ADSORPTION-BIODEGRADATION OF PHENOL BY IMMOBILIZED *Candida tropicalis* RETL-Cr1 ONTO NATURAL AND MODIFIED ZEOLITE

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

SHAZRYENNA DALANG

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH

2018

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: ADSORPTION-BIODEGRADATION OF PHENOL BY IMMOBILIZED Candida tropicalis RETL-Cr1 ONTO NATURAL AND MODIFIED ZEOLITE

IJAZAH: DOKTOR FALSAFAH (SAINS SEKITARAN)

Saya **SHAZRYENNA DALANG**, Sesi **2013-2018** mengaku membenarkan tesis Doktoral disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

SHAZRYENNA DALANG DS1311003T

Disahkan oleh, NURULAIN BINTI ISMAIL PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

(Tandatangan Pustakawan)

(Prof. Madya, Dr. Piakong Mohd Tuah) Penvelia

Tarikh: 5 SEPTEMBER 2018

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equation and references, which have been accordingly acknowledged.

5 September 2018

ha

Shazryenna Dalang DS1311003T

CERTIFICATION

NAME : SHAZRYENNA BINTI DAL	ANG
-----------------------------	-----

MATRIX NO. : DS1311003T

TITLE : ADSORPTION-BIODEGRADATION OF PHENOL BY IMMOBILIZED Candida tropicalis RETL-Cr1 ONTO NATURAL AND MODIFIED ZEOLITE

DEGREE : DOCTOR OF PHILOSOPHY

:13 AUGUST 2018

(ENVIRONMENTAL SCIENCE)

VIVA DATE

CERTIFIED BY

SUPERVISOR

Prof. Madya Dr. Piakong Mohd Tuah

ACKNOWLEDGEMENT

First and foremost, Alhamdulillah.

I would like to thank my supervisor Prof. Madya Dr. Piakong Mohd Tuah for giving me the opportunity to work under his supervision as well as for his guidance, advice and direction.

My appreciation also goes to Universiti Malaysia Sabah, for opportunity given to pursue my goals. I would like to thank the Program of Environmental Science, Chemical Industry, Geology and Biotechnology for giving me the opportunity to use the facilities and lab space. My thanks also go to MyBrain15 for the scholarship given for my Ph.D.

I thank all of colleagues and laboratory personnel who extended their time, expertise, generous advice, criticism, technical assistance and encouragement during my research. I like to acknowledge everyone, but I am to be constrained to a few in mentioning names as Mr. Taipin, Mr. Saufe, Mr. Neldyn, Mrs. Norlyn and Mr. Sahrizal who indebted most for their assistance in pursuing laboratory work. To all my friends, especially Hasmira, Diana, Farah, Kavitha and Rehan, thank you very much for the continuous understanding, pray and encouragement throughout my Ph.D journey.

My special thank you to my parents, Dalang Hj Kassau and Juhiah Hj Midin, and my family Rijal, Frenshella, Alwi, Bellinda, Suhaif, Azril Ariff, Suryani, Salmi and Roslan, for their love, understanding, encouragement and constant prayers. I love you all. Everything seems impossible until it is done!

