PHYLOGENETIC RELATIONSHIPS OF CHINGIA, SPHAEROSTEPHANOS AND CHRISTELLA GROUPS (THELYPTERIDACEAE) FROM SABAH USING *rbc*L GENE SEQUENCES

INSTITUTE FOR TROPICAL BIOLOGY AND CONSERVATION UNIVERSITI MALAYSIA SABAH

PHYLOGENETIC RELATIONSHIPS OF CHINGIA, SPHAEROSTEPHANOS AND CHRISTELLA GROUPS (THELYPTERIDACEAE) FROM SABAH USING *rbc*L GENE SEQUENCES

JACQUELINE BINTI JOSEPH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

INSTITUTE FOR TROPICAL BIOLOGY AND CONSERVATION UNIVERSITI MALAYSIA SABAH

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: PHYLOGENETIC RELATIONSHIPS OF CHINGIA, SPHAEROSTEPHANOS AND CHRISTELLA GROUPS (THELYPTERIDACEAE) FROM SABAH USING *rbc*L GENE SEQUENCES.

IJAZAH: SARJANA SAINS (TAKSONOMI DAN BIOSISTEMATIK)

SAYA JACQUELINE BINTI JOSEPH SESI PENGAJIAN:

mengaku membenarkan tesis (LPSM/<u>Sarjana</u>/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan organisasi/badan di mana penyelidikan dijalankan)

TANDATANGAN PENULIS

PENYELIA Dr Idris Mohd Said SEKOLAH PERHUTANAN TROPIKA ANTARABANGSA UNIVERSTI MALAYSIA SABAH

04 0G0S 2010 Tarikh:

Tarikh: 04 0GOS 2010

DECLARATION

I hereby declare that material in this thesis is my own except for quotations, excerpts, accepts, equations, summaries and references, which have been duly acknowledged.

25 June 2010

JACQUELINE BINTI JOSEPH

PP2007-8228

CERTIFICATION

NAME	;	JACQUELINE BINTI JOSEPH
MATRIC NO.	-;	PP2007-8228
TITLE		PHYLOGENETIC RELATIONSHIPS OF CHINGIA, SPHAEROSTEPHANOS AND CHRISTELLA GROUPS (THELYPTERIDACEAE) FROM SABAH USING <i>rbc</i> L GENE SEQUENCES
DEGREE	:	MASTER OF SCIENCE

VIVA DATE : 25 JUNE 2010

DECLARED BY

1. SUPERVISOR

DR. IDRIS MOHD. SAID

2. CO-SUPERVISOR

DR. NAZIRAH BINTI MUSTAFFA

(SIGNATURE)

(SIGNATURE)

ACKNOWLEDGEMENT

I would like to express my gratitude to my main supervisor, Dr. Idris Mohd. Said for giving this opportunity to gain invaluable experience in conducting this research project, and Dr. Nazirah Mustaffa, as my co-supervisor for her commitment and time-quality spent, guiding me in understanding about DNA molecular method. Special thanks to Madam Lam Nyee Fan and Mr. Liew Thor Seng for their constant support, guidance and willingness to assist me whenever I face difficulties in handling data analysis and dealing with the laboratory works.

Furthermore, I would like to thank to Prof. Nuriaki Murakami and Dr. Wataru Shinohara from University of Kyoto, Japan for helping me regarding to the DNA molecular methodology particularly the part pertaining to determining the appropriate primers. Not forgetting also, Sabah Park personnel for allowing and providing facilities to make my task much easier in collecting fern samples for both herbarium and DNA collection purposes. Many thanks to Jennifer Geigler, as Chief in Editor American Fern Journal for giving me a hand in obtaining journals related to my thesis and Dr. Alan R. Smith from University Herbarium, University California of Berkeley for entertaining my enquiries, involving my research outputs. Many thanks also to Prof. Hasebe Mitsuyasu from National Institute of Biology, Japan for helping me in understanding the DNA molecular method and sharing some of his paper publications regarding the DNA molecular systematics. Besides, I would like to say thank you to Mr. Johnny Gisil in providing the proper techniques in plant collections. For the late Dr. Fairus Bin Jalil, special appreciation dedicated to him for offering hand to me especially when I encountered with problems in understanding about DNA molecular method and his willingness to share his opinions regarding my DNA data analysis.

