POPULATION, ECOLOGY AND CONSERVATION OF BORNEAN ELEPHANTS IN SABAH, MALAYSIA

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAK

INSTITUTE FOR TROPICAL BIOLOGY AND CONSERVATION UNIVERSITI MALAYSIA SABAH 2014

POPULATION, ECOLOGY AND CONSERVATION OF BORNEAN ELEPHANTS IN SABAH, MALAYSIA

RAYMOND ALFRED @ JENRY

PERPUSTAKAAN INIVERSITI MALAYSIA SABA

UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE FOR TROPICAL BIOLOGY AND CONSERVATION UNIVERSITI MALAYSIA SABAH 2014

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL:POPULATION, ECOLOGY AND CONSERVATION OF BORNEANELEPHANTS IN SABAH, MALAYSIA

IJAZAH: DOCTOR OF PHILOSOPHY (ECOLOGY PROCESS)

Saya **<u>RAYMOND ALFRED @ JENRY</u>**, Sesi pengajian <u>2010 - 2014</u>, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD

SULIT

(Mengandungi maklumat TERHAD ditentukan oleh organisasi/badan di mana penyelidikan dijalankan

TIDAK TERHAD

Disahkan oleh,

(RAYMOND ALFRED @ JENRY)

NURULAIN BINTI ISMAIL LIBRARIAN VERSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

(Assoc. Prof. Dr. Hamid Abdul Ahmad) Penyelia Utama

Tarikh: 20 Ogos 2014

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged. The work in this thesis was developed between November 2007 and June 2012. I hereby give consent for my thesis, if accepted, to be made available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

19 June 2014

Raymond Alfred @ Jenry Student No:PP20109111

CERTIFICATION

NAME	2	RAYMOND ALFRED @ JENRY
MATRIC NO.	:	PP20109111
TITLE	:	POPULATION, ECOLOGY AND CONSERVATION OF
		BORNEAN ELEPHANTS IN SABAH, MALAYSIA
DEGREE	-:	DOCTOR OF PHILOSOPHY (ECOLOGY PROCESS)
VIVA DATE	:	20 MAC 2014

DECLARED BY;

1. MAIN SUPERVISOR

Associate Professor Dr. Hamid Abdul Ahmad

Signature

2. CO-SUPERVISOR

Associate Professor Dr. Phua Mui How

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my two supervisors, Associate Professor Dr. Hamid Abdul Ahmad and Associate Professor Dr. Phua Mui How, for their help, guidance, encouragement, support, friendship, patience and dedication during the last six years.

I am indebted to the Director of Sabah Wildlife Department, Dr. Laurentius Ambu and Deputy Director Mr. Augustine Tuuga and not forgetting the former Director, the late Mr Mahedi Andau, for their help and support during the course especially when I started the elephant conservation project in Sabah in year 2000. This study would not have been possible without the kind permissions and supports from Sabah Forestry Department (SFD) and Sabah Foundation (SF). My gratitude also goes to Datuk Sam Mannan (Director of SFD) and Dr. Waidi Sinun (Group Manager, Conservation and Environmental Protection Division, SF) for granting access to forest reserves managed by them. I am also grateful to Mr. John Sugau for his assistance and support especially in plant identification.

This study was also made possible with the financial support provided by World Wildlife Fund for Nature (WWF-Malaysia), including WWF's network such as WWF-US (United State), WWF-NL (Netherland), United State Fish and Wildlife Services (USFWS), WWF-DE (Germany) and WWF-Switzerland. All fieldwork expenses and equipment (satellite tracking devices), salary and allowance for manpower, plus a 4WD vehicle were fully funded by WWF.

I would like to extend my gratitude to Datuk Dr. Junaidi Payne and Prof. Raman Sukumar for their valuable advice during my study, and my two smart and hardworking programme assistants, Jabanus Miun and Engelbert Dausip for their help, support and friendship especially on data collection during the survey and tracking activities.

