OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING SYSTEM

CHOW MAN SANG

INVERSITI MALAYSIA SAREL

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITY MALAYSIA SABAH 2014

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING SYSTEM

IJAZAH: DOKTOR FALSAFAH

Saya <u>CHOW MAN SANG</u>, Sesi Penagjian <u>2007 – 2014</u>, mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Z TIDAK SULIT

Disahkan oleh,

NURULAIN BINTI ISMAIL LIBRARIAN UNIVERSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

tal

(Prof. Madya Dr. Jedol Dayou) Penyelia

(Prof. Madya Dr. Willey Liew Yun Hsien) Penyelia Bersama

Tarikh: 6 January 2014

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

6 January 2014

Chow Man Carg

Chow Man Sang PS20068666

CERTIFICATION

NAME	:	CHOW MAN SANG
MATRIC NO.	:	PS20068666
TITLE	1	OPTIMIZATION OF PIEZOELECTRIC ENERGY HARVESTING SYSTEM
DEGREE		DOCTOR OF PHILOSOPHY (PHYSICS WITH ELECTRONICS)

VIVA DATE : 4 JUNE 2012

DECLARED BY

1. MAIN SUPERVISOR

Assoc. Prof. Dr. Jedol Dayou

Signature

Jarcou

2. CO-SUPERVISOR

Assoc. Prof. Dr. Willey Liew Yun Hsien

ACKNOWLEDGEMENTS

My thanks go to all those people who have helped me through my academic years at UMS.

To my supervisor Assoc. Prof. Dr. Jedol Dayou, I would like to express my sincere gratitude to you for taking me on as your PhD student; for your expert guidance, support and persistent encouragement throughout my study period, and for sharing with me your experience and expertise in vibration; I feel that together we have made a successful sortie into the field of energy harvesting. It is a privilege to work under you with your extensive knowledge and genuine concern for all your students. I would like to emphasize that your influence on me was not only in acquiring scientific knowledge but also as a better person.

Comments and suggestions in thesis writing from my co-supervisor Assoc. Prof. Dr. Willey Liew Yun Hsien is greatly acknowledge. Thank you for all the encouragement and your belief that I would eventually finish this thesis.

I would like to express my gratitude to Prof. Dr. Vincent Pang, Assoc. Prof. Dr. Ho Chung Mun, Mr. Chu Soong Tau, members of Board of Governers and staff of Institut Sinaran for your encouragement on my study always and your concern about the progress of my study.

I would also like to thank my friends, Ronald, Nelson, Andrew, Yin Ying, Jackson and Shu Kim, in the Energy, Vibration and Sound Research Group (eVIBS) for helping to make the eVIBS laboratory a nice place to work and study.

I have had many fruitful technical discussions with Mr. Yong (Owner of Genius Electronics Enterprise) and Ah Boo (SKTM Master graduate) during my studies. Thanks for your unreserved sharing the knowledge in electronics and programming, respectively, with me.

iv

I am grateful for the financial support, which has made this work possible, from Ministry of Science and Technology Innovation (MOSTI) under the Postgraduate Scholarship Scheme.

I have reserved special mention for my mother and my younger brother for their constant emotional support and encouragement during the course of my studies. I would like to dedicate this dissertation to my mother for always treating my education with the highest importance and for supporting me and being patient with me through the ups and downs of the life. Without your continued love and support that you have always given me, my PhD study would not have been possible.

Thank you.

Chow Man Sang, 23 February 2012

ABSTRACT

In recent years, piezoelectric generator was chosen as an autonomous solution for powering low power electronic devices because it has the advantages of the simplest setup and flexibility in dimension control as well as the fact that abundant mechanical vibrations are available everywhere. However, the present piezoelectric material generates extremely low power density and this has restricted its use in a wide array of applications. Several optimization techniques, such as DC-DC buck converter, synchronous charge extraction and SSHI techniques, with high conversion efficiency at the intermediate stage were successfully developed. But the results relied on the outcome of piezoelectric power harvested at the initial harvesting stage and the optimization works at this initial stage have seldom been reported so far. The objective of this research work was to develop an efficient piezoelectric power harvesting system to optimize and to further increase its power density output at the initial harvesting stage with the availability of the existing piezoelectric materials. This begins with the selection of the fitting theoretical model for the piezoelectric generator in the form of composite cantilever beam and then validation of the selected model. The work continues with the physical optimization for individual piezoelectric beam and configuration optimization as more than one beam was used. The physical optimization focused the parametric studies on physical properties of the piezoelectric material used. The results showed that the generation of energy can be optimized by increasing the cantilever length, increasing the piezo stress and strain constants as well as lower Young's modulus ratio and higher thickness ratio of the material to its host. The optimization study is then performed on two major configurations which are single active layer and two-active layer. The two-active layer piezoelectric beam further extended to the series and parallel connections. The two-active layer piezoelectric beam in parallel connection gave better performance in terms of harvested energy compared to others. In order to increase these outcomes, a new method is proposed by folding a given piezoelectric material equally and then splitting it for the use of electrical power generation. These reduced-width materials lower the damping effect on the setup but keeping the natural frequency of the system