UNIVERSITI MALAYSIA SABAH

Most importantly, deepest appreciation dedicated to my parents and family members who always provided their continuous moral support for me to complete this thesis. Thanks to my best friend, Mr. Cornelius Peter whom has devoted his time to motivate me a lot, when I have encountered dilemma in doing this project. Lastly, I would like to say thank you to everyone whose names may not been mentioned, but who have lent me a hand directly or indirectly during my postgraduate study.

Jacqueline bt Joseph 25 June 2010

ABSTRACT

PHYLOGENETIC RELATIONSHIPS OF CHINGIA, SPHAEROSTEPHANOS AND CHRISTELLA GROUPS (THELYPTERIDACEAE) USING *rbc*L GENE SEQUENCES

This study determined the phylogenetic relationship of Chingia, Sphaerostephanos and Christella groups and examined the grouping of the genera based on the resultant rbcL analyses in comparison to the morphological analyses, which were based on morphological descriptions provided by Holttum. The study sites consisted of Crocker Range Park and few of the West Coast Sabah area. In this phylogenetic study, rbcL gene marker was used to infer phylogenetic relationships of the study groups whereas morphological analyses was used to check the relationship based on the morphological characters gathered from Holttum. In the phylogenetic study of Chingia, Sphaerostephanos and Christella groups, 977 base pairs of DNA sequences were obtained from 32 samples representing the 3 groups of genera. The phylogenetic relationships and morphological analyses revealed that Sphaerostephanos is a taxonomically-problematic group especially for Pronephrium and Sphaerostephanos. The phylogenetic analyses found that there were two clades derived from the primitive Sphaerostephanos group, consisted of a monophyly advanced Sphaerostephanos clade and a monophyly clade of Chingia group and Christella group. Morphological analyses showed that Amphineuron and Christella were well-clustered into the Christella group. However, it was found that some of the Christella spp. (C. subpubescens and C. papilio) were established a lineage to Chingia group in the rbcL analyses. The grouping of Chingia and Plesioneuron into the Chingia group gained support from the morphological analyses but not completely supported by the rbcL analyses since Chingia spp. (C. clavipilosa and C. perrigida) were clustered into Christella group. Chingia and Christella were found to form a monophyletic clade together in both analyses. However, rbcL analyses does not support this grouping very well with <70% of bootstrap probability, and showed that Chingia group and Christella group were almost separated into two independent monophyly clade. The separation was in agreement with the morphological analyses that Christella clade and Chingia clade were split from each other to form their own monophyletic clade. It can be seen that Chingia group and Christella group were derived from a monophyletic group together and gradually evolved to form two independent groups. Pneumatopteris was verified being the genera under the Sphaerostephanos group since Pneumatopteris was found appear in the monophyletic advanced Sphaerostephanos clade in the rbcL analyses. Despite being that, the grouping of genera within Sphaerostephanos group cannot be displayed clearly. This could be due to the insufficiency of morphological characters used in morphological analyses were not strong enough to separate or distinguish certain genera into the Sphaerostephanos group. Genetic factors were also believed to influence the outcomes of rbc. analyses on the Sphaerostephanos group. Undoubtedly, more details studies should be carried out to support the proposed conclusions since this is the first time phylogenetic study conducted on Chingia, Sphaerostephanos and Christella groups of genera.

