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Abstrak 

Tes is ini membincangkan masalah perolakan tabii pada satu silin der membulat men

gufuk yang tak terhingga panjangnya. Svhv. pada perm:ukaan silinder berayun den

gan frekuensi w dan amplitud bT� terhadap T� min suhu, ia itu suhu bahantm a 

di sekeliling silinder. Silinder tffsebut direndarn di dalam bendalir yang mematuhi 

hukwn Newton atav. di dalarn medium berongga. Penyclesaian beranalisis yang 

merujuk kepada kaedah kembangan asimptot telah digunakan. Kaedah pemisahan 

pada kembangan s1thu dan fungsi arus bertertib dua diantara yang mantap dcngan 

tak rnantap dan pe?7,ggunaan tatatanda kompleks, memperlihatkan kaedah penye

lesaian yang lebih ringkas dan mudah. Penyelesaian diperoleh pada lapisan sem

padan dalaman (berdekatan dengan silinder) dan lapisan sempadan luaran (jauh 

dari silinder). Sebagaimana yang diperoleh oleh pengkaji sebeh,mnya, suhu dan 

fu,ngsi arus yang bersifat mantap didapati wujud di luar lapisan sempadan dalaman. 

Dengan it·11:;syarnt sempa.dan t1:da.l.; dipenuhi. vValau bagaimanapun. keputusan yang 

berlainan dipernleh pada halo)u rnantap bagi nombor Prandtl. P = 1
1 

iaitu ianya 

mernenuhi syn.rat sempadan di luar lapisa.n scmpadan dalaman. Lapisan sempadan 

luaran telah diselesaikan menggunakan kaedah Pettis terubahsuai. Namun, dengan 

kesahihan kaedah ini, penyelesaian hanya benar pada titik berd katan dengan titik 

genangan. Seterusnya, didapati nombor Reynolds yang besar adalah penting bagi 

ke1:Jujudan aliran mantap. 
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�bstract 
This thesis is co11cerned v,,;ith the problems of natural com-ection about au :.:1fi11ite 

horizontal circular cylinder. The temperature at the surface of the cylinder per

forms harmonic oscillatio11s with frequeucy 1r and amplitude bT� about tlie mean 

temperature T:X. the temperature of the ambient medium. The cylinder is im

mersed in a Ne,,·tonian fluid or in a porous medium. The aua.lytical technique ,,-as 

performed in order to solve the problems by th method of matched a.csyrnptotic 

expansions. The separation into unsteady and steady second-order temperature 

and stream function in the expansions aud the use of complex notation are shown 

to be a simple method in the solution. Solutions have been obtained for the inner 

boundary-la1 er (adjacent to the cylinder) and for the outer boundary-lay r (far 

from the cyliml2r). As shown Ly the previous studies of earlier authors: a ,read:,· 

velocity a.11d steady temperature persisted outside the thin inner bouudary-layer. 

The boundary conditiont5 at the outer edge of the inner layer could not be satisfied. 

This phenomenon is analogous to the problem of the flo,,· caus"d b>· an oscillat

ing cylinder. Ho\,-ever 1 differeut result w� obtained for tlie steady \·elocity at tlie 

outer 8dge of the i1111er boundary-layer for Prandtl number P = 1. iu which th 

steady ta11ge11tial velocity tends to zero at a distance far from th cylinder. The 

outer boundary-layer equations have been solYed by the modified fettis method. 

However, due to the validity of this method, the sol11tions in the outer regio:1 break 

down at the points which arc far from the st&g11atim1 point. FurtLer, ,w found 

the importancP- of the large Reyuolds number for th.e exi. 'tence of the stead>· flow 

properties. 
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typical length of the body or the the radius of the circular cylinder, 

11011-dime11sio11al amplitude in tlie ternperature oscillation, 

specific heat of i11compressiblc solid phase. 