Shazryenna Dalang 5 September 2018

ABSTRACT

Phenol has been in produced since 1860s. The application of phenol and its derivatives is worldwide. However, phenol is highly toxic and able to retain in environment for a long period. Despite being toxic, C. tropicalis RETL-Cr1 is capable of consuming phenol as their carbon sources. Remarkable performance in free cells systems makes C. tropicalis RETL-Cr1 valuable to the removal of toxic pollutant like phenol. The application of natural and modified zeolite in toxic pollutant treatment is familiar. Therefore, the main goal of this research is to determine the potential of C. tropicalis RETL-Cr1 in an immobilized system and the feasibility of natural zeolite (NZ) and surfactant modified zeolite (SMZ) as solid carrier and adsorbent in the adsorption-biodegradation of phenol. NZ is modified with the various concentration of cationic surfactant to form SMZ. The modification is confirmed by the FTIR, XRD, TGA and SEM analysis. Various parameters such adsorbent dose, particle size, initial cell loading and incubation time had been optimized for the immobilization protocol of C. tropicalis RETL-Cr1 onto NZ and SMZ. SMZ immobilized significantly higher cells than NZ by 3.8 folds. Cells retention of 3.85x10¹⁰ CFU/g and 1.09x10¹⁰ CFU/g were obtained by SMZ and NZ respectively. Various factors influencing the phenol biodegradation by immobilized yeast cells onto NZ and SMZ is optimized and applied to two different modes of continuous phenol biodegradation; simultaneous adsorption-biodegradation and separate adsorption by NZ and SMZ then biodegradation by free cells (FC) in suspension. The removal percentages of phenol from free cells to immobilized cells were improved from 81% to 99% in the 7mM of Phenol. This indicates that the degradation of phenol using immobilized cells is more effective than when utilizing FC. SMZ recorded 99% removal efficiency when phenol concentration is increased to 7mM with the removal rate of 26,35mg/L.hr. While the phenol biodegradation by FC and immobilized cells onto NZ shows 81% and 75% removal. Accumulation of catechol is monitored, with maximum production of 15.75 and 32.33 mg/L when NZ and SMZ are used, respectively. The kinetic model of phenol adsorption-biodegradation by immobilized yeast cells onto NZ and SMZ can be described by pseudo-first (physisorption) and pseudo-second (chemisorption) order respectively. An intraparticle diffusion model proves it is not the only rate controlling phase for the process. When SMZ is applied in continuous system, at the concentration of 16mM, simultaneous and separate system of adsorption-biodegradation took only 34 and 32 hours to complete the phenol removal with the removal rate of 44.29 and 47.00 mg/L.hr respectively with the maximum catechol production of 33.40mg/L for both systems. These results show significant improvement compared to previous report on phenol removal in continuous flow system. C. tropicalis RETL-Cr1 perform better when immobilized and applicability of NZ and SMZ as the carrier matrix for phenol removal is confirmed. This study has therefore provided further substantial knowledge regarding versatility of *C. tropicalis* RETL-Cr1 roles in the environment. Finally, it is possible to apply this simple and economic treatment in large scale at wastewater treatment plant containing high concentration of phenol.