vi

constant, hence the harvesting system becomes more efficient in scavenging energy from vibration. Experimental results showed good agreement with the theoretical expectations. This method can be incorporated into other optimization technique for better result. Moreover, the bandwidth of the harvesting system increased with small modification of the natural frequency of each split material in the system.

ABSTRAK

PENGOPTIMUMAN SISTEM PENUAIAN TENAGA PIEZOELEKTRIK

Penuaian tenaga elektrik daripada persekitaran untuk tujuan menyediakan kaedah autonomi bagi membekal kuasa kepada alat-alat elektronik berkuasa rendah adalah salah satu topik penyelidikan yang popular di tahun kebelakangan ini. Penjana piezoelektrik adalah salah satu kaedah penuaian yang sesuai kerana ia mudah dibina dan mudah dalam kawalan dimensi serta hakikat bahawa banyak getaran mekanikal yang terdapat di persekitaran. Walau bagaimanapun, bahan piezoelektrik sekarang menghasilkan ketumpatan kuasa yang sangat rendah dan ini telah mengehadkan penggunaan yang luas. Walaupun beberapa teknik pengoptimuman sedia ada seperti DC-DC buck converter, cas pengekstrakan segerak dan teknik SSHI, dengan penukaran yang cekap di peringkat perantaraan telah berjaya dibangunkan, keputusan itu amat bergantung kepada hasil kuasa piezoelektrik dituai pada penuaian awal peringkat dan kerja-kerja pengoptimuman pada peringkat awal ini masih jarang dilaporkan dengan nyata sampai setakat ini. Objektif penyelidikan ini adalah untuk membangunkan teknik pengoptimuman yang cekap dan seturusnya memaksimumkannya ketumpatan kuasa daripada piezoelektrik di peringkat awal penuaian. Ini bermula dengan pemilihan model teori yang sesuai untuk penjana piezoelektrik dalam bentuk rasuk komposit. Model elektrik untuk bahan piezoelektrik berdasarkan persamaan hubungkaitnya telah dibangunkan. Dalam usaha untuk memadankan model teori dalam keadaan dinamik, model mekanikal rasuk komposit di bawah getaran dibincangkan dan digandingkan bersama untuk membentuk satu model dinamik penjana piezoelektrik. Ini diikuti dengan pengoptimuman fizikal untuk setiap rasuk piezoelektrik dan seterusnya pengoptimuman konfigurasi rasuk-rasuk berkenaan. Pengoptimuman fizikal memberi tumpuan terhadap kajian parameter sifat-sifat fizikal bahan-bahan piezoelektrik yang digunakan. Keputusan yang diperolehi menunjukkan bahawa penghasilan tenega boleh dioptimumkan dengan tambahan panjang, pemalar tekanan dan terikan piezo yang besar, nisbah modulus Young yang rendah dan tinggi nisbah ketebalan berbanding bahan substrat. Kajian kemudiannya diteruskan kepada pengoptimuman dua konfigurasi rasuk

viii

piezoelektrik yang utama iaitu satu lapisan aktif dan dua lapisan aktif. Seterusnya, konfigurasi rasuk dua lapisan aktif dikaji iaitu sambungan sesiri dan selari. Didapati bahawa rasuk dua lapisan aktif selari mempunyai kemampuan yang lebih baik berdasarkan tenaga yang dituai bandingan konfigurasi yang lain. Bagi meningkatkan hasil yang optimum ini, satu teknik baru dicadangkan iaitu dengan melipat satu-satu bahan piezoelektrik dengan saiz yang sama, dan kemudian membelah bahan tersebut untuk penjanaan tenaga elektrik. Pengurangan lebar bahan ini menyebabkan penurunan kesan redaman sistem tetapi tidak mengubah frekuensi aslinya. Oleh itu sistem penuaian menjadi lebih cekap dalam menuai tenaga dari getaran. Kaedah ini digunapakai bersama dengan kaedah pengoptimuman yang lain untuk penuaian yang lebih tinggi. Tambahan pula, lebar jalur system penuaian ini dapat ditingkatkan dengan sedikit ubahsuai pada frekuensi asli setiap pecahan dalam sistem ini.

