PHYSICAL, MECHANICAL AND NANOSTRUCTURAL PROPERTIES OF ACACIA MANGIUM WOOD FROM SABAH USING X-RAY DIFFRACTION AND SMALL-ANGLE X-RAY SCATTERING METHODS

TAMER A. TABET

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2008

BORANG PENGESAHAN STATUS TESIS

JUDUL:SIFAT FIZIKAL, MEKANIKAL DAN STRUKTUR NANO KAYU Acacium mangium DARI SABAH MENGGUNAKAN TEKNIK XRD DAN X-RAY SMALL ANGLE SCATTERING

IJAZAH: DOKTOR FALSAFAH (BIOFIZIK)

SESI PENGAJIAN: 2004-2008

Saya, TAMER A. TABET mengaku membenarkan tesis doktor falsafah ini disimpan di perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian saya.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. PERPUSTAKAAN
- 4. TIDAK TERHAD.

Penulis : TAMER A. TABET

Disahkan oleh

ANITA BINTI ARSAD PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

UNIVERSITI MALAYSIA SABAH

TANDATANGAN PUSTAKAWAN

Penyelia utama: Prof. Dr. Fauziah Haji Abdul Aziz Tarikh: 29 Julia 2008

Tarikh: 2008

PROF. DR. FAUZIAH HAJI ABDUL AZIZ Program Fizik Dengan Elektronik Setolah Sains Dan Teknologi Universiti Malaysia Sabah

CATATAN: [®]Tesis dimaksudkan sebagai tesis Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau laporan Projek Sarjana Muda (LPSM).

DECLARATION

This thesis is the result of my own work with the exception of quotations, excerpts, equations, summaries and references, the sources of which have been duly acknowledged.

10 July 2008

Tamer A. Tabet PS04-001-030

NAME : TAMER A. TABET

MATRIC NO. : **PS04-001-030**

- TITLE : PHYSICAL, MECHANICAL AND NANOSTRUCTURAL PROPERTIES OF ACACIA MANGIUM WOOD FROM SABAH USING X-RAY DIFFRACTION AND SMALL-ANGLE X-RAY SCATTERING METHODS
- DEGREE : DOCTOR OF PHILOSOPHY (BIOPHYSICS)
- VIVA DATE : 17 JUNE 2008

DECLARED BY

UNIVERSITI MALAYSIA SABAH

2. CO-SUPERVISOR (Prof. Dr. Shahidan Radiman)

(Signature)

(Signature)

2. CO-SUPERVISOR

(Assoc. Prof. Dr. Abdulrazak Wahab)

ACKNOWLEDGMENTS

Thanks to almighty Allah, the merciful for it is due to His continuous guidance and provision of good health that I was able to, among other things, complete this thesis in time.

I would like to express my unlimited appreciation to Prof. Dr. Fauziah Haji Abdul Aziz, my main supervisor for her valuable supervision, patience, devoted time, thoughts, guidance in the research and preparation of this thesis. She provided me with great opportunity and allowed me to go depth in the application of areas of X-Ray diffraction and crystallography. Her consistence motivation and encouragement allowed me to perform at my best and to unleash my capabilities in my areas, especially in the field related to this thesis.

I would like to extend my sincere gratitude to Prof. Dr. Shahidan Radiman, my cosupervisor for his professional help and advice. He helps me to go depth in the Small-Angle X-Ray Scattering application.

I would like to express my sincere thanks to co-supervisor Assoc. Prof Abdul Razak Wahab for his professional assistance and advice.

I would like to extend my sincere gratitude to the former dean of the School Science and Technology Prof. Dr. Amran Ahmed and the current dean Assoc. Prof. Dr. Shariff Abdul Kadir Omang for their continuous support.

This thesis is dedicated to the soul of my father Haj. Abdul Rahman Thabet

I am grateful to my mother Madam Latiefa S. Najem, my brother Thaer A. Thabet, thank you also goes to all my brothers and sisters for their love, continuous support, patience, encouragement, moral and financial support in completing this research work.

ABSTRACT

PHYSICAL, MECHANICAL AND NANOSTRUCTURAL PROPERTIES OF ACACIA MANGIUM WOOD FROM SABAH USING X-RAY DIFFRACTION AND SMALL-ANGLE X-RAY SCATTERING METHODS

The main purpose of this study is to provide the knowledge and data on the physical, mechanical and nanostructural properties of Acacia mangium wood from Sabah. A further objective was to examine the influence of microfibril angle (MFA) on strength, stiffness, tree age, the distance from pith to bark and the internal structure of the wood and to predict the perfect growth age which produces pure crystalline cellulose and more ordered. The results show that the fully grown which produce fully crystalline cellulose will denote as the optimum age (a_0) was found to be 23.45 year for the pith region, a_0 was about 23.29 year for the bark region and for the pith - bark region about 22.04 ± 0.05 year. The mean length of cellulose crystalline ranged from 3.86 Å in the 3-year-old disc to 23.43 Å in the pith region of 15-year-old disc. MFA was found to decrease whilst tree age increased for the pith and bark regions. The general trend was for the MFA to be greatest in the young wood of age 3-year-old about 26.13°, and to decrease gradually with increasing the tree age. The lowest was found in the pith region of tree at 15-year-old where the angle varied from 1.99° to 0.20°. Small-Angle x-ray scattering analysis showed that fibre length, L increased from pith to bark for wood disc of 10-year-old. An inverse relationship between surface area of the single fibre, S and the distance from pith to bark was evident in this study within a single tree of 10-year-old. It was also found that Acacia mangium wood swells and shrinks in length but at the same time swells and shrinks less in the tangential and radial directions. A strong negative linear relationship was found to exist between MFA and modulus of elasticity, MOE. This trend has also been observed between MFA and modulus of rupture, MOR. An inversely correlation was evident between glass transition, T_q and MFA in Acacia mangium wood. The regression analysis of MFA and T_q data shows that about 66.4% of the variation in T_q was explained by MFA. It was found that Acacia mangium wood of age 3 year-old has the highest relaxation length (83.33 cm) and half-thickness value (57.75 cm). Tree of 15 year-old has the least relaxation length and half-thickness of 28.65 cm and 19.85 cm respectively. Neutron transmission test showed that the actual water uptake inside the vessels and through the fibres composite is ranged from 4.445% to 6.981% after 20 hours drying under 105 C° ±1C°.