My sincere thanks also go to various members, past and present, of the WWF-Malaysia for their support. Not forgetting, my sincere thanks to AREAS's Coordinator, Dr. Christy Williams and our former Borneo's programme director, Dr. Geoffrey Davison for their guides and advices.

Finally, special thanks to my family for supporting me throughout my PhD course especially my beloved wife (June) and my daughter (Allyssa Jane), my twin brother (Rayner) and his family, my mother (Elizabeth) and father (Alfred), my mother in-law (Juliana) and father in-law (Gerald), without whose love and support this would not have been possible.

Raymond Alfred @ Jenry

ABSTRACT

Today, the loss of habitat has been one of the major causes of the decline in the Asian elephant population in Asia. In order to develop a conservation strategy for the Bornean elephant, it is important to know the ecology, habitat need and status of the elephant population size in the forest in Sabah. This study is the first ever effort to study the overall population and ecology of Bornean Elephants in Sabah. Five adult female elephants were immobilized and their neck collars were fitted with tracking devices. The sizes of their home range and movement patterns were determined using location data gathered from a satellite tracking system and were analyzed by using the Minimum Convex Polygon and Harmonic Mean methods. The home range size for a period of one year in a non-fragmented forest was estimated to be 150 km² to 200 km² and in a fragmented forest was 256 km². The ranging behavior for the elephants was influenced by the size of the natural forest habitat and the availability of permanent water sources. 140 food plants species taken by elephants were recorded through direct observation. Five main food plants for Bornean elephants includes (i) Palmae, (ii) Moraceae, (iii) Euphorbiaceae, (iv) Leguminoceae, and (v) Graminaeae. Out of 140 plants and trees species consumed by the elephant, at least 35% is affected by silviculture activities while 14.3% of the trees are categorized as a commercial tree. Therefore, at least 49.3 % from 140 plants and trees species could be affected by the forestry activities such as harvesting and silviculture activities. it is suggested that the Borneon elephants in the rainforests are classified as both, browsers and grazers. The diversity of food plants is lower in primary forest and poor forest (treeless habitat), and is higher in forest less degraded and moderate forest. Although Sabah still has a continuous forest landscape in the central part of the state, not all of the area is suitable elephant habitat. This study provides a systematic approach for identification of key habitat for large mammals in a large area. The survey indicates that approximately 2,040 (95% CI: 1,184-3,652) elephants remain in the five main ranges in Sabah, with the largest population being in the unprotected central forests. Elephant density was highest in ranges where habitat has been removed and elephants are concentrated in remaining forest areas. These ecological and population data provide new baseline data to support the implementation of Bornean elephant conservation programme in Sabah.