UNIVERSITI MALAYSIA SABAH

TABLE OF CONTENTS

		Page
TITL	E	i
DEC	LARATION	ii
CER	TIFICATION	III
ACK	NOWLEDGEMENT	iv
ABS	TRACT	vi
ABS	TRAK	viii
LIST	T OF CONTENTS	x
LIST	OF TABLES	xiv
LIST	OF FIGURES	xvii
LIST	OF FLOW CHARTS	xxiii
LIST	OF SYMBOLS	xxiv
LIST	OF APPENDICES	xxvi
CHA	PTER 1: INTRODUCTION	
1.1	Introduction	1
1.2	Basic Description of the Piezoelectric Effect	2
1.3	Types of Piezoelectric Materials for Energy Harvesting	4
1.4	Motivation of the Work	8
1.5	Objectives	10
1.6	Structure of the Thesis	10
1.7	Research Contribution	12
CHA	PTER 2: LITERATURE REVIEW	
2.1	Overview	14
2.2	Classification of the Existing Optimization Techniques	19
	2.2.1 Material and Physical Optimizations at the Harvester Stag	e 21
	a. Device and Material Optimization	21
	b. Optimization with Modeling and Theory	30
	c. Geometric and Physical Optimization	34
	d. Mathematical Optimization	53
	e. Configuration Optimization	54

		f. Piezo-based Power Generation Applications	56
		g. Wideband Operations	60
	2.2.2	Circuit Optimization at the Power Conditioning Stage	66
	2.2.3	Storage Optimization at the Storage Stage	72
	2.2.4	Discussion and Summary	73
2.3	Power	output of piezoelectric energy harvesting system to date	76
2.4	Power	requirements of various electronics devices	93
2.5	Conclu	isions	95

CHAPTER 3: PARAMETRIC AND CONFIGURATIONAL STUDIES FOR PHYSICAL OPTIMIZATION

3.1	Introdu	uction			97
3.2	Develo	pmen	t of	Theoretical Model with Single Degree of Freedom	99
3.3	Euler-E	Bernou	ulli M	lethod For Neutral Axis	102
3.4	Constit	tutive	Equ	ations of Piezoelectric Materials	104
3.5	Dynam	nic Mo	del d	of the Piezoelectric Harvester	106
3.6	Output	t Vo <mark>lta</mark>	age a	and Power	115
3.7	Param	ete <mark>rs</mark> 1	for P	hysical Optimization	116
3.8	Config	uratio	ns fo	pr Physical Optimization TI MALAYSIA SABAH	117
	3.8.1	Conn	ectir	ng Configuration	117
	3.8.2	Struc	tura	l Configuration	118
	3.8.3	Comb	oinat	ion of Connecting and Structural Configurations	121
3.9	Simula	tions	and	Experiments	127
	3.9.1	Physi	ical F	Parametric Studies	127
		a.	Sim	ulations and Experiments for Physical Parametric	127
			Stu	dies	
			i.	Piezo stress constant of the piezoelectric material, g_{31}	127
			ii.	Length of the piezoelectric beam, L	129
			iii.	Width of the piezoelectric beam, w_0	131
			iv.	Thickness ratio of the piezoelectric beam, A	132
			v.	Young's modulus ratio of the piezoelectric beam, B	134
		b.	Disc	cussion and Summary of Physical Parametric Studies	136
	3.9.2	Conn	ectir	ng Configuration	139