ABSTRAK

Tujuan kajian ini dijalankan adalah untuk mengkaji sifat fizikal, mekanikal dan struktur nano kayu Acacium mangium dari Sabah. Dalam kajian ini, pengaruh sudut mikrofibril terhadap kekuatan, kekakuan, struktur dalaman kayu, umur pokok dan jarak daripada empulur ke kulit kayu dikaji. Selain itu, umur pertumbuhan pokok yang sempurna untuk menghasilkan hablur selulosa asli yang teratur juga akan diramalkan. Keputusan yang didapati menunjukkan pertumbuhan pokok yang dapat menghasilkan hablur selulosa yang dikatakan sebagai umur optimum pokok tersebut adalah 23.45 tahun untuk bahagian empulur, 23.29 tahun untuk bahagian kulit kayu dan untuk bahagian empulur – kulit kayu pula 22.04 ±0.05 tahun. Purata panjang hablur selulosa adalah dalam julat 3.86 Å untuk pokok yang berumur 3 tahun hingga 23.43 Å untuk pokok yang berumur 15 tahun. Untuk bahagian empulur dan kulit kayu, MFA didapati menurun sejajar dengan pertambahan umur pokok. Kebiasaannya nilai MFA adalah besar untuk pokok yang masih muda (dalam lingkungan umur 3 tahun), iaitu 26.13° dan akan menurun secara berperingkat dengan pertambahan umur pokok tersebut. Nilai yang paling rendah didapati pada bahagian empulur pokok yang berumur 15 tahun di mana sudutnya adalah dalam julat 1.99° - 0.20°. Analisis Small-Angle x-ray scattering menunjukkan bahawa panjang fiber, L telah bertambah daripada bahagian empulur ke kulit kayu untuk pokok yang berumur 10 tahun. Songsangan perhubungan antara permukaan fiber tunggal , S dan jarak daripada empulur ke kulit kayu merupakan bukti dalam kajian yang telah dijalankan pada pokok yang berumur 10 tahun. Kayu Acacia mangium juga didapati mengembang dan mengecut pada arah pemanjangan tetapi dalam masa yang sama, ia kurang mengembang dan mengecut pada arah tangential dan radial. Keputusan kajian menunjukkan perhubungan garis lurus yang negatif antara MFA dan elastik modulus (MOE). Perhubungan antara MFA dan (modulus of rupture) MOR juga bersifat garis lurus negatif. Hubung kait antara T_a dan MFA adalah songsang. Analisis regresif daripada data MFA dan Ta menunjukkan bahawa 66.4% variasi pada To ditunjukkan oleh nilai MFA. Daripada kajian, didapati bahawa pokok Acacia mangium yang berumur 3 tahun mempunyai nilai Panjang santaian maksimum 83.33 cm dan nilai separuh kelebaran 57.75cm, iaitu lebih tinggi nilainya jika dibandingkan dengan pokok yang berumur 15 tahun yang mempunyai Panjang santaian maksimum 28.65cm dan nilai separuh kelebaran 19.85cm. Ujian neutron transmission menunjukkan penyerapan air sebenar ke dalam vesel dan melalui komposit fiber adalah dalam julat 4.445% - 6.981% selepas 20 jam dikeringkan pada suhu 105C° ±1C°.

CONTENTS

TTT I 6		page
1116		4
DECL	ARATION	ii
CERT	IFICATION	iii
ACKN	IOWLEDGEMENTS	iv
ABST	RACT	V
ABST	RAK	vi
TABL	E OF CONTENTS	vii
LIST	OF TABLES	xi
LIST	OF FIGURES	XV
LIST	OF ABBREVIATIONS	XXX
LIST	OF SYMBOLS	xxxi
CHAP 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	PTER 1: INTRODUCTION Problem and Background Acacia mangium Cellulose Microfibrils Microfibril Angle (MFA) Mechanical Properties of Wood Physical Properties of Wood Morphology of Acacia mangium Wood The Main Objectives of the Research	1 1 2 3 4 5 8 8
СНАР	TER 2: LITERATURE REVIEW	10
2.1 2.2 2.3	Acacia mangium Wood Quality Wood Density 2.3.1 Impact of Density on Wood Quality 2.3.2 Density Variations within a Tree 2.3.3 Density and Strength	10 10 11 11 11 12
2.4 2.5 2.6 2.7	 2.3.4 Measurement of Wood Density Chemical Composition of Wood The Structure of the Cell Wall Microfibrils Importance of Microfibril Angle 2.7.1 Impact of Microfibril Angle on Wood Quality 2.7.2 Microfibril Angle and Wood Stiffness 2.7.3 Microfibril Angle and Strength 2.7.4 MFA and Shrinkage, Swelling of Wood 2.7.5 Variation in Microfibril Angle 	12 13 14 16 17 18 19 21 22 25