ABSTRAK

PENDUDUK, EKOLOGI DAN PEMULIHARAAN GAJAH BORNEO DI SABAH, MALAYSIA

Hari ini, kehilangan hutan habitat adalah salah satu faktor yang menyebabkan populasi gajah di Asia berkurang. Untuk menyediakan plan strategi pemuliharaan dan pengurusan habitat untuk Gajah Borneo, adalah menjadi satu keperluan yang penting untuk mengetahui status ekologi, keperluan habitat dan populasi Gajah di Sabah. Penyelidikan ini ada usaha penyelidikan yang pertama untuk mengkaji populasi menyeluruh dan ekologi gajah-gajah Borneo di Sabah. Lima gajah betina telah ditangkap dan dilengkapi dengan alat kolar satelit. Saiz pengunaan habitat dan juga corak pergerakan gajah telah diselidik dengan menggunakan data-data lokasi yang diperolehi daripada sistem penjejakan data satelit. Data-data ini diproses dan dianalisa dengan menggunakan perisian sistem informasi geografi dengan menggunakan kaedah "Minimum Convex Polygon" dan juga "Harmonic Mean". Pengunaan habitat oleh gajah di kawasan hutan luas telah dikenalpasti iaitu dengan keluasan 150 km² ke 200 km² dan dalam kawasan habitat yang kecil dan terhad, saiz penggunaan habitat oleh gajah adalah 256 km². Sejumlah 140 spesis jenis pokok atau vegetasi makanan yang telah dikenalpasti, dan lima jenis makan gajah yang utama, terdiri daripada (i) Palmae, (ii) Moraceae, (iii) Euphorbiaceae, (iv) Leguminoceae, and (v) Graminaeae. Dalam 140 jenis spesis pokok dan vegetasi, 35 peratus daripada jumlah spesis pokok, terlibat dalam proses activiti silvikultur perhutanan dan 14.3% daripada jumlah species pokok, mempunyai nilainilai kormersial. Gajah borneo juga telah dikenalpasti sebagai "browsers" dan "grazers". Kepelbagaian spesis makanan gajah di hutan yang tidak diganggu dan juga kawasan hutan tidak berpokok adalah kurang berbanding dengan kawasan hutan yang dibalak secara mampan. Walaupun Sabah masih mempunyai hutan yang luas tetapi kawasan hutan yang sesuai untuk gajah adalah terhad dan tertumpu kepada tanah-tanah hutan yang rendah, di mana sumber air yang banyak dan senang didapati. Jumlah populasi gajah yang dikenalpasti melalui kerja-kerja penyelidikan yang sistematik ini, adalah 2,040 (95% CI: 1,184-3,652). Jumlah populasi gajah ini adalah berdasarkan kerja-kerja penyelidikan di lima kawasan habitat gajah di Sabah. Data-data ekologi dan populasi gajah yang diperolehi daripada penyelidikan ini sangat penting sebagai data baseline dan panduan dalam menialankan program konservasi gajah di Sabah pada masa akan datang

LIST OF CONTENTS

			Page
TITL	E		i
DECL	ARATI	ON	ii
CERT	IFICA	TION	iii
ACKN	OWLE	DGEMENT	iv
ABST	RACT		v
ABS7	RAK		vi
LIST	OF CO	NTENTS	vii
LIST	OF TAI	BLES	xiii
LIST	OF FIG	SURES	xvi
LIST	OF DI/	AGRAMS	XX
LIST	OF MA	PS	xxi
LIST	OF AB	BREVATIONS	xxii
CHAD	TED 1	: INTRODUCTION	
1.1	Introd		1
1.1			1
		ervie <mark>w of Asia</mark> n Elephant Elephant in Sabah (Malaysian part of Borneo)	1
1.3 1.4			3
	Motiva		4
1.5		rch Objectives	6
1.6		rch Strategy	6
1.7		rch Contribution	8
1.8 1.9		organisation ary of Research Methodology	9 10
1.9	1.9.1	Studying the Home Ranges and Ranging Behavior of The	10
	1.9.1	Bornean Elephant	10
	1.9.2	Studying The Feeding Behavior Through Direct Observation	11
	1.9.2		11
	1.9.5	Studying The Abundance Assessment Of Food Plants In The Rainforest Habitat	12
	1.9.4	Studying The Habitat Suitability	13
	1.9.5	Studying The Density And Population Estimation	14

CHAI	PTER 2: LITERATURE REVIEW	16
2.1	Introduction	16
2.2	Asian Elephant	16
	2.2.1 The Study Animal	16
	2.2.2 Description	18
	2.2.3 The Origin	18
	2.2.4 Distribution and Ecology	19
	2.2.5 Elephant Family Life	22
	2.2.6 Social Groups	23
	2.2.7 Social Interactions	24
	2.2.8 Social Communications	28
	2.2.9 Feeding and Migration Behaviour	28
	2.2.10 Legal Status	28
2.3	Elephant Ranging & Habitat Use	29
	2.3.1 Dusting Behaviour	29
	2.3.2 Change in Habitat Environment	30
	2.3.3 Level of Disturbance, Availability of Food and Water Sources	31
	2.3.4 Availability of Forest and Lowland Areas	31
2.4	Size of Home Ranging UNIVERSITI MALAYSIA SABAH	32
2.5	Elephant Feeding Behavior	33
2.6	Home Ranging and Density Survey Method	34
2.7	Vegetation Mapping and Vegetation Sampling	35
2.8	Habitat suitability study	37
CHAF	PTER 3 : HOME RANGES AND RANGING BEHAVIOR OF BORNEAN	41
	ELEPHANTS	
3.1	Introduction	41
3.2	Methodology	43
	3.2.1 Tracking the elephant herds	43
	3.2.2 Capturing and tracking elephants	44
	3.2.3 Data compilation and analysis	47
3.3	Results	50
	3.3.1 Capturing and tracking elephants	50

