ENERGY EFFICIENT CLUSTER HEAD DISTRIBUTION IN WIRELESS SENSOR NETWORKS

SIEW ZHAN WEI

THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF MASTER OF ENGINEERING

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2013

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: ENERGY EFFICIENT CLUSTER HEAD DISTRIBUTION IN WIRELESS SENSOR NETWORKS

IJAZAH: SARJANA KEJURUTERAAN (ELEKTRIKAL DAN ELEKTRONIK)

Saya <u>Siew Zhan Wei</u>, Sesi Pengajian <u>2010-2013</u>, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdajah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mangandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh,

NURULAIN BINTI ISMAIL LIBRARIAN MALAYSIA SABAH

(Tandatangan Pustakawan)

(MR. KENNETH TEO TZE KIN) Penyelia

///

(Tandatangan Penulis)

Tarikh:

24 April 2013

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

5 October 2012

1

Siew Zhan Wei PK2010-8096

CERTIFICATION

- NAME : SIEW ZHAN WEI
- MATRIC NO. : PK2010-8096
- TITLE : ENERGY EFFICIENT CLUSTER HEAD DISTRIBUTION IN WIRELESS SENSOR NETWORKS
- DEGREE : MASTER OF ENGINEERING (ELECTRICAL AND ELECTRONIC ENGINEERING)
- VIVA DATE :7th JANUARY 2013

DECLARED BY

1. SUPERVISOR Mr. Kenneth Teo Tze Kin Signature

UNIVERSITI MALAYSIA SABAH

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and appreciation to my supervisor, Mr. Kenneth Teo Tze Kin, for his continuous guidance to supervise me throughout my master and bachelor degree in the past few years. His advice, encouragement, motivation and valuable suggestions have provided me the necessary impetus to complete this research.

I wish to express my sincere thanks to my friends especially all my colleagues in Modelling, Simulation & Computing Laboratory (mscLab) for their cooperation and assistance. Thanks for their willingness in spending time to have wonderful discussion on my work.

My deep sense of gratitude goes to my family for their mental and financial support throughout these years.

Siew Zhan Wei 5 October 2012

ABSTRACT

ENERGY EFFICIENT CLUSTER HEAD DISTRIBUTION IN WIRELESS SENSOR NETWORKS

The main objective of this research is to improve the cluster based wireless sensor networks lifetime by selecting appropriate cluster head (CH) via improved swarm intelligence. In general, low energy adaptive cluster hierarchy (LEACH) is one of the most common clustering protocols used to elect the cluster head. The probability model will possibly lead to a reduction in network lifetime due to the election of CH with a least desired location in the network. For network clustering, the distribution of CH selection directly influences the networks lifetime. In order to maximize the network lifetime, fuzzy logic CH selection (FLCH) and particle swarm optimisation (PSO) are embedded in LEACH protocol for better CHs distribution and hence prolong the network lifetime. PSO is lightweight heuristic optimization algorithm with each CH will move towards the best solutions by individual interaction with one another while learning from their own experience. Thus, the best selected CHs location with network global information using FLCH and PSO will be announced by the base station (BS) to the sensor nodes. Therefore it can significantly increase the networks lifetime. Evaluation and assessments have been carried out through simulation under different network topologies and it shows that FLCH selection improved first node dies (FND) round by 26.88 % as compared to LEACH. The proposed of fuzzy logic based PSO (FPSO) to automatically tuning the inertia and velocity value for each particle has further improved the FND round over the LEACH by 61.41 %. Therefore, it can be concluded that the developed FLCH and FPSO can increase the network lifetime by proper CHs selection.

UNIVERSITI MALAYSIA SABAH

ABSTRAK

Objektif utama kajian ini adalah untuk meningkatkan jangka hayat rangkaian sensor tanpa wayar berasaskan sistem kluster dengan memilih ketua kluster (CH) yang berpatutan. Secara umum, pengugusan mudah suai hierarki kuasa rendah (LEACH) merupakan salah satu protokol pengklusteran yang akan melantik ketua kluster berdasarkan model kebarangkalian yang mungkin akan mengakibatkan pengurangan dalam jangka havat rangkajan disebabkan oleh pemilihan ketua kluster dengan lokasi rangkaian yang kurang memuaskan. Bagi protokol pengklusteran rangkaian, lokasi ketua kluster akan mempengaruhi jangka hayat rangkaian secara langsung. Untuk memaksimumkan jangka hayat rangkaian, particle swarm optimisation (PSO) bersepadu dalam LEACH protokol untuk menghasilkan lokasi ketua kluster yang lebih baik untuk memanjangkan jangka hayat rangkaian. PSO adalah pengoptimuman algoritma heuristik ringan di mana setiap ketua kluster akan bergerak menuju ke arah penyelesaian yang terbaik dengan berinteraksi dengan satu sama lain sambil belajar dari pengalaman sendiri. Oleh itu, lokasi ketua kluster yang terbaik akan dipilih dan diumumkan oleh stesen pangkalan (BS) kepada nod sensor yang lain. Dengan cara ini, jangka hayat rangkaian akan di panjangkan dengan lokasi ketua kluster yang sesuai. Penilaian telah dijalankan melalui simulasi dengan topologi rangkaian yang berbeza dan ia menunjukkan bahawa pemilihan ketua kluster dengan fuzzy logic (FL) dapat meningkatkan pusingan bagi nod pertama tidak berfungsi (FND) sebanyak 26.88% berbanding dengan LEACH. Kajian ini mengenalkan FL berasas PSO (FPSO) secara automatik untuk menala inersia dan halaju bagi setiap particle dan telah mempertingkatkan pusingan FND berbanding dengan LEACH sebanyak 61.41%. Oleh itu, kesimpulan boleh dibuat bahawa pemilihan ketua kluster dengan fuzzy logic (FLCH) dan FPSO dapat meningkatkan jangka hayat rangkaian dengan pemilihan CHs vang lebih berpatutan.

