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ABSTRACT 

Phenol has been in produced since 1860s. The application of phenol and its 
derivatives is worldwide. However, phenol is highly toxic and able to retain in 
environment for a long period. Despite being toxic, C tropicalis RETL-Crl is capable 
of consuming phenol as their carbon sources. Remarkable performance in free cells 
systems makes C tropicalis RETL-Crl valuable to the removal of toxic pollutant like 
phenol. The application of natural and modified zeolite in toxic pollutant treatment 
is familiar. Therefore, the main goal of this research is to determine the potential of 
C tropicalis RETL-Crl in an immobilized system and the feasibility of natural zeolite 
(NZ) and surfactant modified zeolite (SMZ) as solid carrier and adsorbent in the 
adsorption-biodegradation of phenol. NZ is modified with the various concentration 
of cationic surfactant to form SMZ. The modification is confirmed by the FTIR, XRD, 
TGA and SEM analysis. Various parameters such adsorbent dose, particle size, 
initial cell loading and incubation time had been optimized for the immobilization 
protocol of C tropicalis RETL-Crl onto NZ and SMZ. SMZ immobilized significantly 
higher cells than NZ by 3.8 folds. Cells retention of 3.85x1010 CFU/g and 1.09x1010 

CFU/g were obtained by SMZ and NZ respectively. Various factors influencing the 
phenol biodegradation by immobilized yeast cells onto NZ and SMZ is optimized and 
applied to two different modes of continuous phenol biodegradation; simultaneous 
adsorption-biodegradation and separate adsorption by NZ and SMZ then 
biodegradation by free cells (FC) in suspension. The removal percentages of phenol 
from free cells to immobilized cells were improved from 81 % to 99% in the 7mM of 
Phenol. This indicates that the degradation of phenol using immobilized cells is 
more effective than when utilizing FC. SMZ recorded 99% removal efficiency when 
phenol concentration is increased to 7mM with the removal rate of 26.35mg/L.hr. 
While the phenol biodegradation by FC and immobilized cells onto NZ shows 81 % 
and 75% removal. Accumulation of catechol is monitored, with maximum 
production of 15. 75 and 32.33 mg/L when NZ and SMZ are used, respectively. The 
kinetic model of phenol adsorption-biodegradation by immobilized yeast cells onto 
NZ and SMZ can be described by pseudo-first (physisorption) and pseudo-second 
(chemisorption) order respectively. An intraparticle diffusion model proves it is not 
the only rate controlling phase for the process. When SMZ is applied in continuous 
system, at the concentration of 16mM, simultaneous and separate system of 
adsorption-biodegradation took only 34 and 32 hours to complete the phenol 
removal with the removal rate of 44.29 and 47.00 mg/L.hr respectively with the 
maximum catechol production of 33.40mg/L for both systems. These results show 
significant improvement compared to previous report on phenol removal in 
continuous flow system. C tropicalis RETL-Crl perform better when immobilized 
and applicability of NZ and SMZ as the carrier matrix for phenol removal is 
confirmed. This study has therefore provided further substantial knowledge 
regarding versatility of C tropica/is RETL-Crl roles in the environment. Finally, it is 
possible to apply this simple and economic treatment in large scale at wastewater 
treatment plant containing high concentration of phenol. 
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ABSTRAK 