ABSTRAK

PENJERAPAN-BIODEGRADASI FENOL OLEH C. tropicalis RETL-Cr1 TERSEKAT GERAK DALAM ZEOLIT SEMULAJADI DAN ZEOLIT DIUBAHSUAI

Fenol telah dihasilkan sejak tahun 1860-an. Penggunaan fenol dan terbitannya adalah di seluruh dunia. Walau bagaimanapun, fenol adalah sangat toksik dan boleh kekal dalam persekitaran untuk jangka masa yang lama. Walaupun bersifat toksik, C. tropicalis RETL-Cr1 mampu menggunakan fenol sebagai sumber karbon mereka. Prestasi luar biasa dalam sistem sel bebas menjadikan C. tropicalis RETL-Cr1 istimewa dalam penyinakiran bahan cemar toksik seperti fenol. Penggunaan zeolit semulajadi dan diubah suai dalam rawatan bahan cemar toksik adalah biasa. Oleh itu, matlamat utama penyelidikan ini adalah untuk menentukan potensi C.topicalis RETL-Cr1 dalam sistem pequn dan ketersauran zeolit semulajadi (NZ) dan zeolit diubahsuai surfaktan (SMZ) sebagai pembawa pepejal dan penjerap dalam penjerapan-biodegradasi fenol. NZ diubahsuai dengan pelbagai kepekatan surfaktan kationik untuk membentuk SMZ. Pengubahsuaian ini disahkan oleh analisis FTIR, XRD, TGA dan SEM. Pelbagai parameter seperti dos penjerap, saiz zarah, muatan sel awal dan masa inkubasi telah dioptimumkan untuk protokol pemegunan C, tropicalis ke dalam NZ dan SMZ, SMZ mememegunkan bilangan selsel yang jauh lebih tinggi daripada NZ sebanyak 3.8 kali ganda. Pemegunan sel 3.85x10¹⁰CFU/g dan 1.09x10¹⁰CFU/g masing-masing didapati oleh SMZ dan NZ. Pelbagai faktor yang mempengaruhi biodegradasi fenol oleh sel-sel yis pegun dalam NZ dan SMZ dioptimumkan dan digunakan dalam dua mod biodegradasi fenol berterusan; penjerapan-biodegradasi serentak dan penjerapan berasingan oleh NZ dan SMZ kemudian biodegradasi oleh sel bebas (FC). Peratusan penyingkiran fenol dari sel-sel bebas ke sel-sel pequn bertambah baik dari 81% hingga 99% pada 7mM fenol. Ini menunjukkan bahawa degradasi fenol menggunakan sel-sel pegun adalah lebih berkesan daripada menggunakan FC. SMZ mencatatkan 99% kecekapan penyingkiran apabila kepekatan fenol meningkat kepada 7mM dengan kadar penyingkiran 26.35mg/L.hr. Biodegradasi fenol oleh FC dan sel-sel pegun dalam NZ menunjukkan 81% dan 75% penyingkiran. Penghasilan maksimum katekol sebanyak 15.75 dan 32.33 mg/L apabila NZ dan SMZ digunakan. Model kinetik penjerapan-biodegradasi fenol oleh sel-sel vis pegun ke dalam NZ dan SMZ boleh dijelaskan oleh tertib pseudo-pertama (fisierapan) dan tertib pseudo-pertama (pengkimierapan) masing-masing. Model resapan intrazarah membuktikan ia bukan satu-satunya tahap pengawal kadar untuk proses itu. Apabila SMZ diterapkan dalam sistem yang berterusan, pada kepekatan 16mM, sistem serentak dan berasingan penjerapan-biodegradasi mengambil hanya 34 dan 32 jam untuk menyelesaikan penyingkiran fenol dengan kadar penyingkiran 44.29 dan 47.00 mg/L.hr masing-masing dengan maksimum pengeluaran katekol 33.40mg/L untuk kedua-dua sistem. Keputusan ini menunjukkan peningkatan yang ketara berbanding dengan laporan sebelumnya mengenai penyingkiran fenol dalam sistem aliran berterusan. C. tropicalis RETL-Cr1 berfungsi dengan lebih baik apabila dipegunkan dan kebolehgunaan NZ dan SMZ sebagai matriks pembawa untuk penyingkiran fenol disahkan. Oleh itu, kajian ini memberi pengetahuan lanjut mengenai keserbagunaan peranan C. tropicalis RETL-Cr1 dalam alam sekitar. Akhir sekali, rawatan sederhana dan ekonomi ini boleh diterapkan secara besar-besaran di loji rawatan air sisa yang mengandungi kepekatan fenol yang tinggi.

TABLE OF CONTENTS

	Page
TITLE	1
DECLARATION	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvii
LIST OF SYMBOLS	xviii
LIST OF APPENDICES	xix
CHAPTER 1: INTRODUCTION	
1.1 Research Background UNIVERSITIMALAYSIA SABAH	1
1.2 Objectives of study	6
1.3 Outline of Thesis	7
CHAPTER 2: LITERATURE REVIEW	
2.1 Phenol	10
2.2 Phenol Production	11
2.3 Phenol Sources	12
2.3.1 Natural Resources	12
2.3.2 Anthropogenic sources	14
2.4 Phenol Applications	15
2.5 Phenol Toxicity	17
2.5.1 Toxicity in human	17
2.5.2 Toxicity in animals	18
2.6 Phenol Release to the Environment	18
2.6.1 Air	19
2.6.2 Water	19