ABSTRAK

Penyelidikan ini mengkaji hubungan filogenetik dalam kumpulan Chingia, Sphaerostephanos dan Christella dan pengelompokan kumpulan genus-genus ini berdasarkan kepada hasil analisis rbc terhadap hasil analisis morfologi yang berdasarkan kepada deskripsi morfologi yang disediakan oleh Holttum. Kawasan kaijan melibatkan beberapa Taman Banjaran Crocker dan beberapa kawasan di Pantai Barat Sabah. Dalam kajian ini, rbd. digunakan untuk membentuk hubungan filogenetik bagi kumpulan yang dikaji. Manakala analisis morfologi digunakan untuk meneliti hubungan kumpulan genera ini berdasarkan kepada ciri morfologi yang dikumpulkan daripada hasil kajian Holttum. Dalam kajian ke atas hubungan filogenetik Chingia, Sphaerostephanos dan Christella, 977 pasangan bes jujukan DNA diperolehi daripada 32 sampel mewakili 3 kumpulan genera. Analisis hubungan filogenetik dan morfologi mendedahkan bahawa kumpulan Sphaerostephanos merupakan kumpulan yang bermasalah dari segi taksonomi terutamanya Pronephrium dan Sphaerostephanos. Analisis hubungan filogenetik mendapati dua kled utama terhasil daripada evolusi kumpulan Sphaerostephanos primitif, vang terdiri daripada kled monofiletik Sphaerostephanos maju dan kled monofiletik kumpulan <u>Chingia</u> dan kumpulan <u>Christella</u>. Analisis morfologi menunjukkan pengelompokan Amphineuron dan Christella di dalam kled Christella. Meskipun begitu, didapati dua spesies Christella (C. subpubescens dan C. papilio) membentuk hubungan dengan kumpulan Chingia di dalam analisis rbd.. Pengelompokan Chingia dan Plesioneuron dalam kled Chingia disokong oleh analisis morfologi tetapi tidak disokong sepenuhnya oleh analisis rbc memandangkan Chingia spp. iaitu C. clavipilosa dan C. perrigida berada dalam kumpulan Christella. Chingia dan Christella didapati membentuk satu kumpulan monofiletik bersama dalam analisis morfologi dan analisis rbd.. Walau bagaimanapun, analisis rbd. tidak menyokong sepenuhnya pengelompokan ini dengan nilai kebarangkalian <70%. memandangkan kumpulan Chingia dan kumpulan Christella hampir terpisah kepada dua kled monofiletik berasingan. Pengasingan ini sejajar dengan hasil analisis morfologi, menuniukkan kled Christella dan kled Chingia terpisah di antara satu sama lain untuk membentuk kled monofiletik masing-masing. Secara kesimpulannya, kumpulan-kumpulan Chingia dan Christella diinterpretasikan sebagai kumpulan-kumpulan monofiletik bersama dan kemudiannya terevolusi membentuk kumpulan masing-masing. Pneumatopteris pula disahkan sebagai genera dalam kumpulan Sphaerostephanos memandangkan Pneumatopteris didapati menduduki kled monofiletik Sphaerostephanos maju dalam analisis rbcL. Meskipun begitu, pengelompokan genera dalam kumpulan Sphaerostephanos tidak dapat ditunjukkan secara jelas. Ini mungkin disebabkan kekurangan ciri-ciri morfologi yang digunakan untuk analisis morfologi tidak cukup kuat untuk memisahkan atau membezakan genera tertentu ke dalam kumpulan Sphaerostephanos. Faktor-faktor genetik dipercayai mempengaruhi hasil analisis rbd_ ke atas pengelompokan kumpulan Sphaerostephanos. Tidak dinafikan, lebih banyak kajian terperinci perlu dijalankan untuk menyokong kesimpulan yang dicadangkan memandangkan ini adalah merupakan kajian filogenetik yang pertama kali dijalankan ke atas kumpulan genus Chingia, Sphaerostephanos dan Christella.