	2.7.6 2.7.7 2.7.8	Environmental Impacts on Microfibril Angle Methods of Measuring Microfibril Angle The Parameter T	25 35 26
	2.7.0	Angular Distribution of Microfibrils	20
	2.7.5	Square Cells Irradiated Normal to one Pair of Faces	20
	2.7.10	Circular Cell (Normal Distribution Only)	30
2.8	Crystal	lite-Size and Crystallinity of Cellulose in Wood	32
2.0	281	Crystallites Size	32
	2.8.2	Crystallinity	33
2.9	Small-	Angle X-Ray Scattering (SAXS)	36
	2.9.1	General Theorems of Small-Angle X-Ray Scattering	39
	2.9.2	Porod's Law	40
	2.9.3	Surface Fractal Laws	40
	2.9.4	Diffuse Interfaces	41
	2.9.5	Dimensional Scattering Laws	41
	2.9.6	Guinier's Law	42
	2.9.7	Measurement of Microfibril Angle in Wood using	
		Small-Angle X-Ray Scattering (SAXS)	43
2.10	Selection	on for Wood Quality on the Basis of Microfibril Angle	45
2.11	Neutro	n Transmission in Wood	45
	2.11.1	The Interactions of Neutrons with Matters	46
	2.11.2	Measurement of Moisture Content in Wood	49
2.12	Nanost	ructural Study of Wood	50
CHAP	TER 3:	RESEARCH METHODOLOGY	52
3.1	Descrip	btion of Site	52
3.2	Selection	on o <mark>f Sample</mark> Trees Within Each Age	53
	3.2.1	Microfibril Angle Sampling Method	63
	3.2.2	Strength and Stiffness Method	63
	3.2.3	Wood Density Sampling Method	65
	3.2.4	Sampling Method for Dynamic Mechanical Analyzer Test	65
	3.2.5	Shrinkage and Swelling Sampling Method	66
	3.2.6	Moisture Content Sampling Method	67
3.3	Method	of Measuring Wood Properties	68
	3.3.1	Microfibril Angle Measurements	68
	3.3.2	Measurement of Mechanical Properties of Acacia mangium Wood	/8
	3.3.3	Physical Properties of Acacia mangium Wood	83
	3.3.4	Nanostructure Study of Acacia mangium Wood	90
CHAP	TER 4:	RESULT AND DISCUSSION	93
4.1	Data A	nalysis From X-Ray Diffraction (XRD)	93
	4.1.1	Calculation of Microfibril Angle (MFA) Using	
		X-Ray Diffraction (XRD)	93
	4.1.2	Calculated the Experimental Results	97
	4.1.3	The Determination of Microfibril Angle Using The	
		Full Width at Half Maximum (FWHM)	101
	4.1.4	Microfibril Angle and the Distance from Pith to Bark	106
	4.1.5	The Determination of the Crystallinity	110
	4.1.6	The Determination of the Average Size of Cellulose Crystalline	117
1.2	4.1.7	Discussion of XRD Results	121
4.2	Nanost Scatter	ructure of the Wood Cell Wall Using Small-Angle X-Ray	124
	4.2.1	Small-Angle X-Ray Scattering Data Analysis	124
	4.2.2	Estimation of Microfibril Angle Using Small-Angle X-Ray Scattering	140

	4.2.3	The Comparison between Measured Value of MFA for	
	124	Real Cell Wall and the Rectangular Cell Wall	141
	4.2.4	Discussion of Nanostructure Results Using Small	
4.2		Angle X-Ray Scattering	144
4.3	Measu	irement of the Physical Properties of Wood	149
	4.3.1	Determination of the Density of Acacia mangium	
		Wood Using Gamma-Ray Attenuation Technique	149
	4.3.2	The Influence of Microfibril Orientation on The	
		Shrinkage and Swelling in Acacia mangium Wood	156
	4.3.3	Investigation of Moisture Distribution in Acacia	
		mangium Wood Using Neutron Transmission	169
	4.3.4	Discussion of Physical Properties of Acacia mangium	
		Wood	173
4.4.	Measu	rement of Modulus of Elasticity and Modulus of	
	Ruptu	re	179
	4.4.1	Analysis of Modulus of Elasticity	179
	4.4.2	Analysis of Modulus of Rupture	181
	4.4.3	The Statistical Analysis of Modulus of Elasticity Data	182
	4.4.4	The Relationship between Grain Angle and Modulus	
		of Elasticity	184
	4.4.5	The Statistical Analysis of Modulus of Rupture Data	186
	4.4.6	The Relationship between Grain Angle and Modulus	
		of Rupture	188
	4.4.7	The Relationship between Microfibril Angle and	
		Modulus of Elasticity	190
	4.4.8	The Relationship between Microfibril Angle and	
		of Rupture	191
	4.4.9	The Relationship between Microfibril Angle and Strength	193
4.5.	The E	ffect of Microfibril Angle on the Thermal and Dynamic-	
	Mech	anical Properties of Acacia mangium Wood	197
	4.5.1	Determination of Glass Transition of Acacia	
		mangium Wood by Dynamic Mechanical Thermal	
		Analyser (DMTA)	202
	4.5.2	The Relationship between Microfibril Angle and Storage	
		Modulus, Loss Modulus and Glass Transition	205
	4.5.3	Discussion of Mechanical Properties of Acacia mangium Wood	208
4.6	Morph	ology of Acacia mangium Wood	210
	4.6.1	The Relationship between Microfibril Angle and	
		Lumen Area, Length and Width	210
	4.6.2	The Relationship Between Lumen Area and The	
		Distance from Pith to Bark in Acacia mangium wood	217
	4.6.3	Determination of the Depth of Lumen Hole	222
	4.6.4	Estimation of the Surface Roughness in	
		Acacia mangium Wood	229
	4.6.5	Discussion of Morphology of <i>Acacia mangium</i> Wood	238
		Discussion of Holphology of Acada Manglam Wood	200
СНАР	TFR 5:	CONCLUSION AND SUGGESTIONS	241
5 1	Conclu	ision	241
5.1	5 1 1	Microfibril Angle in <i>Acacia mangium</i> Wood	241
	512	Cellulose Crystalline	241
	513	Nanostructure of Acacia manaium Wood	242
	514	Dhysical Droperties of Acacia manajum Mood	242
	515	Mechanical Properties of Acacia mangium Wood	243
	516	Morphology of Acacia manajum Mood	245
52	Sugge	stions	245