		a.	Simulations and Experiments for Connecting Configuration	139
		b.	Discussion and Summary of Connecting Configuration	143
	3.9.3	Struc	tural Configuration	144
		a.	Simulations and Experiments for Structural Configuration	144
			i. Energy harvesting performance for various	144
			configuration at the constant excitation energy by	
			simulations	
			ii. Optimization of thickness ratio for optimal output	147
			iii. Choice of the host material for experiment with the	151
			suitable A _{opt}	
		b.	Discussion and Summary of Structural Configuration	159
	3.9.4	Comb	ination of Connecting and Structural Configurations	162
		a.	Simulations and Experiments	162
		b.	Discussion and Summary of Combination of Connecting	168
			and Structural Configurations	
3.10	Design	Guide	elines for Optimization	169
3.11	Applica	ations		170
	3.11.1	Prot	otype on experiment	172
	3.11.2	Prot	otype on application testing	178
			UNIVERSITI WALAYSIA SABAH	
СНАР	TER 4:	OPTI	MIZATION OF OUTPUT POWER BY REDUCING	
		DAM	PING	
4.1	Introd	uction		181
4.2	Ordina	ry Pov	ver Generation	182
4.3	Effect	of Dan	nping in Vibration	183
4.4	Width-	Splitti	ng Method	188
4.5	Improv	ved Po	wer Generation	191
4.6	Bandw	idth P	roblem and Solution	192
4.7	Simula	tion, E	Experiments and Discussions	194
4.8	Discus	sion a	nd Summary	208
4.9	Applica	ations		212

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORKS

5.1	Introduction	215
5.2	Review of Objectives	216
5.3	Conclusions of the Piezoelectric Energy Harvesting System with	216
	Physical Optimization	
5.4	Conclusions of the Proposed New Harvesting Concept:	219
	Width-Splitting Method	
5.5	Implications of the works	220
5.6	Recommendations for Future Works	220

REFERENCES

222

APPENDIICES: PARTICIPATION OF CONFERENCES AND WORKSHOP, PUBLICATIONS, AND AWARD

A.1	Journal Articles	248
A.2	Participation of Conferences and Workshop,	249
	and Conference Proceedings	
A.3	Poster Presentation	250
A.4	Award on Invention & Innovation	250
В	Standard Deviations of Experimental Results	252
С	Derivation of Piezoelectric equations in terms of Charge-Strain Constant	270

LIST OF TABLES

		Page
Table 2.1	Summary of piezoelectric materials investigated.	27
Table 2.2	Summary of various modeling techniques.	34
Table 2.3	Summary of geometries of piezoelectric devices and their purposes.	46
Table 2.4	Summary of studies and the efficiency of the energy conversion.	55
Table 2.5	Power output levels of piezoelectric energy harvesting system.	76
Table 2.6	Power requirements of various electronics devices.	93
Table 3.1	Data of the piezoelectric beam used for simulation of piezo	127
	stress constant.	
Table 3.2	g_{31} values for the 4 piezoelectric materials.	129
Table 3.3	Data of the piezoelectric beam used for simulation and	130
	experiment of length of the piezoelectric beam.	
Table 3.4	Data of the piezoelectric beam used for simulation and	131
	experiment of width of the piezoelectric beam.	
Table 3.5	Data of the piezoelectric beam used for simulation and	133
	thickness ratio experiment.	
Table 3.6	Summary of Young's moduli and their respective <i>B</i> values	134
	for the eight selected host materials.	
Table 3.7	Data of the piezoelectric beam used for simulation and	135
	experiment of Young's modulus ratio.	
Table 3.8	The selected hosts and their respective optimum thickness ratios	151
	and output energies from both the single-active layer beam and	
	the two-active layer beam at fixed base displacement.	
Table 3.9	Data of the piezoelectric beam used in experiment of	154
	Structural Configuration.	
Table 3.10	Experimental results of the electric charge and energy	158
	harvesting.	
Table 3.11	Experimental results of the electric charge and energy harvesting	164
	with various beam number, <i>n</i> .	
Table 4.1	Summary of experimental results.	202
Table 4.2	Calculated results of the constant α for $N = 0$, 1 and 2.	204
Table 4.3	Summary of experimental results for bandwidth study.	208