UNIVERSITI MALAYSIA SABAH

TABLE OF CONTENTS

TITLEiDECLARATIONiiDECLARATIONiiCERTIFICATIONiiiACKNOWLEDGEMENTivABSTRACTvABSTRAKviLIST OF CONTENTSviiLIST OF TABLESxiiLIST OF TABLESxiiLIST OF FABLESxiiLIST OF SYMBOLSxviiiCHAPTER 1: INTRODUCTION11.1Wireless Sensor Networks1.2Energy Efficient Wireless Sensor Network Design IA SABAH2.3Scope of Work31.41.4.2To Design and Compute the Particle Swarm Optimisation Based Cluster Heads Selection Algorithm1.4.3To Evaluate and Assess the Enhanced Particle Swarm Optimisation Based Cluster Heads Selection Algorithm1.5Thesis Outline5CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 2.2.172.1An Overview of Wireless Sensor Networks72.2.2Wireless Sensor Network Classifications102.3Hierarchical Routing Protocols in Wireless Sensor Networks132.3Hierarchical Routing Protocols in Wireless Sensor Networks132.3Hierarchy (LEACH) Protocols13		Page
DECLARATION ii CERTIFICATION iii ACKNOWLEDGEMENT iv ABSTRACT v ABSTRACT v ABSTRAK vi LIST OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xii LIST OF ABBREVIATIONS xviii LIST OF SYMBOLS xviii CHAPTER 1: INTRODUCTION 1 1.1 Wireless Sensor Networks 3 1.2 Energy Efficient Wireless Sensor Network Design IA SABAH 2 1.3 Scope of Work 3 1.4 Research Objectives 4 1.4.1 To Design and Compute the Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 4 1.4.2 To Design and Compute the Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Classifications 10 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 13 2.3	TITLE	I
CERTIFICATION iii ACKNOWLEDGEMENT iv ABSTRACT v ABSTRAK vi LIST OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xii LIST OF ABBREVIATIONS xv LIST OF SYMBOLS xviii CHAPTER 1: INTRODUCTION 1 1.1 Wireless Sensor Networks 1 1.2 Energy Efficient Wireless Sensor Network Design IA SABAH 2 1.3 Scope of Work 3 1.4.1 To Model and Simulate the Energy Efficient Adaptive Clustering Network 4 1.4.2 To Design and Compute the Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 4 1.4.3 To Evaluate and Assess the Enhanced Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Architecture 8 2.2.1 Wireless Sensor Network Classifications 10 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 13	DECLARATION	ii
ACKNOWLEDGEMENT iv ABSTRACT v ABSTRAK vi LIST OF CONTENTS vii LIST OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xii LIST OF ABBREVIATIONS Xv LIST OF SYMBOLS xviii CHAPTER 1: INTRODUCTION 1 1.1 Wireless Sensor Networks 1 1.2 Energy Efficient Wireless Sensor Network Design NA SABAH 2 1.3 Scope of Work 3 1.4 Research Objectives 1 1.4.1 To Model and Simulate the Energy Efficient Adaptive Clustering Network 4 1.4.2 To Design and Compute the Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 4 1.4.3 To Evaluate and Assess the Enhanced Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 5 1.5 Thesis Outline 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 7 2.1 An Overview of Wireless Sensor Networks 7 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 10 2.3 Hie	CERTIFICATION	iii
ABSTRACT v ABSTRAK vi LIST OF CONTENTS vii LIST OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xii LIST OF ABBREVIATIONS xv LIST OF SYMBOLS xviii CHAPTER 1: INTRODUCTION 1 1.1 Wireless Sensor Networks 1 1.2 Energy Efficient Wireless Sensor Network Design ABABAH 2 Scope of Work 3 1.4 Research Objectives 4 1.4.1 To Model and Simulate the Energy Efficient Adaptive Clustering and Compute the Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 4 1.4.2 To Design and Compute the Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 5 1.5 Thesis Outline 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 7 2.1 An Overview of Wireless Sensor Networks 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Architecture 8 2.2.1 Wireless Sensor Network Classifications 10	ACKNOWLEDGEMENT	iv
ABSTRAK vi LIST OF CONTENTS vii LIST OF CONTENTS vii LIST OF TABLES x LIST OF FIGURES xii LIST OF ABBREVIATIONS xv LIST OF SYMBOLS xviii CHAPTER 1: INTRODUCTION 1 1.1 Wireless Sensor Networks 1 1.2 Energy Efficient Wireless Sensor Network Design IA SABAH 2 1.3 Scope of Work 3 1.4.1 To Model and Simulate the Energy Efficient Adaptive Clustering Network 4 1.4.2 To Design and Compute the Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 4 1.4.3 To Evaluate and Assess the Enhanced Particle Swarm 5 5 Optimisation Based Cluster Heads Selection Algorithm 5 1.5 Thesis Outline 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 7 2.1 An Overview of Wireless Sensor Networks 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Classifications 10 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 13<	ABSTRACT	v
LIST OF CONTENTS vii LIST OF TABLES × LIST OF FIGURES × LIST OF ABBREVIATIONS × LIST OF ABBREVIATIONS × LIST OF SYMBOLS × CHAPTER 1: INTRODUCTION × 1.1 Wireless Sensor Networks 1 1.2 Energy Efficient Wireless Sensor Network Design IA SABAH 2 1.3 Scope of Work 3 1.4 Research Objectives 4 1.4.1 To Model and Simulate the Energy Efficient Adaptive 4 Clustering Network 1 1.4.2 To Design and Compute the Particle Swarm Optimisation 4 Based Cluster Heads Selection Algorithm 1 1.4.3 To Evaluate and Assess the Enhanced Particle Swarm 5 Optimisation Based Cluster Heads Selection Algorithm 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 7 NETWORKS 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Architecture 8 2.2.1 Wireless Sensor Network Architecture 9 2.2.2 Wireless Sensor Network Architecture 9 2.2.2 Wireless Sensor Network S 13 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 13 2.3.1 Various Types of Low Energy Adaptive Clustering 13 Hierarchy (LEACH) Protocols	ABSTRAK	vi