specific heat at constant pressure of the fluid phase, 

empirical constants that depend on th cho:-;en length scale, 

a dimensionless constant, 

pore size, 

vector of the external force per unit mass: 

magnitude of the acceleration due to gravity
1 

higher order terms, 

thermal conductivity of the fluid, 

thermal co11ductivity of the porous medium, 

thermal conductivity of the solid phase, 

geometric reference length of the body, 

Order x, 

Praudtl number, = v / K, 

pressure of the fluid, 

non-di::-nensimrnJ pressure of the fluid, 

constant pressure of the fluid at large distance from the cylinder, 

real number, 
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(u,v) 

dimensional velocity in (r', 0) direction::;, 

nondimensional velocity in (r, 0) directions, 

distance measured from the axis of the cylinder: 

no11-dimensional distance measured from the a'(is of the cylinder. 

Ravleia-h number = !:&:E. J b ' a 

Reynolds number based on tvpical pore diameter, = VoDn, 
LI 

Revnolds number = fu J l I/ l 

Strauhal number, = 1/ E, 

non-dimensional time, = wt', 

reference time, 

temperature above T�, 

temperature of the ambient fluid or at infinity or mean temperature 

of surrounding fluid or of porous medium, 

temperature of the fluid, 

temperature of the surface of the body, 
I I )/ I 

non-dimensional temperature of the cylinder, = (Tc - T
00 

bTx 

temperature of order x in the inner region, 

steady temperature of order x in the inner region, 

temperature of order x in the outer region, 

fluid velocity components in (r '. 0) directions. 

non-dimensional fluid velocity compo�ents in (r, 0) directions: 

, elocity scale based on the maximum speed of the oscillation of the 

cylinder or the surface temperature of the cylinder in Kewtonian fluij 

or in a pornus mcdimn. 



Y; -�,_corresponding pore velocity scale, = � � 
V� volume average vertical velocity scale, _ 

z distance measured normal to the surface of the body, 

Greek 

o effective thermal diffusivity,

3 coefficient of the thermal expansion of the fluid,

5 measure of diffusion distance,

Vll 

bd distance from the surface of the body or the thickness of a thin layer

of vorticity or boundary-layer,

6 difference between two properties,

E inverse of Strouhal number, = 1/('yR) = S/ R = ��- in a Newtonia11

fluid or 1/(,Ra) = � in a porous medium,

TJ 

rj 

µ 

µ 

LI 

scaled inner boundary-layer coordinate in a Newtonian fluid and in

a porous medium, = _r;.,b-
Ev"' / 

scaled outer boundary-layer coordinate, = ✓ fr(r-1) in a Newtonian

fluid or /E(r - 1) in a porous medium,

non-dimensional parameter, = 1/(cR) = S/ R = v..:.:/U; or 1/(cRa)

= S/ Ra = Kw/U;, in a Newtonian fluid or in a porous medium,

respectively,

permeability of porous medium,

either real or complex number,

dynamic viscosity of the fluid,

a11 effective viscosity,

coefficient of kinematic viscosity of tbe fluid,=µ/ P�



v72 Lapla,ce operator, 

<Pw a.ugle measured clockwise from the horizontal:

<D porosity of the porous mediurn,

'i/J stream function,

'1J.�.i) stream function of order x iu the inner r giou.

'1/l)s stead:v stream function of order :r in the inner region.

7,0J.0) stream function of order 1: i11 the outer region,

Ps density of the solid,

p density of the fluid,

Pc:o density of the ambient fluid,

CJ ratio of heat capacity of the saturated porous rn diUin to that of the

0 angle 1neasured auticlock\vise from the dmvmrnrd vertical: 

�(0) function of 0 only, 

w frequency of the oscillation, 
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Chapter 1 

INTRODUCTION 

1.1 Problem Nature 

Our problem is related to the natural convection about an infinitely long horizontal 

circular cylinder, thus a two-dimensional cylindrical problem \l,hich is irnmersed 

in a stationary fluid or porous medium. The surface of the cylinder is oscillating 

harmonically for an infinitely long time about the temperature of ambient fluid 

or porous medium. The domain of the solution is for the Khole region of the 

cylinder that is near a stagnation point, which is divided into t\rn boundary-layer~. 

an inner boundary-layer and an outer boundary-layer. The solution in the inner 

boundary-layer is obtained for the unsteady and steady temperature and stream 

function, while 0�1ly the steady temperature and stream function are c01�sidered 

in the outer region. This is an extension of the work of Roslan (20CJ2a), ,,·ho,e 

notations and explanations are closely followed. In thi� thesis we use a new method 

of sobtion. Our discussions are started with a general introduction to heat transfer. 

then specifica.lly to the problem in a Newtonian fluid and in a porous media. 