Table Appendix 1	Experimental results of output voltage with various length of the piezoelectric beam	252
Table Appendix 2	Experimental results of output voltage with various width of the piezoelectric beam	252
Table Appendix 3	Experimental results of output voltage with various Thickness ratio of the piezoelectric beam	253
Table Appendix 4	Experimental results of output voltage with various Young's modulus ratio of the piezoelectric beam	253
Table Appendix 5	Experimental results of electric charge harvesting as a function of number of beam (Parallel)	254
Table Appendix 6	Experimental results of electric charge harvesting as a function of number of beam (Series)	255
Table Appendix 7	Experimental results of piezoelectric capacitance as a function of number of beam (Parallel)	256
Table Appendix 8	Experimental results of piezoelectric capacitance as a function of number of beam (Series)	257
Table Appendix 9	Experimental results of output power as a function of number of beam (Parallel)	258
Table Appendix 10	Experimental results of output power as a function of	259
Table Appendix 11	Experimental results of output voltages with excitation frequencies for the various structural configurations of	260
Table Appendix 12	Experimental results of output voltages with excitation frequencies for the various structural configurations of	261
Table Appendix 13	Experimental results of output voltages with excitation frequencies for the various structural configurations of	262
Table Apparedia 14	the plezoelectric beam	262
Table Appendix 14	Experimental results of electric charge harvesting $n = 1$	263
Table Appendix 15	Experimental results of electric charge harvesting $n = 2$	264
Table Appendix 16	Experimental results of electric charge harvesting $n = 3$	265
Table Appendix 17	Experimental results of electric energy harvesting $n = 1$	266

Table Appendix 18	Experimental results of electric energy harvesting $n = 2$	267
Table Appendix 19	Experimental results of electric energy harvesting $n = 3$	268
Table Appendix 20	Experimental results of output power to 2 $M\Omega$ at	269
	resonant frequency for Width-splitting Method	
Table Appendix 21	Experimental results for bandwidth study	269

LIST OF FIGURES

		Page
Figure 1.1	Harvesting process of a piezoelectric energy harvesting system.	1
Figure 1.2	Cubic unit cell geometry and crystallographic axes	3
	(Haertling, 1999).	
Figure 1.3	Weiss domains in the poling process of a piezoelectric ceramic	4
	(left) before poling; (middle) during poling; (right) showing	
	remanent polarization after poling (Haertling, 1999).	
Figure 1.4	Example of piezoelectric effect on PVDF.	6
Figure 1.5	Polymeric dipoles in random orientation (upper) and dipoles	7
	are lined up by stretching and high poling voltage (lower).	
Figure 1.6	Sensor size is limited by battery size (Arms et al., 2005).	9
Figure 2.1	Piezoelectric actuators used by Sodano et al. (2005): PZT (left),	22
	Quick Pack (centre) and MFC (right).	
Figure 2.2	Geometry of PCGE-A (Tien and Goo, 2010).	25
Figure 2.3	A rectangular piezoelectric bimorph cantilever	35
	(Roundy and Wright, 2004).	
Figure 2.4	A prototype of piezoelectric laminated generator (Lu et al., 2004)	. 36
Figure 2.5	'31' coupling mode for piezoelectric material (Lu et al., 2004).	36
Figure 2.6	Schematics of a triangular cantilever configuration of piezoelectric	: 40
	energy harvesting device (Glynne Jones et al., 2001).	
Figure 2.7	A cymbal harvester used by Kim et al. (2004; 2005).	43
Figure 2.8	Curved PZT unimorph excited in d_{31} -mode by a normal	43
	distributed force (Yoon et al., 2005).	
Figure 2.9	Schematics of a bistable configuration of piezoelectric energy	44
	harvesting (Baker <i>et al</i> ., 2005).	
Figure 2.10	Schematics of a circular configuration of piezoelectric energy	45
	harvesting device (Kim <i>et al.</i> , 2005a; 2005b).	
Figure 2.11	Schematics of a spiral configuration of piezoelectric energy	45
	harvesting (Choi <i>et al.</i> , 2006).	
Figure 2.12	Schematic diagram (left) and actual diagram (right) for	46
	energy harvesting eel (Taylor et al., 2001).	

