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ABSTRACT 

EVOLUTION STRATEGY FOR COLLABORATIVE BEAMFORMING IN 

WIRELESS SENSOR NETWORKS 

The aim of this research is to improve the efficiency of the phase synchronisation 

algorithm in order to achieve collaborative beamforming (CB) in wireless sensor 

networks (WSNs). Generally, CB uses a group of distributed wireless sensor nodes, 

which collectively transmit a common message with different proper weights to an 

intended location. This group of distributed wireless sensor nodes intrinsically act as 

a set of virtual antenna array and inherit the natural highly directional transmission 

properties from conventional antenna array. However, distinct of conventional 

antenna array, each sensor node in CB has an independent local oscillator. It 

becomes a vital problem to achieve CB as the distributed sensor nodes are unaware 

of their phase relationship. An iterative algorithm using evolution strategy (ES) is 

proposed to achieve phase alignment at the intended location in static channels, 

which require one-bit feedback from the receiver destination. By implementing ES 

in phase synchronisation, each sensor node independently adjusts its phase 

perturbation size accordingly to speed up the phase synchronisation. Evaluations 

have been carried out through simulation and result show that the performance 

using ES is improved by 18. 7 % convergence speed as compared to the 

conventional one-bit feedback (C1BF) approach. In addition, inverse phase 

perturbation is introduced for the improved ES (IES) which further improved the 

convergence speed by 31.6 % over the C1BF approach. Adaptive-JES is proposed 

for time-varying channels and the results show that the Adaptive-JES has the ability 

to detect channel changes. Therefore, it can be concluded that the proposed 

algorithm is robust in practical implementation. 
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ABSTRAK 

Maklamat kajian ini adalah untuk meningkatkan kecekapan algoritma penyegerakan 
fasa pembawa dalam usaha untuk mencapai kerjasama "beamforming" (CB) dalam 
rangkaian sensor tanpa wayar (WSNs). Secara umumnya, CB menggunakan 
sekumpulan nod sensor tanpa wayar yang teragih dan menghantar mesej yang 
sama dengan berat fasa yang sesuai secara kolektif ke lokasi yang dikehendaki. 
Kumpulan nod sensor tanpa wayar yang teragih tersebut secara intrinsik bertindak 
sebagai satu set tatasusunan antena maya dan mempunyai sifat-sifat transmisi 
semulajadi dari tatasusunan antena konvensional iaitu perambatan transmisi yang 
amat berarah. Waiau bagaimanapun, berbeza daripada tatasusunan antena 
konvensional setiap nod sensor dalam CB mempunyai pengayun tempatan 
tersendiri. la merupakan satu masalah untuk mencapai kerjasama ''beamforming" 
bagi nod sensor yang teragih apabila nod sensor tersebut tidak menyedari 
hubungan fasa antara nod sensor yang lain. Lelaran algoritma menggunakan 
evolusi strategi (ES) dicadangkan untuk mencapai fasa pembawa yang selaras di 
lokasi yang dicadangkan dalam keadaan saluran yang statik dengan hanya 
menggunakan mak/um ba/as satu bit dari destinasi penerima. Dengan 
pembenaman ES dalam algoritma pembawa penyegerakan fasa pembawa, setiap 
nod sensor bertindak secara berasingan untuk menyesuaikan saiz pengusi fasa 
sendiri dengan sewajarnya. Simulasi ES telah menunjukkan peningkatan 18.7 %

kelajuan penumpuan berbanding dengan penyelesaian konvensional. Tambahan itu, 
peningkatan sebanyak 31.6 % kelajuan penumpuan telah ditunjukkan mela/ui 
pengenalan pengusikan fasa songsang da/am algoritma peningkat ES (JES). 
Adaptive-JES dicadangkan untuk mengesan pengubahan saluran masa and 
keputusan menunjukkan pengukuhan algoritma Adaptive-JES kepada pengubahan 
sa/uran masa. Kesimpu/annya, a/goritma yang dicadangkan adalah lebih teguh 
dalam perlaksanaan praktikal. 
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CHAPTER 1 

INTRODUCTION 

1.1 Early Wireless and Wireless Sensor Networks 

Wireless information transmitting systems existed long ago even before the advent 

of the Industrial Revolution (Seymour and Shaheen, 2011). These systems 

transmitted signals in line-of-sight (LOS) distances and using non-electric methods 

such as smoke signal, semaphore flags, and flashing mirrors. However, these 

communication systems were replaced by the invention of telegraph network, 

which uses electrical circuits. Later, it was replaced by the inventions of the 

telephone, followed by radio transmission. 

