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ABSTRACT 

Pineapple (Ananas comosus var. comosus) is the third most important fruit globally 
after banana and citrus. Genetic information of the species will help expedite pineapple 
improvement program in producing elite cultivar and to facilitate understanding of its 
molecular mechanism. As such, this project aims to de novo sequence, assemble and 
annotate the genome of the commercially important MD-2 pineapple. The draft genome 
was then used as a reference to identify genetic variations in the Babagon pineapple 
(which is a domesticated local Sabah variety) and for comparative genomic study 
among the sequenced member of the sub-class Commelinidae. Furthermore, gene 
expression profiling of two developmental stages of the ripening fruit, specifically the 
mature green and mature yellow fruits, were performed using in-house available 
transcriptomic data. The genome was sequenced using two leading-edge sequencing 
technologies i.e. the highly accurate short Illumina reads and the ultra-long PacBio 
reads. A total of 110 Gbp reads were obtained which constitute 209X coverage of the 
pineapple genome. The final assembly of the MD-2 pineapple genome achieved an NS0 
scaffold of 153,084. Approximately, 27,017 protein-coding genes were predicted with 
45.21% of the genome were identified as repetitive elements. Analyses of the Babagon 
variety showed one variant in every 108 bases with 86.6% of the variants composed of 
single-nucleotide variant (SNVs) and the remaining were insertion or deletion. The 
Ka/Ks analysis revealed that 48 genes in the Babagon pineapple differ significantly in 
comparison to MD-2. Among them were genes that are involved in the synthesis of 
terpene and plant defence system. Transcriptome analysis at the fruiting stage of the 
Babagon pineapple revealed several key genes related to the production of 4-hydroxy-
2,5-dimethyl-3{2H)-furanone (HDMF), which is known to contribute to the flavour of 
pineapple. Furthermore, the genome-assisted-transcriptomic analysis suggests the 
important role ethylene plays in non-climacteric fruit, especially at the early stage of 
ripening and not throughout the ripening process as observed in climacteric fruit. The 
draft genome of the MD-2 pineapple has facilitated genomic analysis of pineapple as 
shown in the study and will allow further downstream applications that may have been 
hindered previously due to the lack of genomic information. 
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ABSTRAK 

Penjujukan de novo dan penyusunan jujukan genom nenas dan 
perbandingan transkriptom di antara dua tahap kematangan buah 

Nenas {Ananas comosus var. comosus) adalah buah ketiga yang paling penting secara 
global selepas pisang dan buah-buahan citrus. lnformasi genetik nenas akan 
meningkatkan program penambahbaikkan nenas dalam penghasilan kultivar elit dan 
bagi membantu pemahaman mekanisma molekular. Oleh yang demikian, projek ini 
bertekad untuk membaca Jujukan, menyusun dan menganotasi genom nenas komersia/ 
MD-2. Deraf genom ini kemudian digunakan sebagai rujukan untuk mengenal pasti
variasi genetik dalam nenas Babagon (nenas tempatan Sabah yang didomestikasikan)
dan bagi kajian perbandingan genom di kalangan ahli subkelas Commelinidae yang
telah dijujuk. Tambahan lagi, pemprofilan ungkapan gen pada dua tahap
perkembangan buah ranum, secara specifiknya pada buah hijau matang dan kuning
matang dilakukan dengan menggunakan data transkriptomik sedia ada. Genom telah
dijujuk menggunakan dua teknologi jujukan terkemuka i.e. Jujukan pendek 11/umina
yang sangat tepat dan jujukan ultra-panjang PacBio. Sejumlah 110 Gbp Jujukan telah
diperolehi yang terdapat 209X liputan nenas genom. Deraf terakhir genom nenas MD-2
mencapai kerangka NSO sebanyak 153,084 bp. Lebih kurang, 27,017 gen pengekod
protein yang dapat diramalkan bersama dengan 45.21% daripada genom dikenalpasti
sebagai elemen berulang. Analisa variasi nenas daripada Babagon menunjukkan satu
variasi bagi setiap 108 unit dengan 86. 6% daripada variasi tersebut adalah terdiri
daripada variasi nukleotida tunggal dan selebihnya adalah daripada penambahan dan
peno/okan. Analisa Ka/Ks menunjukkan 48 gen mempunyai perbezaan ketara di dalam
perbandingan dengan nenas MD2 dan diantara gen tersebut adalah yang terlibat
dengan sintesis terpene dan sistem pertahanan tumbuhan. Analisa transkriptom tisu
buah tengah masak nenas Babagon menunjukkan beberapa gen kunci kepada
penghasilan 4-hydroxy-2,5-dimethyl-3(2H}-furanone (HDMF}, yang telah diketahui
untuk menyumbang kepada perisa buah nenas. Seterusnya, analisa transkriptomik
dibantu-genom mencadangkan kepentigan peranan etilena di dalam buah tidak
berklimaterik, terutamanya di tahap awal kemasakan dan bukan di sepanjang proses
kemasakan seperti yang diperhatikan di dalam buah berklimaterik. Drat genom nenas
MD-2 telah membantu analisis genom nenas seperti yang ditunjukkan dalam
penyelidikan ini dan deraf ini akan membantu aplikasi hiliran yang sebelum ini terhalang
disebabkan oleh kekangan maklumat genetik.
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Over the years, demands for fresh pineapple for consumption has increased, 

especially after the introduction of new pineapple hybrids. Currently, the global 

pineapple market is dominated by the MD-2 variety, which, since its introduction, 

has become the leading pineapple variety globally (Vagneron et al., 2009). No 

other newly introduced hybrids have been able to outperform the MD-2 variety in 

terms of taste and uniformity in size and ripeness. Even in Malaysia, the MD-2 is 

now the preferred choice for large-scale cultivation while the production of other 

major varieties such as the 'Maspine', 'Josapine', and 'Morris' have declined 

(Syahrin, 2011). However, near complete reliance to a single variety may be 

detrimental to the pineapple industry as the crop is likely to be susceptible to the 

same disease and stresses. Moreover, it is crucial that a large gene pool is 

maintained in any crop for better biodiversity security. As the most successful 

pineapple hybrid, it is intuitive that the genome of the MD-2 pineapple be decoded 

to gain better insights into its biology, which may be implicated in the development 

of new hybrids that can outperform this particular variety. 

Genome information opens new gateways to better understand the biology 

of plants and subsequently, to better manipulate their phenotypic traits. The 

landscape of research in plant breeding has changed along with t�e evolution of 

sequencing technologies from the low-throughput Sanger to massive-throughput 

sequencing and to the current ultra-long sequencing technology (reviewed by 

Michael and VanBuren, 2015). Availability of genomes of commercially important 

crops have enabled genotype-phenotype association studies, discovery of new 