Figure 2.13	Schematic of a cantilever-based piezoelectric generator showing	47
Figure 2.14	Potentially wasted volume (worthington, 2010).	40
Figure 2.14	Rectangular plezoelectric cantilever beam with U-snaped mass	48
5 245	(Roundy, 2003).	40
Figure 2.15	Cross section of a rectangular piezoelectric beam with	49
	L-shaped mass (Li <i>et al.</i> , 2010).	
Figure 2.16	The curved L-shaped beam utilises more of the otherwise-wasted	49
	volume than does the flat L-shaped beam (Li <i>et al.</i> , 2010).	
Figure 2.17	Photograph of the rectangular piezoelectric beam with	50
	L-shaped mass (Li <i>et al.</i> , 2010).	
Figure 2.18	Schematic diagram (left) and actual diagram (right) for	56
	the energy-harvesting shoe (Paradiso <i>et al.</i> , 1998).	
Figure 2.19	Schematic diagram for the energy-harvesting shoe	57
	(Paradiso <i>et al.</i> , 2001).	
Figure 2.20	Schematic diagram for the energy-harvesting shoe	58
	(Mateu and Moll, 2005).	
Figure 2.21	Schematic diagram (left) and actual diagram (right) for	59
	"Piezoelectric Windmill" (Priya <i>et al</i> . 2000).	
Figure 2.22	Schematic of the backpack with piezoelectric straps	59
	(Farinholt <i>et al.</i> , 1997).	
Figure 2.23	Tunable Bimorph developed by Leland et al. (2006)	62
Figure 2.24	Stiffness-adjustable cantilever developed by Challa et al. (2008)	63
Figure 2.25	Wideband design constructed by Eichhorn et al. (2008)	64
Figure 2.26	Multi-frequency generator developed by Ferrari et al. (2008)	65
Figure 2.27	A DC-DC step-down converter used by Ottman et al. (2002)	67
Figure 2.28	Responses of the output voltage and displacement with time	70
	for the SSHI technique (Guyomar <i>et al.</i> , 2005)	
Figure 2.29	SECE circuit used by Lefeuvre <i>et al.</i> (2005)	71
Figure 2.30	Summary of the existing optimization techniques with	75
	the indications of sufficient ($$) and insufficient (?) research areas.	
Figure 2.31	A CC2430 sensor node (Weddell <i>et al.</i> , 2008).	95
Figure 2.32	Integrated piezoelectric harvester and wireless sensing node	95
	(Arms <i>et al.</i> , 2005).	

Figure 3.1	Schematic diagram of the piezoelectric energy harvester	100
	consists of composite piezoelectric-host structure.	
Figure 3.2	Equivalent SDOF model for the piezoelectric beam with	101
	excitation at base.	
Figure 3.3	The cross-sectional view of the asymmetrical piezoelectric beam.	102
Figure 3.4	Euler-Bernoulli model of piezoelectric-host composite beam.	103
Figure 3.5	Tensor index abbreviations for the piezoelectric material.	106
Figure 3.6	Types of operations of a piezoelectric material.	108
Figure 3.7	Equivalent circuit of piezoelectric energy harvester.	112
Figure 3.8	The piezoelectric circuit model connected	115
	with a load resistor.	
Figure 3.9	Schematic diagrams of two structural configurations of the	120
	piezoelectric beams.	
Figure 3.10	Simulation of voltage generation with four different	128
	piezoelectric materials.	
Figure 3.11	Simulation and experiment results of voltage generation as	130
	a function of length of the piezoelectric beam, <i>L</i> .	
Figure 3.12	Simulation and experiment results of voltage generation as	132
	a function of width of the piezoelectric beam, w_0 . SABAH	
Figure 3.13	Simulation and experiment results of voltage generation as	133
	a function of thickness ratio, A.	
Figure 3.14	Simulation and experiment results of voltage generation as	136
	a function of Young's modulus ratio, <i>B</i> .	
Figure 3.15	Results of simulation and experiment for electric charge	141
	harvesting as a function of number of beam, <i>n</i> .	
Figure 3.16	Results of simulation and measurement of	142
	piezoelectric capacitance as a function of number of beam, n.	
Figure 3.17	Experimental results for output power with load of 330 $arLambda$ as	143
	a function of number of beam, <i>n</i> .	
Figure 3.18	Simulation of output energy in the load resistor of single-active	145
	layer beam.	
Figure 3.19	Simulation of output energy in the load resistor of	146
	series two-active laver beam.	