LIST OF TABLES × LIST OF FIGURES × LIST OF ABBREVIATIONS × LIST OF SYMBOLS × CHAPTER 1: INTRODUCTION × 1.1 Wireless Sensor Networks 1 1.2 Energy Efficient Wireless Sensor Network Design A SABAH 2 1.3 Scope of Work 3 1.4 Research Objectives 4 1.4.1 To Model and Simulate the Energy Efficient Adaptive 4 Clustering Network 1 1.4.2 To Design and Compute the Particle Swarm Optimisation 4 Based Cluster Heads Selection Algorithm 1 1.4.3 To Evaluate and Assess the Enhanced Particle Swarm 5 Optimisation Based Cluster Heads Selection Algorithm 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 7 NETWORKS 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Architecture 8 2.2.1 Wireless Sensor Network Classifications 10 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 13 2.3.1 Various Types of Low Energy Adaptive Clustering 13 Hierarchy (LEACH) Protocols	LIST OF CONTENTS	vii
LIST OF FIGURES xii LIST OF ABBREVIATIONS xv LIST OF SYMBOLS xviii CHAPTER 1: INTRODUCTION 1.1 Wireless Sensor Networks 1 1.2 Energy Efficient Wireless Sensor Network Design A SABAH 2 1.3 Scope of Work 3 1.4 Research Objectives 4 1.4.1 To Model and Simulate the Energy Efficient Adaptive 4 Clustering Network 1 1.4.2 To Design and Compute the Particle Swarm Optimisation 4 Based Cluster Heads Selection Algorithm 1 1.4.3 To Evaluate and Assess the Enhanced Particle Swarm 5 Optimisation Based Cluster Heads Selection Algorithm 5 1.5 Thesis Outline 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 7 NETWORKS 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Architecture 8 2.2.1 Wireless Sensor Network Classifications 10 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 13 2.3.1 Various Types of Low Energy Adaptive Clustering 13 Hierarchy (LEACH) Protocols	LIST OF TABLES	x
LIST OF ABBREVIATIONS XV LIST OF SYMBOLS Xviii CHAPTER 1: INTRODUCTION 1 1.1 Wireless Sensor Networks 1 1.2 Energy Efficient Wireless Sensor Network Design A SABAH 2 1.3 Scope of Work 3 1.4 Research Objectives 4 1.4.1 To Model and Simulate the Energy Efficient Adaptive 4 Clustering Network 1 1.4.2 To Design and Compute the Particle Swarm Optimisation 4 Based Cluster Heads Selection Algorithm 1 1.4.3 To Evaluate and Assess the Enhanced Particle Swarm 0 Optimisation Based Cluster Heads Selection Algorithm 5 1.5 Thesis Outline 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 7 NETWORKS 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Architecture 8 2.2.1 Wireless Sensor Network Classifications 10 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 13 2.3.1 Various Types of Low Energy Adaptive Clustering 13 Hierarchy (LEACH) Protocols	LIST OF FIGURES	xii
LIST OF SYMBOLS xviii CHAPTER 1: INTRODUCTION 1 1.1 Wireless Sensor Networks 1 1.2 Energy Efficient Wireless Sensor Network Design A ABH 2 1.3 Scope of Work 3 1.4 Research Objectives 4 1.4.1 To Model and Simulate the Energy Efficient Adaptive 4 Clustering Network 1 1.4.2 To Design and Compute the Particle Swarm Optimisation 4 Based Cluster Heads Selection Algorithm 1 1.4.3 To Evaluate and Assess the Enhanced Particle Swarm 5 Optimisation Based Cluster Heads Selection Algorithm 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR 7 NETWORKS 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Architecture 8 2.2.1 Wireless Sensor Network Classifications 10 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 13 2.3.1 Various Types of Low Energy Adaptive Clustering 13 Hierarchy (LEACH) Protocols	LIST OF ABBREVIATIONS	xv
CHAPTER 1: INTRODUCTION 1 1.1 Wireless Sensor Networks 1 1.2 Energy Efficient Wireless Sensor Network Design STA SABAH 2 1.3 Scope of Work 3 1.4 Research Objectives 4 1.4.1 To Model and Simulate the Energy Efficient Adaptive Clustering Network 4 1.4.2 To Design and Compute the Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 4 1.4.3 To Evaluate and Assess the Enhanced Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 5 1.5 Thesis Outline 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR NETWORKS 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Architecture 8 2.2.1 Wireless Sensor Network Classifications 10 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 13 2.3.1 Various Types of Low Energy Adaptive Clustering Hierarchy (LEACH) Protocols 13	LIST OF SYMBOLS	xviii
1.5 Thesis Outline 5 CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR NETWORKS 7 2.1 An Overview of Wireless Sensor Networks 7 2.2 Wireless Sensor Network Architecture 8 2.2.1 Wireless Sensor Node Structure 9 2.2.2 Wireless Sensor Network Classifications 10 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 13 2.3.1 Various Types of Low Energy Adaptive Clustering 13 Hierarchy (LEACH) Protocols 13	 CHAPTER 1: INTRODUCTION 1.1 Wireless Sensor Networks 1.2 Energy Efficient Wireless Sensor Network Design A SABAH 1.3 Scope of Work 1.4 Research Objectives 1.4.1 To Model and Simulate the Energy Efficient Adaptive Clustering Network 1.4.2 To Design and Compute the Particle Swarm Optimisation Based Cluster Heads Selection Algorithm 1.4.3 To Evaluate and Assess the Enhanced Particle Swarm 	1 2 3 4 4 4 5
CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR NETWORKS72.1An Overview of Wireless Sensor Networks72.2Wireless Sensor Network Architecture82.2.1Wireless Sensor Node Structure92.2.2Wireless Sensor Network Classifications102.3Hierarchical Routing Protocols in Wireless Sensor Networks132.3.1Various Types of Low Energy Adaptive Clustering13Hierarchy (LEACH) Protocols13	Optimisation Based Cluster Heads Selection Algorithm 1.5 Thesis Outline	5
2.1An Overview of Wireless Sensor Networks72.2Wireless Sensor Network Architecture82.2.1Wireless Sensor Node Structure92.2.2Wireless Sensor Network Classifications102.3Hierarchical Routing Protocols in Wireless Sensor Networks132.3.1Various Types of Low Energy Adaptive Clustering13Hierarchy (LEACH) Protocols13	CHAPTER 2: REVIEW OF OPTIMISATION IN WIRELESS SENSOR	7
2.3.2 Various Types of Hierarchical Routing Protocols 18	 2.1 An Overview of Wireless Sensor Networks 2.2 Wireless Sensor Network Architecture 2.2.1 Wireless Sensor Node Structure 2.2.2 Wireless Sensor Network Classifications 2.3 Hierarchical Routing Protocols in Wireless Sensor Networks 2.3.1 Various Types of Low Energy Adaptive Clustering Hierarchy (LEACH) Protocols 2.3.2 Various Types of Hierarchical Routing Protocols 	7 8 9 10 13 13