REFERENCES

APPENDIX A	X-Ray Diffraction Analysis	256
APPENDIX B	Small-Angle X-Ray Scattering Analysis	260
APPENDIX C	Swelling and Shrinkage in Acacia mangium Wood	266
APPENDIX D	Statistical Analysis of Modulus of Elasticity and	
	Modulus of Rupture Data	269
APPENDIX E	Morphology of Acacia mangium Wood with	
	Emphasis on Fibre Properties Using 3D Optical	
	Microscope	275
APPENDIX F	List of Publications Derived from this Thesis	279

LIST OF TABLES

		Page
Table 3.1	Sample Setting for Respective Method	57
Table 3.2	Sample Setting for Selecting Trees Explain Sample Region in Each Trunk	62
Table 4.1	The Values of MFA And Standard Deviation in The Pith Region for Each Growth Age of <i>Acacia mangium</i>	104
Table 4.2	The Values of MFA And Standard Deviation in the Region for Each Growth Age of <i>Acacia mangium</i>	105
Table 4.3	The MFA and Distance from Pith Center to Bark for Wood Sample at 10-Year-Old	108
Table 4.4	The Variation of MFA with the Distance from the Pith in Model at 9-Year-Old	109
Table 4.5	The Strongest Reflections Arising from the Crystal Planes	111
Table 4.6	Average Full Width Half Maximum (FWHM) for All Wood Samples Under Investigation	112
Table 4.7	The Mean Length of Cellulose Crystallites and FWHM for the of Wood Sample at Age 3-Year-Old	119
Table 4.8	The Mean Length of Cellulose Crystallites and FWHM For the pith of Each Tree Age of <i>Acacia mangium</i> Wood	119
Table 4.9	The Mean Length of Cellulose Crystallites and the FWHM in the Bark Region of Each Tree of <i>Acacia mangium</i>	120
Table 4.10	Results of SAXS Analysis as a Function to the Tree Age in the Pith Region	124
Table 4.11	Fibre Length and Surface Area as a Function to the Tree Age at the Pith Region of <i>Acacia mangium</i> Trees	131
Table 4.12	Results of SAXS Analysis as a Function to the Tree Age in the Bark Region	133
Table 4.13	Fibre Length and Surface Area as a Function to the Tree Age at the Bark Region of <i>Acacia mangium</i> Trees	134
Table 4.14	Fibre Length and Surface Area as a Function to the Distance from Pith to Bark of <i>Acacia mangium</i> Tree at Age 10-Year-Old	136

Table 4.15	Measured MFA and the Standard Deviation for Each Value of β	143
Table 4.16	Experimental Results for the Density, Relaxation Length, Half-Thickness Value and Mass Attenuation Coefficient of <i>Acacia mangium</i> Wood	150
Table 4.17	Comparison of Experimental Results and Estimated Values of Density in <i>Acacia mangium</i> Wood	155
Table 4.18	The Swelling Dimensional Changes in Tangential, Radial and Longitudinal Directions at $\beta = 0.0^{\circ}$	159
Table 4.19	The Shrinkage Dimensional Changes in Tangential, Radial and Longitudinal Directions at $\beta = 0.0^{\circ}$	160
Table 4.20	The Percentage of Swelling Versus Time for Wood Samples at $\beta = 0.0^{\circ}$	161
Table 4.21	The Percentage of Shrinkage Versus Time for Wood Samples at $\beta = 0.0^{\circ}$	161
Table 4.22	The Variation of Percentage of Tangential, Radial and Longitudinal Swelling and Shrinkage With the Angle β	166
Table 4.23	The Variation of Volumetric Swelling and Shrinkage With Angle β for Wood Model at 15 Year-Old	168
Table 4.24	The Experimental Results for the μ_d and μ_w of <i>Acacia mangium</i> Wood for the Growth Age's Study	172
Table 4.25	The Net Water Thickness in <i>Acacia mangium</i> Samples for the Growth Ages Under Study as a Function to <i>RH</i>	173
Table 4.26	The Experimental Results of MOE of Wood Model at Age 10-Year-Old	181
Table 4.27	The Results of MOE and MOR of Wood Model of10- Year-Old	181
Table 4.28	The Experimental results of MOE and MOR for Model at Age 15-Year Old	182
Table 4.29	The Results of MOE and MOR in <i>Acacia mangium</i> Wood of 15-Year-Old	182
Table 4.30	The Descriptive Statistics of the Data for the Samples Under Study	183
Table 4.31	An Analysis of Variance MOE Showing the Impact of Grain Angle on MOE for Model 1, Wood Sample of 10- Year-Old	183

Table 4.32	Regression Analysis Showing the Grain Angle Effect on MOE for Model 1	183
Table 4.33	An Analysis of Variance MOE Showing the Impact of Grain Angle on MOE for Model 2 at Age15-Year-old	184
Table 4.34	Regression Analysis Showing the Grain Angle Effect on MOE for Model 2	184
Table 4.35	An Analysis of Variance MOR Showing the Impact of Grain Angle on MOR for Model 1 at Age 10-Year-Old	187
Table 4.36	Regression Analysis Showing the Grain Angle Effect on MOR of Model 1	187
Table 4.37	An Analysis of Variance MOR Showing the Impact of Grain Angle on MOR for Wood Model 2 at Age-15- Year-Old	187
Table 4.38	Regression Analysis Showing the Grain Angle Effect on MOR in Model 2	188
Table 4.39	The Results of Compressive Strength Test for Wood Model 1 at 10-Year-Old	194
Table 4.40	Da <mark>ta Analys</mark> is of Compressive Strength Test for Wood Model 2 at Age 15-Year-Old	194
Table 4.41	Thermal and Mechanical Properties of <i>Acacia mangium</i> Wood Samples at MFA = 18.0° and Frequency = 1 Hz	198
Table 4.42	Thermal and Mechanical Properties of <i>Acacia mangium</i> Wood Samples at MFA = 18.0° and Frequency = 5 Hz	199
Table 4.43	Thermal and Mechanical Properties of Acacia mangium Wood Samples at MFA = 18.0° and Frequency = 10 Hz	199
Table 4.44	Thermal and Mechanical Properties of Acacia mangium Wood with Respect to the MFA. The Values of T_g were Calculated Based on the $tan\delta$	203
Table 4.45	The Descriptive Statistics of the Thermal and Mechanical Data Under Analysis	206
Table 4.46	The Measured Dimensions of the Lumen Cell Wall in Wood Model at MFA=18.0° and Age of 10-Year-old	212
Table 4.47	The Measured Dimensions of the Lumen Cell Wall in Wood Model at MFA 19.8° and Age 10-Year-old	214
Table 4.48	The Measured Dimensions of the Lumen Cell Wall in Wood Model at MFA=29.4° and Growth Age of 10-Year-Old	215