PENJERAPAN-BIODEGRADASI FENOL OLEH C. tropicalis RETL-Cr1

TERSEKA T GERAK DALAM ZEOLIT SEMULAJADI DAN ZEOLIT DIUBAHSUAI 

Feno/ telah dihasi/kan sejak tahun 1860-an. Penggunaan fenol dan terbitannya 
adalah di seluruh dunia. Waiau bagaimanapun, fenol adalah sangat toksik dan 
boleh kekal da/am persekitaran untuk Jangka masa yang lama. Walaupun bersifat 
toksik, C tropicalis RETL-Crl mampu menggunakan feno/ sebagai sumber karbon 
mereka. Prestasi luar biasa dalam sistem sel bebas menjadikan C tropicalis RETL -
Cr 1 istimewa dalam penyingkiran bahan cemar toksik seperti fenol. Penggunaan 
zeolit semulajadi dan diubah suai dalam rawatan bahan cemar toksik adalah biasa. 
O/eh itu, matlamat utama penye/idikan ini adalah untuk menentukan potensi 
Ctopicalis RETL-Crl dalam sistem pegun dan ketersauran zeolit semulajadi (NZ) 
dan zeolit diubahsuai surfaktan (SMZ) sebagai pembawa pepejal dan penjerap 
dalam penjerapan-biodegradasi fenol. NZ diubahsuai dengan pelbagai kepekatan 
surfaktan kationik untuk membentuk SMZ Pengubahsuaian ini disahkan oleh 
analisis FTIR, XRD, TGA dan SEM. Pelbagai parameter seperti dos penjerap, saiz 
zarah muatan sel awa/ dan masa inkubasi telah dioptimumkan untuk protokol 
pemegunan C tropicalis ke dalam NZ dan SMZ SMZ mememegunkan bilangan se/­
sel yang Jauh lebih tinggi daripada NZ sebanyak 3.8 kali ganda. Pemegunan sel 
3.85xld°CFU/g dan 1.09xld°CFU/g masing-masing didapati oleh SMZ dan NZ 
Pelbagai faktor yang mempengaruhi biodegradasi feno/ o/eh sel-sel yis pegun 
dalam NZ dan SMZ dioptimumkan dan digunakan dalam dua mod biodegradasi 
fenol berterusan· penjerapan-biodegradasi serentak dan penjerapan berasingan 
oleh NZ dan SMZ kemudian biodegradasi o/eh sel bebas (FC). Peratusan 
penyingkiran fenol dari se/-sel bebas ke se/-sel pegun bertambah baik dari 81 %
hingga 99% pada 7mM fenol. lni menunjukkan bahawa degradasi fenol 
menggunakan sel-sel pegun adalah lebih berkesan daripada menggunakan FC SMZ 
mencatatkan 99% kecekapan penyingkiran apabi/a kepekatan feno/ meningkat 
kepada 7mM dengan kadar penyingkiran 26.35mg/L.hr. Biodegradasi fenol oleh FC 
dan sel-sel pegun dalam NZ menunjukkan 81 % dan 75% penyingkiran. Penghasilan 
maksimum katekol sebanyak 15.75 dan 32.33 mg/L apabila NZ dan SMZ 
digunakan. Model kinetik penjerapan-biodegradasi fenol oleh sel-se/ yis pegun ke 
dalam NZ dan SMZ boleh dije/askan o/eh tertib pseudo-pertama (fisierapan) dan 
tertib pseudo-pertama (pengkimierapan) masing-masing. Model resapan intrazarah 
membuktikan ia bukan satu-satunya tahap pengawal kadar untuk proses itu. 
Apab1'la SMZ diterapkan dalam sistem yang berterusan, pada kepekatan 16mM, 
sistem serentak dan berasingan penjerapan-biodegradasi mengambil hanya 34 dan 
32 Jam untuk menyelesaikan penyingkiran fenol dengan kadar penyingkiran 44.29 
dan 47.00 mg/Lhr masing-masing dengan maksimum pengeluaran katekol 
33. 40mg/L untuk kedua-dua sistem. Keputusan ini menunjukkan peningkatan yang
ketara berbanding dengan /aporan sebelumnya mengenai penyingkiran fenol dalam
sistem aliran berterusan. C tropica/is RETL-Crl berfungsi dengan /ebih baik apabi/a
dipegunkan dan kebolehgunaan NZ dan SMZ sebagai matriks pembawa untuk
penyingkiran fenol disahkan. O/eh itu, kajian ini memberi pengetahuan lanjut
mengenai keserbagunaan peranan C tropicalis RETL-Crl dalam a/am sekitar. Akhir
sekalt rawatan sederhana dan ekonomi ini boleh diterapkan secara besar-besaran
di loji rawatan air sisa yang mengandungi kepekatan fenol yang tinggi.
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RETL-Crl in continuous mode of separate 

adsorption-biodegradation 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Environmental pollution is a worldwide problem that is faced by developing and 

developed countries over the year. With urbanization and extensive 

industrialization, the pollution of the environment with man-made (synthetic) 

organic compounds has become a major problem (Mohanty, 2012). Environmental 

pollution is now considered as a side effect of modern industrial society. The United 