2.4	Artificial Intelligence Methods 2.4.1 Fuzzy Logic	19 19
	2.4.2 Genetic Algorithm	24
25	2.4.3 Particle Swarm Optimisation Chapter Summary	25
2.5		25
СНАР	PTER 3: COMPUTATIONAL INTELLIGENCE IN HIERARCHICAL CLUSTERING	31
3.1	Introduction	31
3.2	Research Methodology of the Computational Intelligence in Hierarchical Clustering	31
3.3	Parameter Settings of Simulation Model	33
	3.3.1 Path Loss Model	36
2.4	3.3.2 Data Aggregation Model	38
3.4	3.4.1 Low Energy Efficient Adaptive Clustering Hierarchy Protocol	38 39
	3.4.2 Setup-Phase	39
	3.4.3 Steady State-Phase	42
3.5	Fuzzy Logic and Particle Swarm Optimisation in Cluster Heads Selection	43
	3.5.1 Fuzzy Logic Cluster Heads Selection	43
2.6	3.5.2 Particle Swarm Optimisation Cluster Head Selection	47
3.6	Chapter Summary	50
СНАР	PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL	52
СНАР 4.1	PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction	52 52
CHAP 4.1 4.2	PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model	52 52 52
CHAP 4.1 4.2	PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol	52 52 52 54
CHAP 4.1 4.2	PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol	52 52 52 54 54
CHAP 4.1 4.2	PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol	52 52 52 54 54 56
CHAP 4.1 4.2 4.3	PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model	52 52 54 54 56 57
CHAP 4.1 4.2 4.3	PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics	52 52 54 54 56 57 58 58
 CHAP 4.1 4.2 4.3 4.4 	PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary	52 52 54 54 56 57 58 58 58 64
 CHAP 4.1 4.2 4.3 4.4 	 PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary 	52 52 54 54 56 57 58 58 64
 CHAP 4.1 4.2 4.3 4.4 CHAP 	 PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary PTER 5: IMPLEMENTATION OF PARTICLE SWARM OPTIMISATION IN WIRELESS SENSOR NETWORKS 	52 52 54 54 56 57 58 58 64 65
 CHAP 4.1 4.2 4.3 4.4 CHAP 5.1 	 PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary PTER 5: IMPLEMENTATION OF PARTICLE SWARM OPTIMISATION IN WIRELESS SENSOR NETWORKS Introduction	52 52 54 54 56 57 58 58 64 65
 CHAP 4.1 4.2 4.3 4.4 CHAP 5.1 5.2 	 PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary PTER 5: IMPLEMENTATION OF PARTICLE SWARM OPTIMISATION IN WIRELESS SENSOR NETWORKS Introduction Computation of Fitness Function	52 52 54 54 56 57 58 58 64 65 65 65
 CHAP 4.1 4.2 4.3 4.4 CHAP 5.1 5.2 	 PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary PTER 5: IMPLEMENTATION OF PARTICLE SWARM OPTIMISATION IN WIRELESS SENSOR NETWORKS Introduction Computation of Fitness Function 5.2.1 Effect of Sensor Node Energy	52 52 54 54 56 57 58 58 64 65 65 66 66
 CHAP 4.1 4.2 4.3 4.4 CHAP 5.1 5.2 	 PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL <i>(LUSTER BASED ROUTING PROTOCOL)</i> Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary PTER 5: IMPLEMENTATION OF PARTICLE SWARM <i>OPTIMISATION IN WIRELESS SENSOR NETWORKS</i> Introduction Computation of Fitness Function 5.2.1 Effect of Sensor Node Energy 5.2.2 Effect of Cluster Density 	52 52 54 54 56 57 58 64 65 65 66 66 66 68
 CHAP 4.1 4.2 4.3 4.4 CHAP 5.1 5.2 5.3 	 PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL <i>(LUSTER BASED ROUTING PROTOCOL)</i> Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary PTER 5: IMPLEMENTATION OF PARTICLE SWARM <i>OPTIMISATION IN WIRELESS SENSOR NETWORKS</i> Introduction Computation of Fitness Function 5.2.1 Effect of Sensor Node Energy 5.2.2 Effect of Cluster Density Development of Particle Swarm Optimisation for Cluster Heads Selection	52 52 54 54 56 57 58 58 64 65 65 66 66 68 69
 CHAP 4.1 4.2 4.3 4.4 CHAP 5.1 5.2 5.3 	 PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary PTER 5: IMPLEMENTATION OF PARTICLE SWARM OPTIMISATION IN WIRELESS SENSOR NETWORKS Introduction S.2.1 Effect of Sensor Node Energy 5.2.2 Effect of Cluster Density Development of Particle Swarm Optimisation for Cluster Heads Selection 5.3.1 Particle Representation 	52 52 54 54 56 57 58 64 65 65 66 66 66 68 69 71
 CHAP 4.1 4.2 4.3 4.4 CHAP 5.1 5.2 5.3 	 PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary PTER 5: IMPLEMENTATION OF PARTICLE SWARM OPTIMISATION IN WIRELESS SENSOR NETWORKS Introduction Computation of Fitness Function 5.2.1 Effect of Sensor Node Energy 5.2.2 Effect of Cluster Density Development of Particle Swarm Optimisation for Cluster Heads Selection 5.3.1 Particle Representation 5.3.2 Particle Trajectories 	52 52 54 54 56 57 58 58 64 65 65 66 66 66 68 69 71 74
 CHAP 4.1 4.2 4.3 4.4 CHAP 5.1 5.2 5.3 	 PTER 4: MODELLING AND SIMULATION OF HIERARCHICAL CLUSTER BASED ROUTING PROTOCOL Introduction Modelling of Network Model 4.2.1 LEACH Protocol 4.2.2 Random Cluster Heads selection Protocol 4.2.3 Direct Transmission Protocol Simulation of Network Model 4.3.1 Performance Metrics 4.3.2 Evaluation and Assessment of LEACH Protocol Chapter Summary PTER 5: IMPLEMENTATION OF PARTICLE SWARM OPTIMISATION IN WIRELESS SENSOR NETWORKS Introduction Computation of Fitness Function 5.2.1 Effect of Sensor Node Energy 5.2.2 Effect of Cluster Density Development of Particle Swarm Optimisation for Cluster Heads Selection 5.3.1 Particle Representation 5.3.2 Particle Trajectories 5.3.3 Geometric Representation 	52 52 54 54 56 57 58 58 64 65 65 66 66 66 68 69 71 74 74 76 79