Figure 3.20	Simulation of output energy in the load resistor of parallel two-active layer beam.	146
Figure 3.21	Load resistance for the largest energy at every frequency.	147
Figure 3.22	Simulation result of output energy of the single-active and	148
5	the two-active layers against thickness ratio, A, for	
	Steel, Nickel and Brass.	
Figure 3.23	Simulation result of output energy of the single-active and	149
5	the two-active layers against thickness ratio, <i>A</i> , for	
	Titanium, Aluminium and GFRP Laminate.	
Figure 3.24	Simulation result of output energy of the single-active and	150
	the two-active layers against thickness ratio, A, for	
	Polyvinyl Chloride and Polypropylene.	
Figure 3.25	Simulation result for the optimum thickness ratio, A_{opt} against	152
	Young's modulus ratios, <i>B</i> that produces that produces the	
	maximum output energy.	
Figure 3.26	Output peak voltages with excitation frequencies for the various	155
	structural configurations of the piezoelectric beam.	
Figure 3.27	Experimental setup of electric charges and energy harvesting	157
	with piezoelectric beam(s). VERSITI MALAYSIA SABAH	YERS
Figure 3.28	Simulation results of electric charges harvesting with various	162
	numbers of piezoelectric beams.	INT AN
Figure 3.29	Simulation results of electric energy harvesting with various	163
	numbers of piezoelectric beams.	
Figure 3.30	Charging curves to maximum voltage of <i>n</i> -parallel and <i>n</i> -series	166
	for single-active layer beams and two-active layer beams in	
	both parallel and series connection.	
Figure 3.31	Schematic diagram of pulse-light emitting circuit.	167
Figure 3.32	The LED emits light in single pulse mode during discharging	167
	of the storage capacitor.	
Figure 3.33	Charging curves to threshold voltage.	168
Figure 3.34	Block diagram of piezoelectric energy power harvesting	171
	circuit.	

Figure 3.35	Experiment setup for the prototype of the piezoelectric energy harvester.	172
Figure 3.36	Ratio of flashing interval with configurations of series to parallel for $n = 1$ to 10.	173
Figure 3.37	Piezoelectric power and power transfer for parallel and series configurations.	175
Figure 3.38	Experimental power transfer efficiencies for parallel and series	176
	configurations.	
Figure 3.39	Outline of power flow and system characteristics.	176
Figure 3.40	Light intensity emitted by the flashing LED.	177
Figure 3.41	Characteristics graphs of the LED used in experiment.	178
Figure 3.42	Piezoelectric energy harvester prototype placed on the air-con	179
	compressor.	
Figure 3.43	Comparison between the results of experiment and application	179
	testing.	
Figure 3.44	Power harvesting circuit prototype with the flashing LED.	180
Figure 4.1	Model of single degree of freedom.	183
Figure 4.2	Time response of undamped vibration.	185
Figure 4.3	Bandwidth of half-power (Rao, 1990). ALAYSIA SABAH	186
Figure 4.4	Piezoelectric beam in 0-fold, 1-fold and 2-fold, respectively.	188
Figure 4.5	Changing natural frequency of the cantilever beam with	194
	attachment of end mass.	
Figure 4.6	The piezo-polypropylene cantilever beams in (a) 0-fold,	196
	(b) 1-fold and (c) 2-fold, respectively.	
Figure 4.7	Setup of the experiment using the single piezo-polypropylene	197
	cantilever beam.	
Figure 4.8	Load power as a function of excitation frequency and resistance	198
	for piezoelectric beam in 0-fold (<i>N</i> =0).	
Figure 4.9	Load power as a function of excitation frequency and resistance	198
	for piezoelectric beam in 1-fold (<i>N</i> =1).	
Figure 4.10	Load power as a function of excitation frequency and resistance	199
	for piezoelectric beam in 2-fold (<i>N</i> =2).	
Figure 4.11	Comparison of simulation and experimental results.	200

- Figure 4.12 The relationship between $\log \xi_N$ and the number of fold, *N*. 203
- Figure 4.13 Simulations of power harvesting for the optimum load with 205
- Figure 4.14 Comparison of load power for piezoelectric beam in 1-fold 206 with no variation in natural frequency, variations of 1 *Hz*, 2 *Hz* and 3 *Hz*, respectively.
- Figure 4.15Comparison of load power for piezoelectric beam in 2-fold207with no variation in natural frequency, variations of 1 Hz,
2 Hz and 3 Hz, respectively.2
- Figure 4.16 A digital clock is powered by the piezoelectric harvester with 214 single equal-splitting of the initial piezo composite beam base under vibration.

Figure Appendix 1 The silver medal and award certificate of the Award on Invention & Innovation (PEREKA 2011).

251

LIST OF FLOW CHARTS

Dago

		Faye
Flow Chart 3.1	Flow chart of works of physical optimization.	98
Flow Chart 4.1	Flow chart of works on power maximization for	182
	wideband operation.	