Distinct from these early wireless communication inventions, ALOHANET 

was developed at the University of Hawaii, which is the first packet based network 

that soon becomes the well-known global Internet (Sarkar et al., 2006). The 

success of ALOHANET is a very important encouragement to the US government 

agency or Defence Advanced Research Project Agency (DARPA). By using the same 

principle, DARPA carried out a series of research for tactical communications 

network in the battlefield called Distributed Sensor Network (DSN). However, 

development of a small and powerful sensor node is a very challenging task during 

that time due to technology limitations. 

Recent advances in sensing, wireless digital communication, integrated 

circuit (IC) and microelectronics technology have permitted the development of 

lightweight, relatively inexpensive, low power and multifunctional miniature sensor 

nodes (Al�yildiz et al., 2002a, 2002b ). These sensor r,odes are capable of collecting 

informatiC1n about the physical environment, coordinate with each other, and 

communicate wirelessly by forming a network. Each sensor node is equipped with a 

processing unit, a sensing unit, a communication unit, and a power unit. This 

advance technology led to the birth of the Wireless Sensor Networks (WSNs). 



WSNs has been announced as one of the ten emerging technologies that 

will change the world (Technology Review, 2003). It is believed to change the way 

human live and interact with the physical world (Zheng and Jamalipour, 2009). It 

has attracted much research attention and has proven as a key research topic in 

recent years (Chong and Kumar, 2003; Yick et al., 2008; and Lotf et al., 2011). The 

number of potential applications in WSNs is growing rapidly due to the wide range 

and flexibility of WSNs (Culler et al., 2004 and Zhao and Guibas, 2004). 

Typically, sensor nodes are deployed in the sensing area for continuous 

data collecting and environment monitoring. In some of the WSNs applications, the 

sensing data must be transmitted to the base station (BS) in order to allow the 

end-user data access. For some cases, the distance between BS and the sensing 

area might be too far. Traditional transmission techniques such as direct 

transmission and multi-hop transmission, which are used for the network 

communication, have limited communication ranges and are inapplicable due to 

limited power supply and the effect of path loss in wireless transmission. Moreover, 

among the sensor node functions, long distance transmission is major energy 

consumer. Therefore, proper design of signal processing and networking operations 

are essential for prolonging the operation lifetime of the sensor node. 

1.2 Collaborative Beamforming in Wireless Sensor Network 

Beamforming is a signal processing technique generally used in antenna array to 

control the directional of the signal transmission. Beamforming technique 

combining transmitted signals from the antenna array to created constructive 

interferences at the intended direction. As a result, the signal strength is 

significantly increased. Beamforming can be used to boost the communication 

range by provicing a higher signal to noise ratio (SNR) and received signal strength 

(RSS). 

Collaborative beamforming (CB), also referred as distributed beamforming, 

is the idea that beamforming concept is used to establish the communication link in 

WSNs. In CB, a group of sensor nodes intrinsically act as a set of a virtual antenna 

array. CB considers isotopic antenna of the sensor nodes as elements of an 
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antenna array. All sensor nodes shared the same common message. Each of the 

sensor nodes employs a proper phase and the messages are synchronously 

transmitted towards the intended direction. 

Due to high SNR and RSS of beamforming, CB can transmit signal over long 

communication distance (Uher et al., 2011). Compared with direct transmission 

using single sensor node or multi-hop transmissions, CB distributes the energy 

consumption over multiple sensor nodes (Betz et al., 2007). Therefore, individual 

sensor node uses less energy for transmission. CB balances the energy 

consumption throughout the network, Hence, prolonging the network lifetime. 

Although CB has such unique benefits on WSNs, the implementation of CB 

is not straight forward. The principle challenge of realizing CB in practice is to 

synchronise the signal phase of individual sensor nodes in such a way that the 

signal combine coherently at the intended destination (Mudumbai et al., 2009). 

Distinct from centralised beamforming, each sensor node has an independent local 

osci::ator (LO) that is used to generate the m:-rier signal. The signals produced 

from different LO are catastrophic for CB since the phase of the signals may not be 

synchronised and may even result in destructive combing at the intended 

destination. 