-------
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1.2 Objectives 

An objectives in this study are based on rnme arguments described here. It is 

postulated that, the method of separation of the steady and the unsteady compo

nents of flo\\. field presented by (Chatterjee & Debuath, 1979) from the governing 

equations ca11 be used without encountering many difficulties. Another approach 

is without any separation been done on the governing equations as in tbe \vork by 

(i\forkin, 1967; Rosla11 et al. 2003a, 2003b� 2004.a). Hov\ever: instead of separat

ing the stream function 7/J and the temperat11re T from tlw governing equations, 

another expansion approach is by separating the particular term i.e. the secoud 

term in the expansions of 'ljJ and T, as the steady and unstead\· parts as was done 

by (Riley, 1967) in the problem of oscillating cylinder. 

Schlichting, (1932) employed a complex notation in the solution of convection 

problem over an oscillating cylinder. Since the differential equations are linear, 

the calculations performed by (Schlichting, 1932) did not have difficulties on the 

appearance of an extra real part when taking the real part of the product of two 

complex quantities. However, the governing equations that "·ill be considered in 

our problems contain nonlinear terms. Obviously, the product of two complex 

quantities, which are either a product of the stream function by the temperature 

or by the derivative of stream function will produce another real term coming from 

the product of two imaginary terms. 

The previous st�1dies such as: (Schlichting, 1932; Riley 1967) found that a 

steady streaming flow was discovered in the problem of periodic boundary-layer 

flow on a circular cylinder oscillating harmonically in a direction perpendicular to 

the axis of the cylinder in an otherwise stationary ambient medium. The steady flow 

was also found in the problem of oscillating natural-convection A.bout a ho:::-izonta] 

circular cylinder see, (Merkin, 1967; Chatterjee & Debnath
1 

1979). Due to the 

existence of the steady flow either the steady temperature or the steady stream 
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function in the outer boundary-layer, we will perform an analysis regarding the 

comparative magnitude of the significant quantities that will influence the flo,\· at 

the outer edge of the inner boundary-layer. 

Thus, the objectives of this work based on the previous studies are as follows: 

(i) Present an alternative simple approach for solving the oscillati11g natural

convection in the inner boundary-layer.

(ii) Propose an appropriate way to avoid an error from a direct implementation

of Euler's formula. The investigation of this effect in the solution of the

oscillatory natural convection problems will be presented in both medium.

(iii) Investigate the importance and the existence of the steady flm,· for the prob

lem of natural convection about a horizontal circular cylinder \\·hen the tem

perature of the cylinder surface is oscillating harmonically analogous to the

oscillating cylinder.

(iv) Produce the appropriate value of Reynolds number that is needed to be con

sidered for the problem of the oscillatory natural convection about a circular

cylinder.

1.3 Introduction to Heat Transfer 

A study of considerable importance in areas conce:-ned with the physical processes 

involved in energy generation and its utilization is a concern of heat transfer. \Yith 

the growing sophistication in technnlogy and with the incn�asing concern "·ith 

energy and the environmeat, the study of heat transfer has, over the past few. 

years, been related to a very wide variety of problems, each with its own demands 

of precisio:r.. and elaboration i:rr the understanding of particular processes of intei.·est. 