CONTENTS

	Page
TITLE	i
DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ABSTRAK	v
CONTENTS	vi
LIST OF FIGURES	xii
LIST OF TABLES	xiv
LIST OF ABBREVIATIONS	XV
LIST OF SYMBOLS	xvii

CHAPTER 1: INTRODUCTION

1.1	Backgr	round	1
1.2	Research Problems		3
1.3	Hypoth	neses of Study	4
1.4	Aims c	of Study	4
CHAP	TER 2:	LITERATURE REVIEW	5
2.1	Thelyp	teridaceae	5
	2.1.1	Taxonomy	5
	a)	Taxonomy of Malayan Thelypteridaceae	6
	b)	Taxonomy of Sabah Thelypteridaceae	6
	2.1.2	Thelypteridaceae as a Taxonomical-Problematical	9
		Family	
	2.1.3	Distribution and Ecology	12
	2.1.4	Morphology	13
2.2	The Gr	oups of Genera within Thelypteridaceae	14
	2.2.1	Chingia Group (<i>Chingia</i> and <i>Plesioneuron</i>)	14
	a)	Taxonomy	14
	b)	Morphology	14

vi

	c)	Distribution and Ecology	15
	2.2.2	Christella Group (Christella and Amphineuron)	15
	a)	Taxonomy	15
	b)	Morphology	15
	c)	Distribution and Ecology	16
	2.2.3	Sphaerostephanos Group (Sphaerostephanos,	16
		Pronephrium and Pneumatopteris)	
	a)	Taxonomy	16
	b)	Morphology	19
	c)	Distribution and Ecology	20
2.3	Thely	pteridaceae as a Modern Pteridophyte Group	20
2.4	Molec	ular Systematics	20
	2.4.1	Definition and Concept	20
	2.4.2	Application of Systematics	22
2.5	Phylog	genetics	22
2.6	Molec	ular Markers UNIVERSITI MALAYSIA SABAH	23
	2.6.1	Properties of a Good Marker	23
2.7	Ribulo	se-bisphosphate carboxylase (<i>rbc</i> L)	24
2.8	Previo	us Molecular Systematic Study on Ferns	27
	2.8.1	Design of Primers	27
	2.8.2	Morphological Charateristics and Molecular Systematics	27
	a)	Molecular Phylogenetic Method	27
	b)	Combining Molecular and Morphological Data in	28
		Phylogenetic Analyses	
	2.8.3	Cyctological Study on Ferns	28
	2.8.4	Blechnaceae, a Closely Related Outgroup to	29
		Thelypteridaceae	
2.9	Thelyp	pteridaceae Phylogenetic Relationships Study	30

	a)	Thelypteroid Ferns (Thelypteridaceae)	30
	b)	A Classification of Extant Ferns	30
	c)	rbcL Gene Sequences Provide Evidence for the	31
		Evolutionary Lineages of Leptosporangiate Ferns	
CHAF	PTER 3:	MATERIALS AND METHODS	36
3.1	Study	Sites	36
3.2	Taxon	Sampling	36
3.3	Specir	nen Collections	39
3.4	Morph	ological Analyses	41
	3.4.1	Nexus Data Editor (NDE), Tool in Morphological Analyses	41
	3.4.2	Procedure in Utilizing Nexus Data Editor (NDE)	42
3.5	Molecu	ular Genetic Marker	42
3.6	DNA T	echniques in Molecular Systematic	45
	3.6.1	DNA Extraction	45
	a)	CTAB Protocol (Doyle & Doyle, 1987)	45
	_b)	Qiagen DNeasy Protocols DNA Plant	46
	3.6.2	Polymerase Chain Reaction (PCR)	49
	3.6.3	Agarose Electrophoresis	50
	a)	Preparation of Gel Electrophoresis	50
	b)	Electrophoresis Process	50
	3.6.4	PCR Products Purification	51
	3.6.5	Sequencing	51
	a)	Cycle Sequencing	51
	b)	Ethanol Precipitations	52
	3.6.6	Primers in Sequencing	53
3.7	Molecu	ular Phylogenetic Analyses	54
	3.7.1	DNA Sequence-BLAST	54
	3.7.2	DNA Raw Sequence 'Clean-Up'	54
	3.7.3	Outgroup Choices	55
	3.7.4	DNA Sequence Assemblages	55
	3.7.5	Sequence Alignments	58
3.8	Data A	nalyses	58