	Ontimi	action Algorithm	
		Salion Algonum	70
	542	Fulless Weight Selection	79
	5.4.2	Evaluation of the Developed Particle Swarm Optimication	00
	5.4.3	Cluster Heads Selection System	82
5.5	Chapte	r Summary	85
CHAP	TER 6:	ENHANCEMENT OF PARTICLE SWARM OPTIMISATION FOR CLUSTER HEADS SELECTION	86
6.1	Introdu	uction	86
6.2	Impact	of Particle Swarm Optimisation Variables	86
	6.2.1	Impact of the Inertia Weight	87
	6.2.2	Impact of the Acceleration Coefficients	88
6.3	Develo	pment of Enhanced Particle Swarm Optimisation Algorithm	90
	for Clu	ster Heads Selection	
	6.3.1	Integration of Fuzzy Logic into Particle Swarm	91
	6.3.2	Integration of Particle Reselection Mechanism into	97
6.4	Circula	Parucie Swarm Opumisation Algorithm	00
0.4	Simula	tion of the Cluster Heads Selection Algorithm	99
	6.4.1	Evaluation and Assessment of the Developed Clustering	101
	642	Algorithms	107
	6.4.2	Evaluation and Assessment or the Developed Clustering	107
C F	CI (19)	Algorithms under Different Network Topologies	100
6.5	Chapte	er Summary	109
	Z		110
CHAP	TER 7:	CONCLUSIONS	110
7.1	Summ		110
7.2	Achiev	ements North Children Standard	111
7.3	Future	Works	112
REFE	RENCE		113
APPE		MATLAB SOURCE CODE FOR LEACH	119
APPE		: MATLAB SOURCE CODE FOR PSO	122
APPE		: MATLAB SOURCE CODE FOR FLCH	125
			170
AFFE		HAILAD SOURCE CODE FOR FPSO	120
APPE	NDIX E	: PUBLICATIONS	131