Areas of study range from atmospherical, geophysical, technical and environmental 

problems, to those in 
_
heat rejection, space research and manufacturing systems. 
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\\-ithin thermal energy transport are the tv;o basic processes of conduction and 
-�,.

radiation, with the former due to the motion of the microscopic particles that com-

prise the material when a temperature difference exists i11 a material. The local 

motion of a particle is dependent on the local temperature iu the material and dif

fusion of energy occurs due to differences in this local motiou. The energy transfer 

in the later mode, radiation, is i11 the form of electromagnetic ,,·aves. Energy is 

emitted from a material due to its t mperature level and is then transmitted to an

other surface through the interveuing space, which may be a vacuum or a medium 

which may absorb, reflect or transmit the radiation depending ou the nature and 

extent of the medium. 

A third mode of heat transfer which will be a topic in this discussion is con

vection, iu which the conductive heat transfer process is coupled with the motion 

of the fluid. As a consequence of this fluid motion, the heat transfer rate, as 

given by conduction, is often considerably modified. The relative motion of the 

fluid provides an additional mechanism for the transfer of energy and of the ma

terial: the latter being an important consideration in cases where mass transfer, 

due to a concentratio11 differences, occurs. Convection is ine\ itably coupled with 

the conductive mechanisms since, although the fluid motion modifies the transport 

process, the eventual transfer of energy from one fluid element to another in its 

neighbourhood is through conduction. Also, at a fluid or solid interface, the pro

cess is predominantly conduction due to the relative fluid motion being brought to 

zero there. Therefore, a study of convective heat transfer involves the mechanisms 

of conduction and, son.1etimes, those of radiative processes as well, coupled with 

those of fluid flow. This makes the study of this mode of heat, or mass, tr&nsfer a 

very complex one, and its importance in technology and in nature can hardly be 

exaggerated. 

Convective heat transfer is further divided into two basic processes. If the rno-
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tion of the fluid arises due to au external agent, such as an externally-imposed flow 
:�. 

of a fluid stream over a heated object, the process is termed as forced conwction. 

The motion may be the result of, for example, a fan, a blower, the wind, a suction 

device, or the motion of the heated object itself. Such problems are frequently 

encountered in technology where the heat transfer to, or from. a body i, often 

due to an imposed flow of a fluid at a temperature which is different from that 

of the body. If, on the other hand, no such externally-induced flow is prO\·ided 

and the flow arises naturally simply due to the effect of density differences in the 

gravitational force field, resulting from temperature or concentration differences, 

the process is referred to as natural convection. The densit�· differences gi,·e rise 

to buoyancy effects due to which the flow is generated. A heated body cooling 

in ambient fluid generates such a flm,· in the region surrounding it. Similarly. the 

buoyant flow a.rising from heat rejection to the atmosphere and to other ambient 

media, and circulations arising around the heated bodies, can give rise to thermal 

stratification of the medium, as in temperature im·ersion, and many other such 

heat transfer processes, in our natural environment. The flo,\· may also arise due 

to concentration differences, such as those ea.used by the saline differences in the 

sea and by composition differences in chemical processing units and thus cauc:e a 

natural convection of heat and mass transfer. 

The main difference between natural and forced convection lies in the wry n::l

ture of the flow generation. In forced convection, the externally imposed flo" i:3. in 

general, known, whereas in natural convection, the flow results from an interaction 

of the density ,vith the gravitational, or some other body, force field a.nd is there

fore invariably linked with, and dependent on, the temperature and concentration· 

fields. As sur:h, the motion that arises is n<?t known at_Jhe uns,�t c:.nd_ has to be 

determined from a consideration of the he�t and m2.ss transfer procErsses coupled 

with fluid flow mechanisms. In general, natural convection velocity le\·els are much 
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smaller than those encountered in forced convection. In fact. any heated body 

which is subjected to an external flow will give rise to natural convection effects 

due to the difference between its temperature and that of the neighbouring fluid. In 

many cases of practical interest both processes are irnportant and the heat transfer 

is by mixed convection in which neither mode is truly predominant. 