Table 4.49	The Mean Value of Measured Dimensions and MFA for Wood Model at Age 10-Year-Old	216
Table 4.50	Results of Measurements in 2D Analysis Module of Wood Sample at 70.0 mm from the Pith Center	219
Table 4.51	Results of Measurements in 2D Analysis Module of Wood Sample at 80.0 mm from the Pith Center	220
Table 4.52	Results of Measurements in 2D Analysis Module of Wood Sample at 90.0 mm from the Pith	221
Table 4.53	The Results of Measurement at 2D Analysis for Lumen Area with Respect to the Distance from Pith to Bark in Wood Samples at Age10-Year-Old	221
Table 4.54	Results of Measurement the Depth of Lumen Hole at Distance10.0 mm from the Pith	225
Table 4.55	Results of Measurement the Depth of Lumen Hole at 40.0 mm from the Pith	228
Table 4.56	Results of Measurement the Lumen Depth as a Function to the Distance from Pith to Bark in <i>Acacia mangium</i> Wood of10-Year-Old	228
Table 4.57	Results of Roughness Analysis for the Wood Sample at 30.0 mm from the Pith Center	231
Table 4.58	Results of Roughness Analysis for the Wood Sample at 70.0 mm from the Pith Center	233
Table 4.59	Results of Surface Roughness Analysis and Reconstruction of Wood Samples at Age10-Year-Old	234

LIST OF FIGURES

Figure 1.1	Layers of Cell Wall	3
Figure 2.1	The Structural Formula of Cellulose	14
Figure 2.2	Transmission Electron Microscope of Different Layers of Cell Wall	16
Figure 2.3	Cellulose Microfibrils in Wood Cell	17
Figure 2.4	A Confocal Micrograph of a Wood Fibre Showing Microfibril Angle	18
Figure 2.5	The Relationship between Microfibril Angle and Modulus of Elasticity for <i>Stika spruce</i> Wood	20
Figure 2.6	Analysis of the Data of Bendtsenft Showing the Relationship betweem Microfibril Angle and Stiffness of Wood	21
Figure 2.7	The Relationship Beteween Microfibril Angle and Modulus of Rupture in <i>Stika spruce</i> Wood	22
Figure 2.8	Schematic View Illustrate the Shrinkage in S ₂ Layer of Juvenile Wood When the Microfibrils were Parallel to the Long Axis of the Cell Wall	23
Figure 2.9	Longitudinal Shrinkage in Juvenile Wood when BAH Microfibrils were Oriented Perpendicular to the Long Axis of the Cell Wall	23
Figure 2.10	The Relationship between Longitudinal Shrinkage and Microfibril Angle in Pinus Radiata	24
Figure 2.11	The Relationship between Microfibril Angle and Shrinkage in Juvenile Wood	24
Figure 2.12	Schematic Graph Record Around the (002) Reflection Circle of Wood Showing Tangents Drawn At The Point of the Inflection in The Measurement of The Parameter T .	27
Figure 2.13	The Relation between the Reflection Spot Position θ and The Microfibril Axis Parameters μ and α	29
Figure 2.14	Silviscan 2-X-Ray Diffraction Scan for a Radial Sample of <i>spurce</i> Supplied by Swedish Pulp and Paper Research Institute	31
Figure 2.15	Microfibril Angle in <i>Loblloly Pin</i> by Using Diffrential Interference Contrast Microscopy	32

Figure 2.16	Schematic Small-Angle X-Ray Scattering Apparatus	37
Figure 2.17	Schematic Small-Angle X-Ray Scattering and Wide - Angle X-Ray Scattering Experimental Set-up	38
Figure 2.18	Small-Angle X-Ray Scattering Pattern in Polyme	38
Figure 2.19	Wide-Angle X-Ray Scattering Pattern Collected During a Stress-Strain Experiment on a Slice Of <i>Picea abies</i>	44
Figure 2.20	The Scattering Pattern is a Superposition of Three Streaks, as Expected for Rectangular Cells	44
Figure 2.21	Attenuation Coefficient of a "standard" Wooden Sample as a Function of the Water Content Starting from the Dry State	46
Figure 2.22	A Comparison of Attenuation Aoefficients for X-rays (line) and Thermal Neutrons (points) for the Elements in Nature in their Natural Composition in Liquid and Solid Phase	47
Figure 2.23	Shows the Princible of the set-up of a Strong Neutron Beam Transmission Experement	48
Figure 2.24	The Layout of the Neutron Transmission Facility, Neutra, Used for the Neutron Radiography and Tomography Investigations, Paul Scherrer Institute	49
Figure 2.25	(a) Maximum Length and Width. (b) Longitudinal and Radial Diameters of the Wood Vessels Using WinCELL Measurement	51
Figure 3.1	Sabah Forestry Development Authority (SAFODA) Plantation, Sabah, Malaysia	52
Figure 3.2	<i>Acacia mangium</i> Tree in Sabah Forestry Development Authority Plantation, Sabah, Malaysia	53
Figure 3.3	Schematic Diagram Showing Sampling Methodology of <i>Acacia mangium</i> Wood for Microfibril Angle and Density Test	55
Figure 3.4	Schematic Diagram Showing Sampling Methodology of <i>Acacia mangium</i> Wood for Physical and Mechanical Test	56
Figure 3.5	Photograph Images Shows <i>Acacia mangium</i> Tree at Age 13-Year-Old in Sabah Forestry Development Authority, Sabah, Malaysia	58