	3.8.1	Maximum Parsimony (MP)	58
	3.8.2	Neighbour-Joining (NJ)	59
	3.8.3	Maximum Likelihood (ML)	59
	3.8.4	Tree Editing	59
CHAP	PTER 4:	RESULTS	60
4.1	Morph	ological Analyses	60
	4.1.1	Chingia Clade (Chingia and Plesioneuron)	60
	4.1.2	Christella Clade (Christella and Amphineuron)	60
	4.1.3	Sphaerostephanos Group (Sphaerostephanos,	61
		Pronephrium and Pneumatopteris)	
4.2	Molecu	ular Procedure	61
	4.2.1	DNA Isolation	61
	4.2.2.	PCR Products	61
	4.2.3	Purified of PCR Products	64
4.3	DNA S	equence-BLAST	68
4.4	DNA S	equence Alignment	68
4.5	Phylog	jenetic Analyses	72
	4.5.1	32-Taxa rbd. Dataset VERSITI MALAYSIA SABAH	72
	4.5.2	Maximum Parsimony (MP) Analyes	73
	4.5.3	Neighbour-Joining (NJ) Analyses	77
	4.5.4	Maximum Likelihood (ML) Analyses	80
	a)	Models of Nucleotide Substitution	81
СНАР	TER 5:	DISCUSSION	83
5.1	Morph	ological Analyses	84
	5.1.1	Chingia Group and Christella Group	84
	5.1.2	Sphaerostephanos Group	84
5.2	Phylog	enetic Analyses	85
	5.2.1	Phylogenetic Relationships within Sphaerostephanos	85
		Group Based on <i>rbc</i> L Analyses	
	5.2.2	Phylogenetic and Taxonomic Consideration among	

ix

	Specie	es for <i>Sphaerostephanos</i>	85
	5.2.3	Phylogenetic Relationships and Taxonomic	89
		Consideration among Species for Pronephrium	
	5.2.4	Phylogenetic Relationships and Taxonomic	90
		Consideration among Species for Pneumatopteris	
5.3	Phylog	genetic Relationships and Taxonomic Consideration	93
	among	g Species for Christella Group and Chingia Group	
	Based	on <i>rbc</i> L Analyses	
	5.3.1	Christella and Amphineuron	91
	5.3.2	Chingia and Plesioneuron	92
5.4	The P	Paraphyly of Sphaerostephanos Group	92
	(Spha	aerostephanos and Pronephrium)	
	5.4.1	Consequences of Frequent Binomial Name Changes	93
	5.4.2	Morphological Characters	94
	5.4.3	Evolutionary Factors	95
	a)	Convergent Evolution	95
	b)	Genetic Canalisation	95
5.5	The M	onophyly of Chingia Group and Christella Group	96
5.6	The Co	ongruence between Molecular Phylogenetic Evidence	100
	and M	orphological Analyses	
	5.6.1	Sphaerostephanos Group	100
	5.6.2	Christella Group and Chingia Group	101
5.7	Molecu	ular Techniques	101
	5.7.1	DNA Isolation	101
	5.7.2	Polymerase Chain Reaction (PCR)	101
	5.7.3	PCR Product Purification	103
	5.7.4	DNA Sequencing	103
5.8	Data A	analyses Problems	103
	5.8.1	Missing Data	103
	a)	Primers Mismatch	104
	b)	Short DNA Sequencing Read Lengths	104