State Environmental Protection Agency (EPA) had published the current list of 126 

Priority Pollutants on (EPA, 2013). It was a set of chemical pollutants that were 

being regulated and have several developed analytical test methods. Among the 

commonly found wastes are arsenic, benzene, chloroform, cadmium, chromium, 

lead, phenol, PCB's, trichloroethylene and toluene. 

Organic pollutants comprise a potential group of chemicals which can be 

dreadfully hazardous to human health. As they persist in the environment, they are 

capable of long range transportation, bioaccumulation in human and animal tissue 

and bio-magnifications in food chain. Phenolic compounds are hazardous pollutants 

that are toxic at relatively low concentration (Nair et al., 2008). Phenol or phenolic 

compounds are widely distributed in the environment partly as a result of natural 

processes and more importantly, due to human and industrial activities. Phenols, 

being persistent compounds and due to their toxic, mutagenic and carcinogenic 

characteristics, are classified as highly hazardous chemicals (Crawford et al., 2008). 

Phenol has been classified as an important contaminant, thus most country 

has created laws regulating the phenol level in drinking water and effluents 

discharged from factories as pollution prevention action in order to monitor, control 

and regulate it. 



For instance, U.S. Environmental Protection Agency (US EPA) and World 

Health Organization (WHO) have set a guideline of the maximum permissible level 

for phenol in environment is 0.1 mg/L (Hsieh et al./ 2008). European Council 

Directive has set up a phenol limit of 0.Sµ;i/L to control the phenol concentration in 

drinking water (Tziotzios et al./ 2005), while Japan Ordinance No 15 law (JEGS, 

2012) permitted the phenol level of 5 mg/L in water source. United Arab Emirate 

also limits the concentration of phenols in industrial effluent to the environment to 

0.1 mg/L (Al Zarooni and Elshorbagy, 2006). At Argentina, law 24051 of hazardous 

residues was established and the level of phenol in drinking water is limited to 

2µg/L (Coniglio et al./ 2008). 

In Malaysia, Department of Environment (DOE) has restricted the limit of 

phenol as 0.001 mg/L and 1.0mg/L for Standard A and Standard B respectively. 

This is the guidelines under the Environmental Quality (Sewage and Industrial 

Effluents) Regulation, 1979 (IWK, 2012). Despite being very harmful to 

environment and living organisms, phenol is widely used in many industries. These 

compounds originate mainly from industrial processes such as resin manufacturing, 

oil refineries, petrochemicals, pharmaceuticals, dyes, textiles and plastic industries 

(Ahmad et al./ 2012). 

Crawford et al./ (2008) conclude that phenol is released to the air and water 

as a result of its manufacture, its use in phenolic resins, and organic synthesis. 

Phenol is found in petroleum products such as coal tar, and creosote and can be 

released by combustion of wood and auto exhaust. Phenol may be formed in the 

environment caused by the natural degradation of benzene, since phenol is a major 

metabolite of benzene (Crawford et al./ 2008) and is found extensively in the 

environment (ASTOR, 2008).The main source of phenol pollution in water is 

industrial effluent discharge. 

Phenol is generally biodegrade rapidly in soil. However, biodegradation of 

phenol in water or soil may be hindered or precluded by the presence of high, toxic 

concentrations of phenol or other chemicals, or by other factors such as a lack of 

nutrients or microorganisms capable of degrading phenol. If biodegradation is 

sufficiently slow, phenol in sunlit water will undergo photo-oxidation with photo-
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chemically produced peroxyl radicals, and phenol in soil will leach to groundwater. 