	3.3.2	Sizes of home range	51
	3.3.3	Elephant movement patterns	59
	3.3.4	Habitat Utilization	62
3.4	Discus	sion	63
	3.4.1	Home ranges in continuous and Fragmented habitats.	63
	3.4.2	Minimum period of tracking to determine home range.	66
	3.4.3	Elephant movement in different forest habitat conditions.	66
	3.4.4	The effect of translocation on elephant population and ranging	67
		behavior.	
3.5	Summ	ary	68
CHAP	TER 4	: FEEDING BEHAVIOR OF BORNEAN ELEPHANTS	70
4.1	Introd	uction	70
4.2	Metho	dology	72
	4.2.1	Recording the plants consumed by elephants	72
	4.2.2	Affect of forestry activities upon elephant's food sources	74
4.3	Result	s s	74
	4.3.1	Scanning and Observation Patterns	74
	4.3.2	Feeding and Other Behavioral Pattern	76
	4.3.3	Plants and Parts Eaten	77
	4.3.4	Affect of forestry activities upon elephant's food sources	83
4.4	Discus	sion	83
	4.4.1	Feeding behavior and food selection	83
	4.4.2	Possible bias due to several factors	88
	4.4.3	Foraging Theory	89
4.5	Summ	ary	89
СНАР	TER 5:	THE ABUNDANCE ASSESSMENT OF ELEPHANT'S	91
		FOOD PLANTS IN RAINFOREST HABITAT	
5.1	Introd	uction	91
5.2	Metho	dology	93
	5.2.1	Classification of forest stratum	93
	5.2.2	Quantitative sampling of elephant's food plants in different	94

		forest stratum	
	5.2.3	Species diversity and density	95
5.3	Result	ts	96
	5.3.1	Classification of forest stratum	96
	5.3.2	Diversity of elephant's food plants in different forest tratum	100
	5.3.3	Density of elephant's food plants in different forest stratum	103
	5.3.4	Density of other elephant food plants in different forest	106
		stratum	
	5.3.5	Composition of elephant's food plants in different forest	106
		stratum	
5.4	Discus	ssion	108
	5.4.1	Quantitative study of the forest stratum classification	108
	5.4.2	Quantitative sampling of elephant's food plants each forest stratum	110
	5.4.3		112
	5.4.5	Diversity of the elephant's food plants in different forest stratum	112
	5.4.4	Abundance of elephant's food in different forest stratum,	115
		due to forest succession process	
5.5	Summ	UNIVERSITI MALAYSIA SABAH	116
CHA	PTER 6	HABITAT SUITABILITY STUDY FOR ELEPHANT	117
6.1	Introd	luction	117
6.2	Metho	dology	119
	6.2.1	Analytical Hierarchy Process	119
	6.2.2	Developing spatial data for ecological criterions	122
	6.2.3	Presence and absence survey on elephants in each	124
		ecological variable	
	6.2.4	Modeling Habitat Suitability Map for elephants	126
	6.2.5	Model verification and justification	127
6.3	Result	S	128
	6.3.1	Presence and absence survey in each Ecological variables	128
	6.3.2	Standardize the assigned value of the criterion for each	132
		ocological variable	