CHAPTER 6:	CONCLUSION	105
REFERENCES		108
APPENDIX		120

LIST OF FIGURES

		Page
Figure 2.1	Diagram of chloroplast genome (representative of lost land plants) illustrating location of many of the chloroplast regions.	26
Figure 2.2	Thelypteridaceae positions within Polypodiales.	32
Figure 2.3	Chingia, Sphaerostephanos, Christella groups of genera positions in Thelypteridaceae.	33
Figure 2.4	<i>Thelypteris</i> (Thelypteridaceae) positions in polypod ferns.	34
Figure 2.5	Thelypteridaceae positions within Polypodiales.	35
Figure 3.1	Map of Sabah showing sampling distribution in Sabah.	37
Figure 3.2	DNA sample and specimen collections activities.	40
Figure 3.3	Various stages involved in characterization of DNA techniques.	
Figure 3.4	Pairwise alignment for each DNA fragments from different primers.	56
Figure 3.5	DNA sequences assemblage steps.	57
Figure 4.1	Dendrogram produced from the morphological analysis of Chingia, Sphaerostephanos and Christella groups of genera using Nexus Data Editor (NDE) programme.	63
Figure 4.2	(a), (b), (c) & (d) DNA isolation in at least some of the crude DNA extract in agarose gel.	65
Figure 4.3	(a) DNA band observed in some of the <i>Sphaerostephanos and Pronephrium</i> PCR products.	65
	(b) DNA band observed in some of the <i>Pronephrium</i> and <i>Pneumatopteris</i> PCR products.	65
	(c) DNA isolation in at least some of the crude DNA extract in agarose gel.	66
	(d) DNA band observed in some of the Chingia and <i>Plesioneuron</i> PCR products.	66

Page

Figure 4.4	(a) & (b) DNA band observed in some of the <i>Pronephrium</i> and <i>Pneumatopteris</i> PCR products.	66
Figure 4.5	The refined alignments of <i>rbc</i> L gene sequences of Chingia, Sphaerostephanos and Christella groups of genera.	70
Figure 4.6	The single most parsimonious tree (Maximum Parsimony tree) of Chingia, Sphaerostephanos and Christella groups of genera inferred from <i>rbc</i> L sequences data.	75
Figure 4.7	Strict consensus tree of Chingia, Sphaerostephanos and Christella groups of genera inferred from <i>rbc</i> L sequence.	76
Figure 4.8	Neigbour-Joining phylogram, corresponding to Chingia, Sphaerostephanos and Christella groups of genera, inferred from <i>rbc</i> L sequences data.	79
Figure 4.9	The phylogram of Chingia, Sphaerostephanos and Christella groups of genera (Thelypteridaceae) with the optimal Maximum Likelihood score (-ln = 2277.9548) inferred from <i>rbc</i> L sequences data.	82
Figure 5.1	Evolution process in Sphaerostephanos group.	86
Figure 5.2	The comparison of the shape of pinnae between <i>Sphaerostephanos</i> (a & b) and <i>Pronephrium</i> (c & d).	97
Figure 5.3	Evolution pattern on Chingia, Sphaerostephanos and Christella groups of genera based on <i>rbc</i> L analyses.	98
Figure 5.4	The perceived formation of two monophyletic clades, <i>Chingia</i> and <i>Christella</i> .	99
Figure 5.5	Morphological characters shared between Pneumatopteris, Sphaerostephanos and Christella.	102

LIST OF TABLES

		Page
Table 2.1	Generic names of Chingia-Sphaerostephanos-Christella groups of genera (Thelypteridaceae) in 1955 and 1968	7
Table 2.2	Groups of genera within Thelypteridaceae with morphological characters descriptions	8
Table 2.3	List of genus of Thelypteridaceae in Sabah	10
Table 2.4	The Pronephrium generic circumcriptions	18
Table 2.5	<i>Pronephrium</i> species classification under the Subgenera <i>Pronephrium</i> and Subgenera <i>Menisciopsis</i>	19
Table 2.6	Ancient and modern pteridophytes groups in New Zealand based on fossil evidence and molecular data.	21
Table 2.7	The comparison between properties of markers in molecular and morphology method	24
Table 3.1	List of specimens collected for the study	38
Table 3.2	Morphological characters used in the study	43
Table 3.3	List of primers used in this study for PCR amplification	49
Table 3.4	Quantity of the reagents used in preparing sequencing master mix	52
Table 3.5	Ethanol/Sodium acetate solution reagents	53
Table 3.6	Six primers used in sequencing	54
Table 4.1	Data matrix for character states based on the descriptions of taxa available in Holttum (1971; 1981)	62
Table 4.2	Lane number in agarose gel correspond to the sample names	67
Table 4.3	List of BLAST search ID for the 32 taxa in this study	71