Figure 3.6 59 Photograph Images Showing (a) Wood Disc of 165 mm Diameter at Age 10-Year-Old. (b) Wood Block 40.0×60.0 Mm. (c) Wood Sample at Angle 45° . (d) Sample Preperation Using Rotary Microtome. (e) Thin Sample of Acacia mangium 40.0 µm Thick × 10,000 μ m Long. (f) Thin Sample of 60 μ m \times 10,000 μ m \times 20,000 µm Figure 3.7 Photograph Image for Wood Sample at 200 µm Thick 60 \times 10 mm Width \times 20 mm Long \pm 0.5 mm for XRD Test Figure 3.8 Powder Samples Of Acacia mangium Wood at Size of 61 Granulat about 63 µm³ for Growth Age at Eight-Year-Old Figure 3.9 (a) Wood Powder of the Pith Region of Acacia (a) 61 Wood Powder of the Pith Region of Acacia mangium at 11-Year-Old And Granulate Size About 63 µm³ at Distance 44 mm from the Pith Center (b) Powder Sample of Bark Region of Trunk at Age 11-Year-Old at 73 mm from the Pith Center 62 Figure 3.10 Photograph Image for Wood Powder from Pith-Bark Region of Wood Trunk at Age 11-Year-Old Figure 3.11 (a) Height of The Trunk Selected. (a) Parts of Trunk of 62 Acacia mangium Trees at Age 3, 5, 7, 9, 11, 13 and 15-Year-Old (a) Sample Measured 20 mm× 20 mm× 60 mm From 63 Figure 3.12 Pith-Bark Region at Age 13-Year-Old and Angle About $\beta = 45^{\circ} \pm 0.5^{\circ}$ to the Grain Direction. (b) Wood Sample from Pith-Bark Region of Age 13-Year-Old and $\beta = 90^{\circ} \pm 0.5$ 64 Figure 3.13 (a) Sample from Pith Region at $\beta \approx 35^{\circ}$ of Growth Age 15-Year-Old (b) Sample from Bark at $\beta \approx 35^{\circ}$ of Age about 11-Year-Old Figure 3.14 Samples Measured 20 mm \times 20 mm \times 320 mm From 64 Bark Region at Age 13-Year-Old for Flexure Test Figure 3.15 64 Sample from Bark Region at 13-Year-Old Figure 3.16 (a) Acacia mangium Disc at Age 5-Year-Old And 65 Diameter 75.0 mm, (b) Wood Block Sample at Dimensions 30 mm Length \times 20 mm Width \times 10 mm Thickness Figure 3.17 Photograph Images Shows (a) Acacia mangium Disc at 66 5-Year-Old and Diameter 155.0 mm for DMTA Test (b) Wood Sample at 50 mm× 13 mm× 3 mm (c) DMTA Samples from Different Growth Ages

xvii

Figure 3.18	Diagram Illustration the Radial, Tangential and Longitudinal Directions of <i>Acacia mangium</i> Samples	67
Figure 3.19	(a) Wood Disc at Angle 15-Year-Old and Diameter 190.0 mm. (b) Wood Block Measured 10 mm× 19 mm × 19 mm at Angle β = 50° ± 0.5° from Pith-Bark Region in Tangential Direction	67
Figure 3.20	Wood Sample Measured 1.0 mm Thickness \times 10.0 mm Length for Neutron Attenuation Test	68
Figure 3.21	X-Ray Diffractometer, Philips X'pert Pro Pw 3040/60 Used for Microfibril Angle Measurement	70
Figure 3.22	Geometry of the Specimen and X-Ray Diffraction System	70
Figure 3.23	Wood Sample at Dimensions 50 μm Thick \times 20 mm Long at Age 10-Year-Old	72
Figure 3.24	Set-up of Scanning Probe Microscope (Q-Scop 250- Video Camera)	72
Figure 3.25	Diagram Showing the Orientation of the Cross- Section of <i>Acacia mangium</i> Wood that Cut from the Wood Disc	74
Figure 3.26	(a) Wood Sample at Fibre Orientation Angle $\beta = 45^{\circ}$. (b) Thin Samples of Thickness 200 mm from Pith, Bark and Pith-Bark Regions of The Wood Trunk	75
Figure 3.27	(a) Sample Holder with Wood Sample for Small-Angle ABAH X-Ray Scattering Machine (b) Small-Wide Angle X-Ray Scattering Machine Pw 8380	76
Figure 3.28	Diagram Showing the Relationship between a Cell Wall, the Two S_2 Microfibrils and the Direction of The X-Ray Beam	77
Figure 3.29	Diagram Showing the Relation between Front Face of the thin Sample, the Radial Direction (β), the Cell Wall Direction (θ) and the Direction of the X-Ray Beam Normal to the Face of the Sample	78
Figure 3.30	Flexure Machine, Shimadzu (Uh-1000kni) for Stiffness and Strength Test	80
Figure 3.31	The Compressive Strength Machine Shimadzu (Utm.Uh-1000n)	80
Figure 3.32	Schematic Drawing Showing the Three-Points Bending Test	81
Figure 3.33	The Definition of the Visco-Elasticity Feature	82