LIST OF TABLES

		Page
Table 2.1	Literature comparison of various types of LEACH protocols	17
Table 2.2	Literature comparison of particle swarm optimisation algorithm for cluster heads selection	29
Table 3.1	Radio model characteristics I	36
Table 3.2	Radio model characteristics II	37
Table 3.3	Radio model characteristics III	38
Table 3.4	Parameter description	40
Table 3.5	Fuzzy rule base	45
Table 4.1	Description of cluster based routing protocol	54
Table 4.2	Pseudo code for LEACH algorithm	54
Table 4.3	Pseudo code for random cluster heads selection algorithm	55
Table 4.4	Pseudo code for direct transmission algorithm	56
Table 4.5	Parameter settings for LEACH	58
Table 5.1	Distance between cluster heads in two different particles	73
Table 5.2	Parameter settings for particle swarm optimisation	78
Table 5.3	Number of first node dies round for different topologies and different alpha values	80
Table 5.4	Fitness values of cluster heads formations	82
Table 6.1	Simulation results of first node dies round with fixed inertia weight	88
Table 6.2	Simulation results of first node dies round with fixed acceleration coefficients	89
Table 6.3	Fuzzy rule base	96
Table 6.4	Pseudo code for particle reselection mechanism	98

- Table 6.5Parameter settings for fuzzy logic based particle swarm99optimisation
- Table 6.6Comparison of first node dies round108
- Table 6.7First node dies round improvement of hierarchical109clustering based routing protocol under various networktopologies

LIST OF FIGURES

		Page
Figure 2.1	Sensor nodes scattered in sensing field	8
Figure 2.2	Sensor node structure	9
Figure 2.3	Block diagram of Mica architecture	10
Figure 2.4	Flat network architecture	11
Figure 2.5	Hierarchical network architecture	12
Figure 2.6	Normalized total system energy dissipated versus the percent of nodes as cluster heads	14
Figure 2.7	Roadmaps of fuzzy logic system operation	20
Figure 2.8	The four elements in the operation of fuzzy logic	21
Figure 2.9	Architecture of wireless sensor networks	22
Figure 2.10	Distance between node A and other nodes within <i>dist</i>	23
Figure 2.11	Convergence of cost function of genetic algorithm and particle swarm optimisation	25
Figure 3.1	Flow chart of methodology RSITI MALAYSIA SABAH	32
Figure 3.2	Network topologies with different Seed values	33
Figure 3.3	Basic network topology I	34
Figure 3.4	Diagram of radio model	35
Figure 3.5	Cluster head threshold value over rounds	41
Figure 3.6	TDMA created by LEACH protocol	42
Figure 3.7	Time slot of data transmission stage in LEACH protocol	42
Figure 3.8	Membership function of the sensor node remaining energy	44
Figure 3.9	Membership function of the sensor node distance to the base station	44
Figure 3.10	Membership function of the chance to become cluster head	46

Figure 3.11	Centroid defuzzification method	46
Figure 3.12	Flow chart of particle swarm optimisation in cluster head selection	49
Figure 3.13	Schematic of geometrical illustration	50
Figure 4.1	Basic network topology II	53
Figure 4.2	Diagram of clustering protocol	55
Figure 4.3	Diagram of direct transmission protocol	56
Figure 4.4	Simulation of network topology	57
Figure 4.5	Simulation results of network lifetime over round	59
Figure 4.6	Simulation results of energy consumption over round	60
Figure 4.7	Network topology of direct protocol at round 11th	61
Figure 4.8	Simulation results of energy consumption over round	61
Figure 4.9	Simulation results of total data received at base station	63
Figure 4.10	Simulation results of number of cluster heads over round	64
Figure 5.1	Cluster heads selection based on the sensor nodes' remaining energy	67
Figure 5.2	Cluster heads selection based on the distance between cluster members and cluster head	68
Figure 5.3	Flow chart of particle swarm optimisation for cluster heads selection	71
Figure 5.4	Particles representation of five cluster heads in each particle	72
Figure 5.5	Cluster heads pairing of particle A and particle B	73
Figure 5.6	Geometric illustration of CHs pairing	74
Figure 5.7	Multi-layers memory structure used to store particles information	76
Figure 5.8	Schematic of geometrical illustration for cluster head	77
Figure 5.9	Six different cluster heads formations in the network	81

Figure 5.10	Simulation results of network lifetime over round with particle swarm optimisation	83
Figure 5.11	Simulation results of data received at the base station over round with particle swarm optimisation	84
Figure 5.12	Simulation results of energy consumption over round with particle swarm optimisation	85
Figure 6.1	Framework of fuzzy logic based particle swarm optimisation cluster heads selection algorithm	90
Figure 6.2	Block diagram of fuzzy logic	91
Figure 6.3	Geometric illustration of cluster head diversity	93
Figure 6.4	Membership function of particle diversity	93
Figure 6.5	Membership function of cluster head diversity	94
Figure 6.6	Membership function of inertia weight	94
Figure 6.7	Membership function of acceleration coefficient ratio	95
Figure 6.8	Membership function of reselect chances	95
Figure 6.9	The graphic user interface of rule viewer	97
Figure 6.10	Particle life after reselect ERSITI MALAYSIA SABAH	98
Figure 6.11	Diagram of fuzzy logic based cluster heads selection	100
Figure 6.12	Block diagram of various methods comparison	101
Figure 6.13	Simulation results of network lifetime over round	102
Figure 6.14	Simulation results of energy consumption over round	104
Figure 6.15	Simulation results of energy consumption over round (Round 15-65)	105
Figure 6.16	Simulation results of data received at base station over round	106