The knowledge of channel state information (CSI) is the factor that decides 

the performance of the CB. Perfect CSI is needed to obtain phase setting for each 

sensor node and achieve phase synchronisation at the desired destination. However, 

this knowledge is generally not available at sensor node. Obtaining perfect CSI at 

the sensor node side may be too expensive to acquire (Lin et al., 2010). Therefore, 

phtlse synchronisation method withaut CSI is recommended. 

A low-rate feedback link from the receiver can be used to make partial CSI 

available to the sensor node. Mudumbai et al. (2006) proposed a simple phase 

synchronisation algorithm that requires only one-bit feedback from the receiver. 

The authors proposed adjusting phase setting iteratively at the sensor nodes. 

Phase synchronisation at the receiver can be achieved after a large iteration. In this 
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algorithm, all sensor nodes has an added a random perturbation on its phase offset 

in each iteration. Positive feedback is broadcasted to sensor nodes, if perturbation 

results in bigger RSS at the receiver, and the phase setting will be adopted. 

Otherwise, the added phase perturbation will be discarded. 

There are two key advantages of this algorithm. Firstly, the algorithm does 

not require CSI and only rely on one-bit feedback. Secondly, it is simple in 

implementation and is scalability to a large number of sensor nodes. The 

shortcoming of the algorithm is that the algorithm takes a large number of 

iterations to achieve convergence. Energy-efficiency is a major concern in WSNs 

and radio transmission is one of the most energy consuming operation 

(Podpora et al., 2008). Therefore, it is desirable to improve the convergence speed 

of the algorithm without sacrificing much on its key advantages. 

In summary, the challenge ahead is to discover a new phase 

synchronisation algorithm that can improve the convergence speed of the phase 

synchronisation. In this work, evolution strategy (ES) is selected to improve the 

phase synchronisation performance. Compared to other evolutionary algorithms, 

the main advantage of ES is the use of strategy parameters, which can represent a 

preferred direction and step size for a further search. With this ability, it can be 

implemented on the sensor nodes to adjust the step size of phase perturbation in 

iteration. ES can search through large phase setting solution space for the 

maximum RSS. 

1.3 Scope of Work 

The primarily concern of this research is on the implementation of ES for phase 

synchronisation in order to achieve CB in WSNs. ES will be used as the phase 

synchronisation algorithm. The CB is modelled using geometrical model, channel 

model, phase offset model and RSS. CB model emulates the signal transmission of 

CB between sensor nodes and receiver. The model of CB is then used as the 

system model for phase synchronisation. Several prior conditions and assumptions 

of CB must be described. The sensor nodes are assumed randomly deployed in an 

area with four metres of distributed radius. The sensor nodes are assumed static in 
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the network. All sensor nodes are equipped with an isotropic antenna, and CSI is 

unavailable. Sensor nodes are assumed locked with same carrier frequency. 

Therefore, the frequency drift is considered negligible. The carrier frequency used 

for the signal transmission is of 2.4GHz with unity signal amplitude. Sensor nodes 

are assumed sharing a common time reference and message. Phase 

synchronisation algorithm is simulated using the system model for phase 

synchronisation. ES is selected to improve the convergence speed of phase 

synchronisation. ES is designed to control the phase perturbation step size for 

sensor nodes by balance between exploration and exploitation to achieve fast 

convergence phase synchronisation. 

1.4 Research Objectives 

The aim of this research is to design a phase synchronisation algorithm which can 

improve the performance of phase synchronisation in order to perform CB. Effective 

phase synchronisation can be achieved through proper phase setting among sensor 

nodes. Phase synchronisation algorithm is implemented into the system model for 

phase synchronisation. ES is implementing !n phase synchronisation for better 

control of the phase perturbation step size. Hence, ES provides better trade-off in 

problem space exploration and exploitation. The implementation of ES in phase 

synchronisation is tested in various simulations to investigate the behaviour and 

characteristic on phase convergence capability. The research objective can be 

achieved through the following objectives: 

1.4.1 To Model and Simulate Collaborative Beamforming in Wireless 

Sensor Networks 

The CB model is modelled by including geometrical model, channel model, phase 

offset model and RSS. These models can link more closely to the environment of 

CB in WSNs. The model is constructed and written in MATLAB m-file coding. 

Conventional phase synchronisation algo ·ithm is simulated under the developed 

model. The development model and the algorithm is used as s benchmark for the 

performance analysis in the thesis. 
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