Figure 3.34	The Dynamic Thermal-Mechanical Device, Perkin Sii Pyris Diamond DMTA for Mechanical Properties Test	83
Figure 3.35	(a) <i>Acacia mangium</i> Sample at 3 cm × 2.5 cm× 1.0 cm for Mass Measurement, (b) Sample Stage, (c) Gamma Radiation Equipment	85
Figure 3.36	Wood Samples at Age 15-Year-Old for Swelling And Shrinkage Test (a) Tangential Direction at $\beta = 0^{\circ}$, (b) Longitudinal Direction at Angle $\beta = 40^{\circ} \pm 0.5^{\circ}$	87
Figure 3.37	Wood Samples for Neutron Transmission Test (a) Samples at 9-Year-Old Tree and Thickness 3.0 mm, (β) Sample at Age 11-Year and Thickness 4.0 mm ± 0.1 mm	89
Figure 3.38	Sample Preparing from Pith to Bark of <i>Acacia mangium</i> Wood of 10-Year-Old	91
Figure 3.39	Thin Sample of Thickness 50.0 μm From Bark Region of 13-Year-Old, (b) Wood Powder of Size 63.0 μ^3 Disperse in Distill Water at Sample Holder	91
Figure 3.40	Optical Microscope. Infinite Focus Alicona. Hi Tech Instrument Sdn Bhd	92
Figure 4.1	Schematic Diagram Represents the Rectangular Cross Section of the Wood Sample and The Orientation of the Cellulose Microfibrils in Front and Back around the Fibre Axis	94
Figure 4.2	SEM Micrograph X 3300 Showing the Structure of the Cell Wall in <i>Acacia mangium</i> Wood at Age 15-Year Old	95
Figure 4.3	Schematic Diagram Showing Model of the Cellulose Geometry of the Cell Wall at Radial, Tangential and Longitudinal Direction	95
Figure 4.4	Model of the Orientation of the Cellulose Microfibrils in the Cell Wall Layers	96
Figure 4.5	Typical Diffraction Pattern Arising From Pith Region and The Peak List of <i>Acacia mangium</i> Sample at Age	97
Figure 4.6	X-ray Diffraction Intensity Used to Measurement of T in Wood Model of 3-Year-old	98
Figure 4.7	SEM Micrograph at Magnification x 2000 Showing the Orientation of Microfibrils in the Bark Region of Wood Sample at Age 3-Year Old	99
Figure 4.8	X-ray Diffraction Intensity Used to Measurement of T in Wood Model of 5-Year-Old.	100

Figure 4.9	SEM Micrograph, X 4000 Showing the Front and Back Bell Wall Direction in the Pith Region of the Wood Sample at Age 5-Year-Old	100
Figure 4.10	Typical Diffracting Pattern Arising from Pith Center Region and the Peak List of <i>Acacia mangium</i> Sample at Age 13-Year-Old.	102
Figure 4.11	AFM Micrograph Shows the Orientation of Fibres of the S_2 Layer in the Pith Center of the Wood Sample at Age 13-Year-Old, the Microfibrils Almost Parallel to the Long Axis of the Cell Wall	103
Figure 4.12	SEM Micrograph, x 2000 Showing the Orientation of Microfibrils Inside the Cell Wall of the Bark Region of <i>Acacia mangium</i> Tree at Age 15- Year-Old	103
Figure 4.13	The Relationship between MFA and the Tree Age in the Pith Region of <i>Acacia mangium</i> Wood	105
Figure 4.14	The Relationship between MFA Versus Tree Age in the Bark Region of <i>Acacia mangium</i> Wood	106
Figure 4.15	SEM Micrograph Showing the Structure of the Cell Wall in Pith and Bark Regions of Wood Sample of 10-Year- Old Tree	107
Figure 4.16	Polarizing Microscope Image Showing the Orientation of the Microfirils in the Bark of Wood Sample, 5-Year- Old	108
Figure 4.17	The Relationship between MFA and the Distance from the Pith in <i>Acacia mangium</i> Wood at Age 5-Year-Old.	109
Figure 4.18	The Relationship between MFA and the Distance from the Pith in <i>Acacia mangium</i> Wood at Age 9-Year-Old	110
Figure 4.19	Te Relationship between FWHM and Tree Age in the Pith Region of Acacia mangium Wood at Grain Size About 63.0 μm^3	112
Figure 4.20	The Relationship between FWHM and Tree Age in the Bark Region of <i>Acacia mangium</i> Wood of Grain Size = $63.0 \ \mu m^3$	113
Figure 4.21	The Relationship between FWHM and Tree Age in the Pith-Bark Region of <i>Acacia mangium</i> Wood, Grain Size = $63.0 \ \mu m^3$	113
Figure 4.22	The Relationship between FWHM and Tree Age in the Pith Region of <i>Acacia mangium</i> Wood of Grain Size = $150.0 \ \mu m^3$	114

Figure 4.23	The Relationship between FWHM and Tree age in the Bark Region of Acacia mangium Wood of Grain size = $150.0 \ \mu m^3$	114
Figure 4.24	The Relationship between FWHM and Tree Age in the Pith-Bark region of <i>Acacia mangium</i> Wood Powder of Grain Size = 150.0 μ^3	115
Figure 4.25	SEM Micrograph at Magnification X 8000 Shows the Thickness of the Cell Wall in the pith Region of Wood Sample at Age of 5-Year-Old	115
Figure 4.26	SEM Micrograph X 1700 Shows the Thickness of the Cell Wall in the Pith Region of <i>Acacia mangium</i> Wood at Age of 9-Year Old	116
Figure 4.27	SEM Micrograph X 1700 Shows the Thickness of the Cell Wall in the Pith of <i>Acacia mangium</i> Sample at Age 11-Year-Old	116
Figure 4.28	SEM Micrograph X 1700 Shows the Thickness of the Cell Wall in the Pith Region of <i>Acacia mangium</i> Sample at Age 13-Year-Old	117
Figure 4.29	SEM Micrograph X 6000 Shows the Thickness of the Cell Wall in the Pith of <i>Acacia mangium</i> Wood at Age of 15-Year-Old.	117
Figure 4.30	The Variation of Cellulose Crystallites Length with the Tree Age in the Pith Region	120
Figure 4.31	The Variation of Cellulose Crystallites Length with the Tree Age in the Bark Region of <i>Acacia mangium</i> Wood	120
Figure 4.32	AFM Micrograph Showing the Crystalline Cellulose in the Middle layer, S_2 Layer of the Cell wall in the Pith Region of <i>Acacia mangium</i> Wood at Age10-Year-Old	121
Figure 4.33	Scattering Graphs Obtained from <i>Acacia mangium</i> Wood at Age 3, 5, 7, 9, 10, 11, 13 and 15-Year-Old from Pith and Bark Regions	124
Figure 4.34	Small-Angle X-ray Scattering Graph Obtained from the Pith Region of <i>Acacia mangium</i> Wood of Age 3-Year-Old. Powder form of Grain Size 150 μ m	127
Figure 4.35	Guinier's and Porod's Regions in the Scattering Graph of <i>Acacia mangium</i> Wood at Age 3-Year-Old	127
Figure 4.36	Guinier's Analysis of <i>Acacia mangium</i> Wood at Age 3- Year-Old, the Value of Slope Indicates to the Rod Shape Fibre	128