ABBREVIATIONS

MP	Maximum	Parsimony
----	---------	-----------

- ML Maximum Likelihood
- NJ Neighbour Joining
- bp Base pair
- DNA Deoxyribonucleic acid
- Hrs Hours
- TAE Tris-Acetate-EDTA
- TBE Tris-Borate-Edta
- PCR Polymerase Chain Reaction
- dNTP Deoxynucleotide triphosphate
- CTAB Cetyltrimethylammonium Bromide
- rpm **rotatio**n per minute
- NaOAC Natrium acetate
- EtOH Ethanol UNIVERSITI MALAYSIA SABAH
- OTU's Operational Taxonomic Units
- TE Tris-Edta
- TBR Tree Branch Swapping
- *rbc*L ribulose-bisphosphate carboxylase
- varv variety
- RI Retention Index
- CI Consistency Index
- hLRTs Hierarchial Likelihood Ratios Tests

AIC	Akaike Information Criterion
Nst	Number of substitution types
Rmat	Rate matrix
Pinv	Proportion on invariable site
Freq	Frequency
PAUP	Phylogenetic Analysis Using Parsimony
Min	minute
NCBI	National Centre of Biotechnology Information
kb	kilo bases

SYMBOLS

A	Adenine
С	Cytosine
G	Guanine
т	Thymine
cm	centimeter
g	gram
R	Reverse
F	Forward
sp.	species
°C	Degree Celsius
%	Percentage
hà	microgram
μl	microlitre 2
ACCTRAN	Accelerated transformation
MgCl ₂	Magnesium chloride
М	molar
mg	miligram
mМ	micro Molar
ml	milimeter
HCI	Hidrocloric acid
NaCl	Natrium chloride
L	Liter
ddH₂O	deionized distilled water
-In log	negative log likelihood
L .	Length

BS Bootstrap

pH power of hidrogen

CHAPTER 1

INTRODUCTION

1.1 Background

Thelypteridaceae is one of the largest families of pteridophytes, comprising almost a thousand fern species mostly in tropical and subtropical regions, of which less than 2% are discovered in temperate areas (Sornsuwan *et al.*, 2006). In Sabah, Thelypteridaceae is the fourth largest family of pteridophytes with 14 genera and 68 species after Polypodiaceae which comprises of 19 genera (82 species), followed by Grammitidaceae, (7 genera, 80 species), and Dryopteridaceae (6 genera, 71 species) (Said, 2005). Thelypteridaceae is composed of two primary lineages namely, phegopteroid and thelypteroid groups of genera (Smith and Cranfill, 2002).

Holttum (1980) recorded a total of about 1,000 species from the family Thelypteridaceae, constituting approximately 8% of all known species of ferns. Piggot (1988) stated that most Thelypteridaceae species can be found in fairly open places near stream valleys and wet places at high attitudes in the mountains, swampy areas and open places in the lowlands. Thelypteridaceae has been treated as a natural group comprising of nearly 1,000 mostly tropical species since its taxonomic description distinguishes it apart from the dryopteroid ferns as a distinct group about 60 years ago (Smith & Cranfill, 2002). According to Schneider et al. (2004), there are plenty of molecular phylogenetic studies on both Polypodiaceae and Grammitidaceae. Unfortunately for members of the Thelypteridaceae family not much research was conducted on the similar discipline and this statement was supported by Wolf et al. (1994), who mentioned that little work was conducted in either the systematics or phylogenetics of the family Thelypteridaceae and its genera despite many references to ferns. However, there have been taxonomic studies on Thelypteridaceae (Holttum, 1982). Sornsuwan et al. (2006) had emphasized that Thelypteridaceae cannot be clearly classified since some genera have been previously included into or excluded from this fern family, making the

classification in the family much complicated. Besides, Thelypteridaceae have experienced great changes and transformations particularly in terms of morphological characters during the Early Carboniferous period until now (Holttum, 1948). This has made botanist's task quite challenging due to the substantial disagreements in evaluating characters and controversies in building a stable classification for Thelypteridaceae (Hasebe *et al.*, 1994).

