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ABSTRACT 

In recent years, piezoelectric generator was chosen as an autonomous solution for 

powering low power electronic devices because it has the advantages of the 

simplest setup and flexibility in dimension control as well as the fact that abundant 

mechanical vibrations are available everywhere. However, the present piezoelectric 

material generates extremely low power density and this has restricted its use in a 

wide array of applications. Several optimization techniques, such as DC-DC buck 

converter, synchronous charge extraction and SSHI techniques, with high 

conversion efficiency at the intermediate stage were successfully developed. But 

the results relied on the outcome of piezoelectric power harvested at the initial 

harvesting stage and the optimization works at this initial stage have seldom been 

reported so far. The objective of this research work was to develop an efficient 

piezoelectric power harvesting system to optimize and to further increase its power 

density output at the initial harvesting stage with the availability of the existing 

piezoelectric materials. This begins with the selection of the fitting theoretical 

model for the piezoelectric generator in the form of composite cantilever beam and 

then validation of the selected model. The work continues with the physical 

optimization for individual piezoelectric beam and configuration optimization as 

more than one beam was used. The physical optimization focused the parametric 

studies on physical properties of the piezoelectric material used. The results 

showed that the generation of energy can be optimized by increasing the cantilever 

length, increasing the piezo stress and strain constants as well as lower Young's 

modulus ratio and higher thickness ratio of the material to its host. The 

optimization study is then performed on two major configurations which are single 

active layer and two-active layer. The two-active layer piezoelectric beam further 

extended to the series and parallel connections. The two-active layer piezoelectric 

beam in parallel connection gave better performance in terms of harvested energy 

compared to others. In order to increase these outcomes, a new method is 

proposed by folding a given piezoelectric material equally and then splitting it for 

the use of electrical power generation. These reduced-width materials lower the 

damping effect on the setup but keeping the natural frequency of the system 
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constant, hence the harvesting system becomes more efficient in scavenging 

energy from vibration. Experimental results showed good agreement with the 

theoretical expectations. This method can be incorporated into other optimization 

technique for better result. Moreover, the bandwidth of the harvesting system 

increased with small modification of the natural frequency of each split material in 

the system. 
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ABSTRAK 

PENGOPTIMUMAN SISTEM PENUAIAN TENAGA PIEZOELEKTRIK 

Penuaian tenaga elektrik daripada persekitaran untuk tujuan menyediakan kaedah 

autonomi bagi membeka/ kuasa kepada a/at-a/at e/ektronik berkuasa rendah ada/ah 

salah satu topik penyelidikan yang popular di tahun kebelakangan ini. Penjana 

piezoelektrik ada/ah sa/ah satu kaedah penuaian yang sesuai kerana ia mudah 

dibina dan mudah dalam kawa/an dimensi serta hakikat bahawa banyak getaran 

mekanikal yang terdapat di persekitaran. Waiau bagaimanapun bahan 

piezoelektrik sekarang menghasilkan ketumpatan kuasa yang sangat rendah dan ini 

telah mengehadkan penggunaan yang luas. Wa/aupun beberapa teknik 

pengoptimuman sedia ada seperti DC-DC buck converter, cas pengekstrakan 

segerak dan teknik SSHl dengan penukaran yang cekap di peringkat perantaraan 

telah betjaya dibangunkan keputusan itu amat bergantung kepada hasil kuasa 

piezoelektrik dituai pada penuaian awal peringkat dan kerja-kerja pengoptimuman 

pada peringkat awal ini masih Jarang dilaporkan dengan nyata sampai setakat ini. 

Objektif penye/idikan ini ada/ah untuk membangunkan teknik pengoptimuman yang 

cekap dan seturusnya memaksimumkannya ketumpatan kuasa daripada 

piezoelektrik di peringkat awal penuaian. Ini bermula dengan pemilihan model teori 

yang sesuai untuk penjana piezoe/ektrik da/am bentuk rasuk komposit. Model 

elektrik untuk bahan piezoelektrik berdasarkan persamaan hubungkaitnya telah 

dibangunkan. Dalam usaha untuk memadankan model teori dalam keadaan 

dinamifv model mekanikal rasuk komposit di bawah getaran dibincangkan dan 

digandingkan bersama untuk membentuk satu model dinamik penjana 

piezoelektrik. Ini diikuti dengan pengoptimuman fizikal untuk setiap rasuk 

piezoelektrik dan seterusnya pengoptimuman konfigurasi rasuk-rasuk berkenaan. 

Pengoptimuman fizikal memberi tumpuan terhadap kajian parameter sifat-sifat 

fizikal bahan-bahan piezoelektrik yang digunakan. Keputusan yang diperolehi 

menunjukkan bahawa penghasilan tenega boleh dioptimumkan dengan tambahan 

panjang, pemalar tekanan dan terikan piezo yang besar, nisbah modulus Young 

yang rendah dan tinggi nisbah keteba/an berbanding bahan substrat. Kajian 

kemudiannya diteruskan kepada pengoptimuman dua konfigurasi rasuk 
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piezoelektrik yang utama iaitu satu lapisan aktif dan dua lapisan aktif. Seterusnya/ 

konfigurasi rasuk dua lapisan aktif dikaji iaitu sambungan sesiri dan selari. Didapati 

bahawa rasuk dua /apisan aktif se!ari mempunyai kemampuan yang /ebih baik 

berdasarkan tenaga yang dituai bandingan . konfigurasi yang lain. Bagi 

meningkatkan hasil yang optimum ini, satu teknik baru dicadangkan iaitu dengan 

me/ipat satu-satu bahan piezoe/ektrik dengan saiz yang sama/ dan kemudian 

membelah bahan tersebut untuk penjanaan tenaga elektrik. Pengurangan lebar 

bahan ini menyebabkan penurunan kesan redaman sistem tetapi tidak mengubah 

frekuensi aslinya. O/eh itu sistem penuaian menjadi /ebih cekap da/am menuai 

tenaga dari getaran. Kaedah ini digunapakai bersama dengan kaedah 

pengoptimumanJ yang lain untuk penuaian yang lebih tinggi. Tambahan pula/ lebar 

Jalur system penuaian ini dapat ditingkatkan dengan sedikit ubahsuai pada 

frekuensi asli setiap pecahan dalam sistem ini. 
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