Figure 4.37	Guinier's Approximation of <i>Acacia mangium</i> Wood of 3-Year-Old	128
Figure 4.38	Guinier's Approximation 2 of <i>Acacia mangium</i> Wood of 3-Year-Old, the Value of Slope Related to the R_g	129
Figure 4.39	Scattering Graph Showing q_m in Wood Model of 3 Year-Old	129
Figure 4.40	Porod Analysis of Surface Smoothness in Porod's Region of Scattering Graph, the Slope = - 4.968 mean the Surface is Smooth in Wood Model of 3-Year-Old	130
Figure 4.41	The Relationship between <i>L</i> and Tree Age in the Pith Region of <i>Acacia mangium</i> Wood	131
Figure 4.42	The Relationship between <i>S</i> and Tree Age in the Pith Region of <i>Acacia mangium</i> Wood	132
Figure 4.43	The Relationship between <i>L</i> and Tree Age in the Bark Region of <i>Acacia mangium</i> Wood	134
Figure 4.44	The Relationship between <i>S</i> and Tree Age in the Bark Region of <i>Acacia mangium</i> Wood	135
Figure 4.45	Th <mark>e Relatio</mark> nship between <i>L</i> and the distance from Pith to Bark in <i>Acacia mangium</i> Wood of Age 10-Year-Old	136
Figure 4.46	Variation of <i>S</i> with the Distance from Pith to Bark in <i>Acacia mangium</i> Wood of Age 10-Year-Old	137
Figure 4.47	AFM Micrograph Showing the Inner Layer S ₁ and the middle Layer S ₂ Layer of the Cell Wall in the Pith Region of Acacia mangium Wood of Age 15-Year-Old	138
Figure 4.48	SEM Micrograph Image at X1, 200 Magnification Showing Microfibrils Bundled in the Cell Wall of <i>Acacia</i> <i>mangium</i> Wood at Pith Region, Tree Age 15-Year-Old	138
Figure 4.49	AFM Micrograph Showing the Corresponding distance <i>d</i> between the Fibre and its Neighbor in the Secondary Layer of the Wood Cell Wall at Age 10-Year-Old	139
Figure 4.50	SEM Micrograph Image at X600 Magnification Showing the Shape of the Microfibrils in the Part of Cell Wall of <i>Acacia mangium</i> Wood at Pith Region of Tree Age 10- Year-Old	139
Figure 4.51	SEM Micrograph Image at X 1,100 Magnification Showing Part of Cell Wall of <i>Acacia mangium</i> Wood at Pith Region, Tree Age 10-year-Old	140

Figure 4.52	SEM Micrograph at Magnification X 2000, Showing the Shape of the Real Cell Wall of <i>Acacia mangium</i> Used for MFA Estimation, Sample Taken from the Pith Region of Tree10 Year-Old	142
Figure 4.53	The Intensity Distribution for β = 45° is Plotted Against Azimuthal Angle. MFA= 29.4° and σ_{ϕ} =9.8°	142
Figure 4.54	Variation of the Measured MFA and the Angle β in Acacia mangium Wood of 10-year-Old	143
Figure 4.55	The relationship between Measured MFA and the Distance from Pith to bark in <i>Acacia mangium</i> Wood of 10-Year-Old	144
Figure 4.56	A Plot of $Ln I_o / I$ Against Thickness for Eight Ages of Acacia mangium Trees	151
Figure 4.57	Variation of Relaxation Length with Density	151
Figure 4.58	Variation of Density with In L	152
Figure 4.59	Variation of Half-Thickness Value as a Function of Density of <i>Acacia maginum</i>	154
Figure 4.60	Variation of Density with $ln \chi_{1/2}$ of the Acacia mangium	154
Figure 4.61	The Relationship between Tree Age and Measured Density of <i>Acacia mangium</i> Wood	155
Figure 4.62	The Relationship between Tree Age and Estimated Density of <i>Acacia mangium</i> Wood	156
Figure 4.63	The Relationship between Relaxation Length and Half- Thickness Value of <i>Acacia mangium</i> Wood	156
Figure 4.64	The Percentage of Swelling Over Time According to the Experimental Directions at $\beta = 0.0^{\circ}$	161
Figure 4.65	The Error Bar of the Percentage of Swelling Over Time at Angle $\beta = 0.0^{\circ}$	162
Figure 4.66	The Percentage of Shrinkage Over Time According to the Experimental Direction at 0.0°	162
Figure 4.67	The Error Bar of the Percentage of Shrinkage Over Time for Angle $\beta = 0.0$	163
Figure 4.68	SEM Micrograph, X 2000, Scale Bar =20 μ m, Showing the Lumen Cell Wall and the Fibre Orientation of <i>Acacia mangium</i> Wood at β = 45.0° Before Oven- Drying	164