х

	6.3.3	Determine weighting system based on biological and	133
		ecological knowledge	
	6.3.4	Modeling the habitat suitability for elephants	134
	6.3.5	Model verification and justification	136
6.4	Discus	ssion	137
	6.4.1	Factors that could affect to habitat suitability assessment	137
		for elephant	
	6.4.2	Suitability of AHP in assessing key wildlife habitat	140
	6.4.3	Significant of the study output (habitat suitability study)	141
		in Forest Management	
6.5	Summ	hary	143
CHAF	TER 7	DENSITY AND POPULATION ESTIMATION	144
7.1	Introd	luction	144
7.2	Metho	dology	145
	7.2.1	Line transect survey	146
	7.2.2	Estimation of number of dung-piles per km ²	147
	7.2.3	Estimation of the defecation rate of elephants	149
	7.2.4	Estimation of the mean rate of dung decay SIA SABAH	149
	7.2.5	Estimation of elephant density	150
	7.2.6	Size of suitable habitat in landuse	151
7.3	Result	s	152
	7.3.1	Line transects Survey	152
	7.3.2	Estimation of defecation rate	153
	7.3.3	Estimation of mean rate of dung decay	153
	7.3.4	Estimation of elephant density in five main elephant ranges	154
	7.3.5	Elephant abundance in each forest reserve	155
7.4	Discus	ssion	157
	7.4.1	Estimation of mean rate of dung decay	157
	7.4.2	Defecation rate of elephants' dung	159
	7.4.3	Accuracy of population estimation using Dung Count Method	160
	7.4.4	Status of elephant's dung along survey Transect	161

	7.4.5	Elephant abundance due to forest conversion,	163	
		forest fragmentation and limitation of habitat space.		
	7.4.6	Estimate of Sabah's elephant population	165	
	7.4.7	Viable habitat and viable populations	166	
7.5	Summ	ary	166	
CHA	PTER 8:	CONCLUSION AND FUTURE WORKS	168	
8.1	Introd	uction	168	
8.2	Summ	ary of Thesis	170	
8.3	Conclu	usion and contribution into conservation plan for Bornean	173	
	Elepha	ants		
	8.3.1	Home range and ranging behavior	174	
	8.3.2	Feeding behavior	175	
	8.3.3	Abundance of food plants species in different forest condition	175	
	8.3.4	Habitat suitability map for elephants	176	
	8.3.5	Population size of elephants in Sabah	177	
8.4	Conse	rvation Management recommendations	178	UINI
	8.4.1	Promote Landscape Approach or protected areas networks	178	PERSI
	8.4.2	Establishment of forest corridors	178	RPUS
	8.4.3	Management of elephants in captivity	180	PERPUSTAKAAN RSITI MALAYSIA
	8.4.4	Management of human-elephants conflicts	181	SIA S
	8.4.5	Strengthening of policies and commitment to support	182	ABAH
		Conservation of Bornean Elephants		
	8.4.6	Benefit to local communities	183	
	8.4.7	Increasing public awareness	183	
	8.4.8	Increasing research on Bornean Elephants	183	
		a. Research on the role of mineral sources on the	183	
		Bornean elephant distribution		
		b. Research on mineral content in the food plant species	184	
		c. Research on home ranging for the male Elephants	184	

	d.	Research on population size estimation including	184
		demographic survey based on mark and recapture	
		using DNA from dung faeces	
	e.	Research on habitat evaluation based on additional	185
		ecological variables	
	f.	Research on the effectiveness of elephant Corridors	185
REFERENC	ES		186
LIST OF PUBLICATIONS			197

