposed with 5 mg/L of 108 selected metal ion. Values are mean \pm SD (n=3).
- Figure 4.14: Synergistic effect of ChE due to the pairwise combination of 110 metal ion at 5 ppm . Data is nean \pm standard deviation of the mean (n=3).

Figure 4.15a: Kinetic study of *P. javanicus* ChE based on Michaelis-Menten 111 plot with the presence and absence of copper was calculated by the GraphPad Prism[™] software.

- Figure 4.15b: Kinetic study of *P. javanicus* ChE based on Lineweaver-Burk 112 plots with linear regression of 1/[S] vs 1/v in the presence and absence of Cu ion.
- Figure 4.16: *P. javanicus* ChE was incubate seperately in different 114 concentration of Cu ion. IC₅₀ value has been determined with GraphPad Prism 5 software with type analysis of nonlinear regression by one phase exponential decay modeling types
- Figure 4.17: The *in vivo* effect of *P. javanicus* ChE activity treated with 116 different concentrations of copper ion. * indicated as significantly different of mean compared to the control (p<0.05) and each error bar represent standard deviation of three replicates.
- Figure 4.18: Total Cu content in *P. javanicus* liver. Alphabet a indicate 118 that the same group of no significant different with control (p<0.05), while # show significant different with control (p>0.05).
- Figure 4.19: Dissected liver from each treatment of CuSO₄ on *P*. 120 *javanicus*.
- Figure 4.20a: The representative section image of *P. javanicus* hepatocyte 121 untreated with $CuSO_4$ (Control).

Figure 4.20b:	The representative section image of <i>P. javanicus</i> hepatocyte exposed with 0.1 mg/L of CuSO ₄ .	122
Figure 4.20c:	The representative section image of <i>P. javanicus</i> hepatocyte exposed with 0.3 mg/L of CuSO ₄ .	122
Figure 4.20d:	The representative section image of <i>P. javanicus</i> hepatocyte exposed with 0.5 mg/L of CuSO ₄ .	123
Figure 4.20e:	The representative section image of <i>P. javanicus</i> hepatocyte exposed with 1.0 mg/L of $CuSO_4$.	123
Figure 4.20f:	The representative section image of <i>P. javanicus</i> hepatocyte exposed with 5.0 mg/L of $CuSO_4$.	124
Figure 4.21:	Visualisation on <i>P. javanicus</i> hepatocyte ultrastructure under TEM after exposed with 0.5 mg/L CuSO₄ concentration.	129
Figure 4.22:	Observed bile canaliculi of <i>P. javanicus</i> exposed with 0.5 mg/L CuSO ₄ . (E) Normal, (F) Abnormal.	130
Figure 4.23:	Visualisation on <i>P. javanicus</i> hepatocyte ultrastructure under TEM after exposed with 1.0 mg/L CuSO ₄ concentration.	131
Figure 4.24:	Visualisation on <i>P. javanicus</i> hepatocyte ultrastructure under TEM after exposed with 5.0 mg/L CuSO ₄ concentration.	132
Figure 4.25a:	Native PAGE gel resolved with <i>P. javanicus</i> liver from different $CuSO_4$ treatments. Control A represent the liver extraction from the fish at the first day of reception, while Control B is the liver extraction from the fish at the end of Cu treatment periods.	136
Figure 4.25b:	Protein marker standard in logarithmic data versus retention factor (<i>rf</i>). A1 means Arror number 1 and etc.	137
Figure 4.26:	SDS Page gel resolved with reducing or denatured protein from the liver tissues of <i>P. javanicus</i> liver from each different treatment of Cu concentration.	139
Figure 4.27:	Protein expression map on control gel and Cu-1.0 (Cu treatment concentration at 1.0 mg/L).	141
Figure 4.28:	2D gel which was aligned, filtred and normalised using Progenesis Samespots software.	142

Two example of 2DE gel resolved with P. javanicus liver 143 Figure 4.29: proteome. A: Silver tained gel with 10 spots were marked using Progenesis Samespot software. B: 2DE gel stained with modified CBB-G250 then 10 selected spots were cut and pool for protein identification. Protein spot namely trypsin which was affected by different Figure 4.30: 147 concentration of CuSO₄. Figure 4.31: Protein spot namely ZC4H2 which was affected by different 150 concentration of CuSO₄. Figure 4.32: Protein spot namely Islet-2A which was affected by different 152 concentration of CuSO₄. Figure 4.33: Protein spot namely gastrotropin which was affected by 154 different concentration of CuSO₄. Figure 4.34: Protein spot namely VAT-1L which was affected by different 156 concentration of CuSO₄. Figure 4.35: Protein spot ID no 6 and 8 namely Hemoglobin-β and 158 Hemoglobin- β -A/B, respectively, while 7 and 9 share a same name as hemoglobin-a. All the spots were affected by different concentration of CuSO₄. Figure 4.36: Protein spot namely parvalbumin which was affected by 161 different concentration of CuSO₄. 162 Figure 4.37: Dendrogram plot by means of Euclidean distance genereted by Mathematica version 8 software. Figure 4.38: Dendrogram plot by means of Cosine distance genereted by 163

Mathematica version 8 software.

xxi

LIST OF ABBREVIATION

%	₩.	Percentage
°C	-	Degree celcius
µg/g	-	Microgram per gram
µg/L		microgram perlitre
μm²	-	Micrometer square
1D	-	1 dimension
2D	-	2 dimension
Abs	-	Absorbance
Ag	-	Silver
AI	-	Aluminium
ANOVA	-	Analysis of variance
APS	-	Ammonium persulfate
As	-	Arsenic
ATC	-	Acetylcholine iodide
BSA	-	Bovine serum albumin
втс	÷	Butyrylthiocholine iodide
СВВ	-	Commasie brilliant blue
Cd	-	Cadmium
ChE	-	Cholinesterase
Cr		Chromium
Cu	÷	Copper
CuCl ₂	-	Copper (II) chloride
CuSO ₄	1.1	Copper (II) sulfate
<i>d</i> _c	-	Cosine distance
<i>d</i> e	-	Euclidean distance
DNA	-	Deoxyribonucleic acid
DOE		Department of Environment
DTNB	-2	5, 5-dithio-bis-2-nitrobenzoate
et al.,	 ()	and all
FAO	-21	Food and agricultural organization

Fe	-	Ferum
g	-	Gram
GF	-	Gel filtration
GST	-	Gluthathione S-Transferase
HCI	-	Hydrochloric acid
Hept.nucl/mm ²	-	hepatocyte nucleus per mm ²
Нд	-	Mercury
HPLC	-	High performance liquid
		chromatography
HSI	-	Hepatosmotic index
IC ₅₀	<u>~</u>	Initial concentration that cause
		50% inhibition
ICP-OES	i T	Inductively coupled plasma optical
		emission spectrometry
IEF	7	Isoelectrofocusing
KCI		Potassium chloride
kDa	-	Kilo Dalton
K _m	÷	Biomolecular constant
L	Ē.	Liter
LC ₁₀	T	Lethal concentration at 10%
LC ₅₀	-	Lethal concentration at 50%
LOD	-	Limit of Detection
LOQ	-	Limit of Quantitation
М	-	Molarity
mM	~	Milimolar
MALDITOFF	-	Matrix-assisted laser
		desorption/ionization-time of flight
		analysis
mg/L	1 , 1	Miligram perliter
min		Minute
MS		Mass spectrometry
MW	ш.;	Molecular weight
NaN ₃	-	Sodium nitrite