LIST OF ABBREVIATIONS

ABC	Artificial Bee Colony
ADC	Analog to Digital Converter
AI	Artificial Intelligence
ALEACH	Adaptive Low Energy Adaptive Clustering Hierarchy
APTEEN	Adaptive Periodic Threshold Sensitive Energy Sensor Network
BS	Base Station
СН	Cluster Head
CHEF	Cluster Head Election with Fuzzy Logic
CPU	Central Processing Unit
DWEHC	Distribution Weight-Based Energy Efficient Hierarchical Clustering
EA	Evolutionary Algorithm
EECF	Energy-Efficient Clustering
Eu	Euclidean Distance
E-LEACH	Energy-Low Energy Adaptive Clustering Hierarchy
FIS	Fuzzy Inference Engine
FL	Fuzzy Logic
FLCH	Fuzzy Logic Cluster Heads Selection
FND	First Node Dies
FPSO	Fuzzy based Particle Swarm Optimisation
GA	Genetic Algorithm
GA-ABC	Genetic Algorithm Artificial Bee Colony
GSM	Global System for Mobile Communications
GUI	Graphic User Interface
HEED	Hybrid Energy Efficient Distribution Clustering

H- PEGASIS	Hierarchical-Power-Efficient Gathering in Sensor Information System
ID	Identification
1/0	Input and Output
LEACH	Low Energy Adaptive Clustering Hierarchy
LEACH-C	Low Energy Adaptive Clustering Hierarchy-Centralized
LEACH-D	Low Energy Adaptive Clustering Hierarchy-Distribution
LEACH-F	Low Energy Adaptive Clustering Hierarchy-Fixed
LEACH-FL	Low Energy Adaptive Clustering Hierarchy-Fuzzy Logic
LEACH-TM	Low Energy Adaptive Clustering Hierarchy-Thrust Multi-Path
LND	Last Node Dies
МС	Momentum Factor
M-LEACH	Multihop-Low Energy Adaptive Clustering Hierarchy
MTE	Minimum Transmission Energy
NP-Hard	Non-Deterministic Polynomial-Time Hard
PSO	Particle Swarm Optimisation
PSO-DH	Particle Swarm Optimisation-Double Cluster Heads
PSO-SSM	Particle Swarm Optimisation-Supervisor Student Model
PSO-TVAC	Particle Swarm Optimisation-Time Varying Acceleration Coefficients
PSO-TVIW	Particle Swarm Optimisation-Time Varying Inertia Weight
PEGASIS	Power-Efficient Gathering in Sensor Information System
RF	Radio Frequency
ROF	Radio Over Fiber
RSS	Radio Signal Strength
SI	Swarm Intelligence

SNR	Signal-to-Noise Ratio
TDMA	Time Division Medium Access
TEEN	Threshold Sensitive Energy Sensor Network
ТРС	Transmission Power Control
UMTS	Universal Mobile Telecommunications System
WSN	Wireless Sensor Network

LIST OF SYMBOLS

- γ Weight of Fitness Function
- *c*₁ Acceleration Coefficient of Cognitive Component
- *c*₂ Acceleration Coefficient of Social Component
- Co Fitness Cost
- D Dimension
- de Transmit Distance
- *dist* Average radius of the preferred cluster
- *E* Sensor Node Energy
- *E*₀ Initial Sensor Node Energy
- *E*_{DA} Data Aggregation Model
- Eu Euclidean Distance
- *f*₁ **Fitness** Value of Energy Consideration
- f₂ Fitness Value of Cluster Size Consideration
- G Set of Non-Cluster Heads TI MALAYSIA SABAH
- *iter* Current Iteration
- *i* Particle Number
- I Total Number of Particles
- k Cluster
- K Total Number of Clusters
- ke Data Packet Size
- max _iter Maximum Number of Iteration
 - *n* Number of Sensor Node
 - *N* Total Available Sensor Nodes
 - *p* Desire Percent of Cluster Heads

- P_G Global Best Position
- *P_i* Previous Best Position for particle *i*
- r Current Round
- *r*₁ Random Number Generator 1
- *r*₂ Random Number Generator 2
- t Time (second)
- *T* Cluster Head Selection Threshold
- v Particle Velocity
- x Particle Position
- w Inertia Weight

CHAPTER 1

INTRODUCTION

1.1 Wireless Sensor Networks

Wireless sensor network (WSN) has been announced as one of the technologies that will change the world (Technology Review, 2003). A sensor node equipped with processing unit, communication unit, sensing unit and power unit is capable to monitor the environmental parameters and further deliver to the end users. In addition, hundreds and thousands of tiny smart sensors nodes deployed in a sensing area can form a powerful WSN. The advance in WSNs technology will change the way we live and interact with the physical world (Zheng and Jamalipour, 2009). Like the internet that linked the world together, billion of sensor nodes all over the world have the ability to link the physical environment to the digital world together. For example, the WSN application allows the end user from one side of the globe to access into weather station located at the opposite site for real-time climate monitoring purpose.