LIST OF TABLES

		Page
Table 3.1	Description of forest types in the study area	48
Table 3.2	Summary of elephant collaring and locations	49
Table 3.3	Summary of tracking period for each elephant herd	51
Table 3.4	Summary of tracking performance using Satellite Collar for	51
	each elephant herd	
Table 3.5	Approximate area covered by each elephant	55
Table 3.6	Monthly Ranging (using MCP method) covered	56
	by each elephant	
Table 3.7	Monthly Ranging (using HM method with isopleths 85%)	57
	covered by each elephant	
Table 3.8	Mean daily rate of elephant herd movements	60
Table 4.1	Age-class used in the behavior observation	72
Table 4.2	Ethogram used for Feeding and other behaviour	73
	Observation Ethogram used for Feeding and other	
	behaviour Observation	
Table 4.3	Overall age-sex structure of observed elephants	75
Table 4.4	Age-sex structure of the observed elephants in Ulu Segama	76
	Malua FR and Lower Kinabatangan	
Table 4.5	Observations/scans pattern	76
Table 4.6	Behavioural patterns observed in Ulu Segama Malua FR and	77
	Lower Kinabatangan	
Table 4.7	food plants species consumed by the elephants during the	78
	study period	
Table 4.8	Categories of food plants taken by elephants	82
Table 4.9	Percentage of food category consumed by elephants	84
	(based on age classes).	
Table 5.1	Forest Stratification Class	96
Table 5.2	List of 20 most abundant tree species)	97
Table 5.3	List of 20 most abundant tree families in the sampling plots	98

Table 5.4	Sobs (Mao Tau), and Simpson Mean Alpha Mean, Shannon Mean	103
Table 6.1	Scale for pairwise comparison	121
Table 6.2	Criterion categories for each ecological variable	123
Table 6.3	Summary of survey effort in forest routes below and above	129
	300 meters elevation	
Table 6.4	Elephant occurrence index in different terrain (altitude)	129
Table 6.5	Elephant's occurrence index with varied distance from	130
	permanent water source	
Table 6.6	Elephant occurrence index in different slope classification	131
Table 6.7	Elephant's occurrence index in 4 forest types in the survey	132
	area	
Table 6.8	Standardized Value for the criterion determined by using	132
	the 'linear scale transformation' method	
Table 6.9	Relative Importance of Criteria	133
Table 6.10	Geometric mean for each variable	133
Table 6.11	Relative Criterion Weights for each variable	134
Table 6.12	Consistency vector for each variable	134
Table 6.13	Status of elephant presence and centre of Elephant's	136
	activity in the model	
Table 6.14	Status of elephant presence and centre of Elephant's	137
	activity in the model	
Table 6.15	Size and status of key elephant habitat for each forest	141
Table 7.1	Dung-pile categories based on condition of the dung	149
Table 7.2	Size and status of key elephant habitat for each forest	151
Table 7.3	Summary of the number of transects, average, minimum	154
	and maximum surveyed distance	
Table 7.4	Elephant dung defecation rate per day	154
Table 7.5	Dung decay rate observed in three different quality forests	154
Table 7.6	Summary of models used in density estimation computation	156
Table 7.7	Estimated elephant density and population in each survey	156
	range	

Table 7.8	The summary of the estimated elephant density in each		
	forest reserve		
Table 7.9	Mean rainfall and mean temperature from 2006-2008	159	

LIST OF FIGURES

		Page
Figure 2.1	Location of the five managed elephant range in Sabah	22
Figure 3.1	Location of the successful capturing and collaring of the elephants, Sabah Malaysia	47
Figure 3.2	Home range size for Rozelis's herd, based on MCP and HM	52
gui e e iz	methods	52
Figure 3.3	Home range size for Tailiwas's herd, based on MCP and HM	52
	methods	
		50
Figure 3.4	Home range size for Nancy's herd, based on MCP and HM methods	53
Figure 3.5	Home range size for Bod Tai's herd, based on MCP and HM methods	53
Figure 3.6	Home range size for Penelope's herd, based on MCP and HM methods	54
Figure 3.7	Monthly ranging for Bod Tai's herd in fragmented forest	58
	(using Harmonic Mean 85% isopleths)	
Figure 3.8	Monthly ranging for Nancy's herd in fragmented forest (using	58
	Harmonic Mean 85% isopleths)	
Figure 5.1	Sampling plot for forest conditions assessment	94
Figure 5.2	Percentage of tree composition in each dbh class. $(n = 4,928)$	99
Figure 5.3	Tree (with dbh ranging from 30cm-60cm) density in each	99
	stratum	
Figure 5.4	Mature tree (dbh > 60cm) density in each stratum	100
Figure 5.5	Species Accumulation Curve for elephant food plants in forest stratum 1	100
Figure 5.6	Species Accumulation Curve for elephant food plants in forest	101
	stratum	
Figure 5.7	Species Accumulation Curves for elephant food plants in	102
	forest stratum 3	