Thelypteridaceae have been focused for taxonomic study because of its problematic classification. Wagner & Smith (1993) had claimed that Thelypteridaceae is one of the controversial fern families in term of family definitions. Theypteridaceae have been revised many times by several botanists including Christensen (1913), Copeland (1947), Ching (1963), Morton (1963), Iwatsuki (1964) and Holttum (1971). Holttum is the last person to revise the family Thelypteridaceae in terms of their morphological characters and contributes much to the publication of Thelypteridaceae. Despite being revised frequently by some of the well-known botanists, each of the reports, new ideas, concepts and modification on this family, making the Thelypteridaceae classification yet unclear and unresolved. According to Smith et al. (2006), Thelypteridaceae is difficult or almost impossible to be defined morphologically since Blechnaceae and the athyrioid ferns have been attempted to be included into the Thelypteridaceae family, which had been mentioned by Hennipman (1996).

There are three groups that are collectively known as Chingia, Sphaerostephanos and Christella groups of genera in Thelypteridaceae (Holttum, 1980). In this study, the three groups within the family Thelypteridaceae namely Chingia group (*Chingia, Plesioneuron*), Christella group (*Christella* and *Amphineuron*) and Sphaerostephanos group (*Sphaerostephanos, Pneumatopteris* and *Pronephrium*) were studied since there are arguments to their assignation into its respective genera, due to the confusion regarding the similarity in morphology (Holttum, 1980). Holttum was the one who are responsible to delineate the following genera (*Chingia, Plesioneuron, Sphaerostephanos, Pneumatopteris, Pronephrium, Christella* and *Amphineuron*) into their respective groups (Chingia

group, Sphaerostephanos group and Christella group) based on their morphological characters similarities.

In this study, molecular method was conducted in order to establish and examine the phylogenetic relationships within Chingia, Sphaerostephanos and Christella groups of genera based on the DNA sequences data. According to Schneider *et al.* (2004), DNA sequences data has been seen as a solution to resolve uncertainties of morphological characters evolution. Hence, the grouping of genera Chingia, Sphaerostephanos and Christella using the molecular method was expected to be resolved in comparison to the grouping of genera made by Holtum (1971; 1980), which based on morphological characters analyses.

The gene ribulose 1, 5-bisphosphate carboxylase/oxygenase (*rbc*L) which is located in chloroplast genome was used in this study as a molecular marker. Interestingly, sequencing data derived from *rbc*L have also been used to address phylogenetic relationships in ferns (Hasebe *et al.*, 1993). Lemieux *et al.* (2000) reported that the chloroplast genome have been sequenced from several clades of green plants and contained considerable amounts of phylogenetically useful data. Moreover, *rbc*L have been proven to be useful in addressing fern's phylogenetic relationship since it has been used in many studies such as in the phylogenetic relationships on Ophioglossaceae and Marattiaceae (Hasebe *et al.*, 1993), the comparison between morphology and molecular method of extant ferns (Pryer *et al.*, 1995), and in the study of leptosporangiate ferns phylogeny using three different plastids (Pryer and Schuettpelz, 2009).

1.2 Research Problems

There were lack of recent informations and studies conducted to verify the delineation of Chingia, Sphaerostephanos and Christella groups as proposed by Holttum (1971; 1980). Besides, these three groups of genera were not clearly resolved from the conventional taxonomy as evidence in changes in classification and taxon names in various revisions. In addition, the genera are not clearly defined morphologically due to the failureness to observe differences in certain characters. This has caused confusion among the taxonomist and difficulties in