The main difference between the two mechanisms really lies in the word ex

ternal. A heated body lying in an otherwise still fluid loses energy by natural 

com·ectiou. HO\vever 1 as it does so it also generates a buoyant flo,,· above it and so 

when another body is placed in that flow it is subjected to an external flow. HeHce 

it becomes necessary to determine the natmal convection effects, as v, ell as the 

forced convection effects, and the regime in which the heat transfer mechanisms 

lie. Hmvever, in our later applications we will consider the situation of natural con

vection as opposed to forced or mixed convection. The above differences betweeu 

natural and forced convection make the analysis, as well as the experimentation, 

of processes involving natural convection generally much more complicated than 

those i11 forced convection. Special techniques and methods hm·e therefore to b 

devised: with a view to provide information on the flow and on the heat and mass 

transfer rates. We will present these problems later in this chapter in our review 

of previous work. 

The study of natural cotivection heat ;:,ransfer in interacting flow fields has 

previously received much attention, not only theoretically, by ,my of analytical or 

numericci,l methods, but also experimentally, due to the importance of the influence 

of fluid flow and the heat transfer configurations. The existence of a temperature 

gradient in the surrounding fluid may cause a flow induced b) the buoyancy force. 

Such a flow, usually called natural convection or free convection 1 will distort the 

previous temperature <listribution and modify the overall heat transfer rate across 

the boundary. In this thesis we consider the problem of natural convection for the 
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circular cylinder. 

The basic conclusions of all the researchers working in com·ective flows can be 

summarized as follows. Convective flows have a variety of features depending upon: 

(i) the properties of the medium,

(ii) the surrounding conditions,

(iii) the geometrical configurations.

The analysis of the fluid flow and the heat transfer is usually based on transport 

equations derived from differential continuum laws, i.e. continuity equation, mo

mentum equation, and energy equation; together with the boundary conditions 

which can be analyzed: 

( i) theoretically: analytical or numerical or both

(ii) experimentally,

(iii) theoretically and experimentally.

The solution we seek is based on the stream function or the velocity field, the 

temperature distribution or the heat transfer rate, and some gO\·erning parameters. 

Next, we will discuss natural convection in a Newtonian fluid and in a porous 

medium separately. 

1.4 Introduction to Natural Convection in a New

tonian Fluid 

�fatural convection is a consequence of heB.t -transf-er that arises over th':; surface of a·· -

body when it is at a temperature differeilt from that of the ambient medium. In the 

case, of a heated body cooling in an extensive isothermal medium, the fluid flows 
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adjacent to the hot surface of the body and the heated fluid eventually rises above 

the body as a buoyant flow or wake. Similarly, a body colder than the ambient 

fluid would cause a flow opposite to that due to a heated body, since the fluid 

adjacent to the body becomes colder and, hence, heavier than the ambient fluid, 

resulting in a flow in the direction of the gravitional force. In nature too, many 

natural c01n-ection flmvs occur adjacent to heated or cooled surfaces, such as those 

arising over the human body and over the surface of a lake due to the temperature 

differences that exist. Instead of a body being suddenly heated or suddenly cooled, 

the temperature can oscillate harmonically or inharmonically \:vith time. 

The body itself may be fiat, such RS a plate or wall, or curved, such as sphere, 

wire or circular cylinder. It may also be vertical, horizontal or i11cli11ed. In this 

study: \Ve will investigate the natural convection over an horizontal circular cylinder 

when the temperature is periodic and whether or 11ot steady flows are reached for 

large time. 

1.4.1 Introduction to Boussinesq Approxiination 

In solving the problem of nat1-1ral convection boundary-layer flows, an important 

approximation to be used is the Boussinesq approximation, which is an essential of 

the gravity acceleration in producing the buoyancy term as the body force of the 

flow when the temperature variations are not. too large (Illingworth, 1949; Spiegel & 

Veronis, 1960; Chandrasekhar, 1961; Chow, 1979). The Boussinesq approximation 

has now become a very important principle and has been used in various studies 

by numerous investigators. 

Although this approximation is generally attributed to (Boussinesq, 1903), it is 

known from the �9rk oU"fylihaljan, 1962) that the idea was first pre:,er�t.ed by_(Qber-_ 

beck, 1879, 1891) in his m8tcof0iogicc1J studies a:::ld thus the approximation is also 

referred to as the Obcrbeck-Boussinesq approximation. In some respects, (Ober-