UNIVERSITI MALAYSIA SABAH

At 1900s, Defense Advanced Research Project Agency (DARPA) had carried out a series of WSN researches (Chong and Kumar, 2003). Due to the technologies limitation at that time, the development of a small size sensor node is a challenging task. Recent advance in microelectromechanical systems (MEMS) has lead to the emergence of WSNs. The advanced in MEMS technology, has significantly reduce the size and development cost of a sensor node. WSN shown wide range of potential applications therefore various studies have been carried out to improve the constraints of WSN.

Sensor nodes have to deploy over the interest area to continuously monitor the physical phenomenon for a few months or even a year. The monitoring operation requires sensor nodes to have a big capacity of power storage for operating at a longer period. But most of the time, a sensor node only equipped with limited power capacity due to its small size (Hu and Cao, 2009). The problem becomes significant when the sensor nodes are deployed in hazardous area which replacing the battery become impossible and impractical. Therefore, it is important to design an energy efficient WSN.

1.2 Energy Efficient Wireless Sensor Network Design

Many researchers are investigating the ways to improve the energy efficiency and power awareness in WSN design. To achieve low-power consumption at the sensor node, it is important to have intelligent power management and low-power circuit design (Zhu *et al.*, 2009; Chen *et al.*, 2009). Moreover, apart from the main power source, the integration of charging system provides the sensor node a secondary power source. Secondary power source can be harvested from solar, vibration, wind and so on.

Although it can achieve low power consumption at the node level by designing a low-power circuit, there is another way to improve the energy efficiency in WSN. The energy efficiency in WSN can be improved via proper network layer design. Network layer is responsible for data routing in the network. In WSN, the energy consumed for communication is much higher than other tasks such as sensing and computing (Feng *et al.*, 2002). For example, the energy needed to transmit one bit of data for 100 m is equal to the energy consumed to execute 3000 instructions (Zheng and Jampolipour, 2009; Pottie and Kaiser, 2000). Therefore, by focusing on the communication activity can optimise the energy utilization in WSN.

Hierarchical clustering based routing protocol has been introduced to enhance the network performance while reducing the energy consumption (Akkaya and Younis, 2005). Basically, in clustering based routing protocol, sensor nodes are grouped into few clusters. By only allowing the clusters leaders and cluster heads (CHs) to directly transmit aggregated data to the base station (BS), it reduces the overall energy consumption of the network. Conventional fixed clusters protocol experienced faster energy draining in CHs due to uneven heavy workload distribution.

2

Heinzelman *et al.* (2000) proposed low energy adaptive clustering hierarchy (LEACH) protocol to randomly select the CHs and evenly distribute the workload by rotating the CHs. Since LECAH protocol select CHs based on probability model, therefore the selected CHs may not be in the desire location. The selected CHs may locate near to one another, or vice versa. At the same time, there could be none or too many CHs being selected. This phenomenon is mainly due to the lack of global information used to select the CHs.

To improve the LEACH protocol, lightweight heuristic optimisation algorithm like particle swarm optimisation (PSO) is selected as the CHs selection algorithm. PSO algorithm can search iteratively for better CHs formation that has lowest energy consumption in current situation. The consideration of sensor node remaining energy and cluster size in CHs selection can result in longer network lifetime. It is challenging to define the proper parameter (inertia weight and acceleration coefficients) values for PSO algorithm and the solution may easily trapped in local maxima.

It is time consuming and troublesome to set optimum parameter values for different network topologies. Therefore, in this work fuzzy logic (FL) based PSO (FPSO) is introduced as CHs selection algorithm. The uses of FL can control the trade-off balance of exploration and exploitation of PSO algorithm to seek for better CHs formation. In addition, the introduction of particle reselection mechanism can reduce the chances of PSO algorithm for being trapped at local maxima.

1.3 Scope of Work

This research focuses on the control and computation of PSO parameters to enhance the performance of PSO based CHs selection in prolonging the network lifetime. The work is initiated with the review of the optimization in WSN energy utilization. The review provides information about the present and past researches plus the trend of energy efficient WSN. The hierarchical clustering based routing protocol is modelled and simulated in MATLAB m-file. The developed model is mainly focused on the energy consumption of the network operations. Swarm intelligence (SI) will be chosen as CHs selection algorithm that is being conducted at the base station (BS). Adaptive SI approach is designed to improve the original SI adaptability for better of CHs formation searching.

1.4 Research Objectives

The objective of this research is to optimise the energy utilisation in the hierarchical network to prolong the first node dies (FND) round. Optimisation of energy utilisation can be achieved through proper selection of CHs formation. LEACH protocol is constructed as simulation model of hierarchical clustering based protocol. PSO based clustering algorithm is developed to select suitable CHs formation for each round. FL is adapted into the PSO algorithm for better control of the trade-off balance in search space exploration and exploitation. The developed fuzzy PSO (FPSO) CHs selection algorithm is tested in various simulations to investigate the improvement of the network lifetime. The research objectives can be achieved through the following efforts:

1.4.1 To Model and Simulate the Energy Efficient Adaptive Clustering Network

LEACH protocol is selected as the study model in this research. Using the algorithm provided by Heinzelman *et al.* (2000), LEACH protocol energy model is constructed and written in MATLAB m-file coding. LEACH protocol simulation model has been developed to illustrate the similar characteristics of real LEACH protocol. The developed model is further enhanced with the additional of data aggregation model and path loss model. The used of these models in the simulation model can increase the similarity to the real application. This is important since the lack of these models considerations in the development cannot accurately calculate and represent the energy consumption during data aggregation process in the CH and long distance transmission losses for all the sensor nodes. Lastly, the performances of the developed LEACH protocol are observed and compared to the conventional direct transmission and random CHs selection methods.