Phenol may remain in air, water, and soil for much longer periods if it is continually 

or consistently released to these media from point sources. 

Thus, with the massive urbanization, it is difficult to have free-phenol 

environment. Phenol presences in environment are toxic in nature and cause 

various health hazards. Exposure to phenol by any routes; inhalation, oral and 

dermal can produce various health problems to human and animals. Long-term 

exposure to phenol at work has been associated with cardiovascular disease. 

Ingestion of liquid products containing concentrated phenol can cause serious 

gastrointestinal damage and even death. Application of concentrated phenol to the 

skin can cause severe skin damage. Investigations on phenol toxicology to the 

animals have been done in the laboratory. The effect may vary depending on the 

duration of exposure. Short-term exposure to high levels of phenol has caused 

irritation of the respiratory tract and muscle twitching. Longer-term exposure to 

high levels of phenol caused damage to the heart, kidneys, liver, and lungs 

{ATSDR, 2008). Drinking water with extremely high concentrations of phenol has 

caused muscle tremors, trouble walking, and death in animals. Short-term 

application of phenol to the skin has produced blisters and burns {ATSDR, 2008). 

Hence, the treatment of wastewater containing phenol is a necessity. 

Generally there are 3 main methods of phenol treatment; chemical, physical and 

biological. Phenol removal by chemical treatment arise secondary pollution due to 

the excessive use of chemical usage. High cost in purchasing chemical reagents 

and the high electrical energy demand makes chemical treatment for phenol not 

favorable. Phenol removal by physical method is demanding a good adsorbent. 

The expensive cost, limited lifetime, hard pretreatment and regeneration process of 

adsorbent makes the physical treatment less preferable. Biological method is 

generally preferred due to lower costs and possibility of complete mineralization as 

mentioned methods have serious drawbacks such as high cost and formation of 

hazardous by-products (Basha et al./ 2010) . Many microorganisms (bacteria, fungi 

and algae) are capable of using aromatic compounds as the sole source of carbon 

and energy which includes both aerobic and anaerobic microorganisms. Pure and 

mixed cultures of the Pseudomonas genus are the most commonly utilized biomass 
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(bacteria) for the biodegradation of phenols (Stoilova et al
? 

2007) and they are 

believed to have good potential for different biotechnological applications. 

Fungi share a significant part in the recycling of aromatic compounds in the 

biosphere and several studies have shown that diverse fungi are capable of phenols 

mineralization. They are capable of consuming a wide variety of carbon sources by 

enzymatic mechanisms, thus providing possibilities for metabolizing phenols and 

other aromatic derivates (Stoilova et. al., 2007). The most abundant fungi in 

polluted environments are yeasts. Some yeasts such as Candida tropicalis, 

Fusarium flocciferium, and Tricha5poron cutaneum are capable of utilizing phenol 

as the major carbon and energy source (Agarry and Aremu, 2012; Al-Khalid and El­

Naas, 2012). This makes them an interesting subject for studies aimed at the 

development of technologies for purification of contaminated soils and waters. 

However, microbial growth will restrain the concentration of phenol at high 

concentrations (Pradeep et al., 2015). Several strategies have been proposed to 

overcome substrate inhibition. These include cell acclimatization to higher 

concentrations of phenol, the use of genetically engineered microorganisms and cell 

immobilization (Benerjee and Goshal, 2011). An immobilized cell is one of the 

approaches for incorporating bacterial biomass into an engineering process. The 

advantages of the process based on immobilized biomass include enhancing 

microbial cell stability, allowing continuous process operation and avoiding the 

biomass-liquid separation requirement (Annadurai et at 2007). 

In order to extend the scope of biodegradation, considerable amounts of 

research have been carried out on the biodegradation of phenol by immobilization 

technique for its high removal efficiency and low cost. Combined with 

immobilization technique, the biodegradation process was updated by some 

advantages including enhancing microbial cell stability, allowing continuous process 

operation and avoiding the biomass-liquid separation requirement. In addition, this 

effective technique was also employed to protect the microbe from high phenol 

concentrations. 
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