Figure 5.8	Species Accumulation Curves for elephant food plants in	102
	forest stratum 4	
Figure 5.9	Species Accumulation Curves for elephant food plants in	103
	forest stratum 5	
Figure 5.10	Density of woody climber and lianas in different forest	104
	stratum (plants per ha)	
Figure 5.11	Density of trees in different forest stratum (plants per ha)	104
Figure 5.12	Density of bamboos in different forest stratum (plants per	105
	ha)	
Figure 5.13	Density of rattans in different forest stratum (plants per ha)	105
Figure 5.14	Density of plant categories in each forest stratum (plant per	106
	ha)	
Figure 5.15	Rarefaction graph using the value of Mean Sobs	114
Figure 5.16	Expected number of Food Plant Species observed for 1,200	114
	individual plants in each forest stratum	
Figure 6.1	Occurrence Survey Methods	126
Figure 6.2	Habitat suitability map for Bornean Elephant in Sabah	135
Figure 6.3	Elephant movement data (based on GPS satellite tracking	136
	system) overlaid into the model output	
Figure 7.1	Location of elephant managed ranges, where field survey	147
	was carried out	
Figure 7.2	Diagrammatic representation of a line transects The observer	148
5	walked along the centre-line of the transect. Whenever a	
	dung-pile was spotted, the perpendicular distance of the	
	dung-pile from the line transect was recorded. Some dung-	
	piles, especially those further from the centre-line, may not	
	have been seen at all	
Figure 7.3	Location of the specific forest sites where field survey was	157
	carried out (refer to table 7.8)	
Figure 7.4	Percentage and distance of dung piles from the main river	162
Figure 7.5	Percentage and distance of dung piles from the main logging	163
i igui e 715	road	100
	louu	

Figure 7.6Location of suitable habitat for elephants in the northern part165of DVCA and upper catchment of Ulu Segama Forest Reserve

DIAGRAMS

Diagram 3.1	Percentage of the elephant herd's movement per day	62
engrann eng	releandinge of the elephane nera o morement per day	

Page

- Diagram 3.2 Percentage of areas with different forest types, utilized by 62 the monitored elephants
- Diagram 3.3 Estimated percentage of areas with different altitude 63 classes, utilized by the monitored elephants

		Fayes
Maps 8.1	Important ecological corridor network to ensure all key	180
	habitats for elephant is connected	

ABBREVATIONS

3D	Three Dimensional
AHP	Analytical Hierarchy Process
AIC	Akaike's Information Criterion
AREAS	Asian Rhinoceros and Elephant Action Strategy
CI	Confident Interval
CITES	Convention of International Trade in Endangered Species
CR	Consistency Ratio
CV	Consistency Vector
DF	Dipterocarp Forest
DNA	Deoxyribonucleic Acid
DVCA	Danum Valley Conservation Area
EMRs	Elephant Managed Ranges
ESW	Effective Strip Width
FR	Fo <mark>rest Res</mark> erves
FMUs	Forest Management Units
FSC	Forest Stewardship Council
FSF	Freshwater Swamp Forest RSITI MALAYSIA SABAH
g	Gram
GIS	Geographical Information Systems
GPS	Global Positioning Systems
На	Hectare
HCVF	High Conservation Value Forest
HF	Heath Forest
HIS	Habitat Index Suitability
НМ	Harmonic Mean
ITP	Industrial Tree Plantation
IUCN	International Union for Conservation of Nature
Km	Kilometre
Km ²	Kilometre Square
LDF	Lower Dipterocarp Forest