2.6.3 Soil	20
2.7 Phenol Treatment	20
2.7.1 Physical Treatment	20
2.7.2 Chemical Treatment	21
2.7.3 Biological Treatment	21
2.7.4 Combined Treatment of Phenol Removal	22
2.8 Phenol Degradation Mechanism	24
2.8.1 Aerobic Biodegradation	24
2.8.2 Anaerobic Biodegradation	26
2.9 Phenol Degrading Microorganisms	26
2.9.1 Phenol degrading Candida tropicalis	30
2.10 Immobilization of Cells	31
2.11 Methods for Immobilization of Microbial Cells	39
2.11.1 Covalent bonding/Cross linking	39
2.11.2 Entrapment	39
2.11.3 Adsorption	40
2.12 Adsorbent	41
2.13 Zeolite	42
2.13.1 Zeolite Structure	43
2.13.2 Application of Natural Zeolite RSITI MALAYSIA SABAH	45
2.14 Clinoptilolite	47
2.15 Surface Modified Zeolite	47
2.15.1 Adsorption of Cationic Surfactant onto Zeolite	49
2.16 Natural and Modified Zeolite as Solid Carrier	51
2.17 Adsorption Theory	53
2.18 Adsorption of Phenol by Natural and Modified Zeolite	54
CHAPTER 3: GENERAL MATERIALS AND METHODS	50
3.1 Experimental Design	58
3.2 Reagents	60
3.3 Microorganism	60
3.3.1 Preparation of Media and Culture Strain	61
3.3.2 Preservation of Yeast Culture	61
3.4 Preparation of Phenol Stock	62
3.5 Preparation of Natural Zeolite	62

viii

3.6	Sample	e Analysis	62
	3.6.1	Determination of Biomass Concentration	62
	3.6.2	Determination of Phenol and Catechol	63
	3.6.3	Determination of Phenol Degradation Rate	63
СН	APTER	4: CHARACTERIZATION OF NATURAL AND MODIFIED ZEOLIT	Έ
4.1	Introdu	uction	64
4.2	Materia	als and Methods	65
	4.2.1	Preparation of Media and Culture Strain	65
	4.2.2	Preparation of Phenol Stock	65
	4.2.3	Preparation of Natural Zeolite	65
	4.2.4	Modification of Natural Zeolite	66
	4.2.5	X-Ray Diffraction (XRD)	66
	4.2.6	Fourier Transform Infrared (FT-IR) Spectroscopy	66
	4.2.7	Thermogravimetric (TGA) Analysis	67
	4.2.8	Surface Morphology Study (SEM)	67
	4.2.9	Sample Analysis	67
4.3	Results	and Discussions	68
	4.3.1	X-Ray Diffraction Analysis	68
	4.3.2	Fourier-Transform Infrared Spectroscopy Analysis	69
	4.3.3	Thermogravimetric Analysis FRST MALAYSIA SABAH	71
	4.3.4	Surface Morphology Analysis	74
	4.3.5	Screening of NZ and SMZ Potential as Cells Carrier in	
		Phenol Removal	75
4.4	Summa	ary	78
СН	APTER	5: IMMOBILIZATION OF C. tropicalis RETI-CR1 ONTO NATUR	2
AN	D SURI	FACTANT MODIFIED ZEOLITE	
5.1	Introdu	liction	79
5.2	Materia	ils and Methods	80
	5.2.1	Preparation of Media and Culture Strain	80
	5.2.2	Preparation of Phenol Stock	80
	5.2.3	Preparation of Natural Zeolite and Surfactant Modified	
		Zeolite	80
	5.2.4	Immobilization Protocols of C. tropicalis RETL-Cr1 on	
		NZ and SMZ	81
	5.2.5	Effect of Adsorbent Size	82

ix

	5.2.6	Effect of Adsorbent Dose	82
	5.2.7	Effect of Initial Cell Loading	82
	5.2.8	Effect of Incubation Time	83
	5.2.9	Sample Analysis	83
5.3	B Results	s and Discussions	84
	5.3.1	Effect of Particle Size	84
	5.3.2	Effect of Adsorbent Dose	87
	5.3.3	Effect of Initial Cell Loading	89
	5.3.4	Effect of Incubation Time	91
5.4	1 Compa	rative Study of Immobilized Microorganisms onto Various	
	Ma	atrix Carrier	93
5.5 Summary		98	

CHAPTER 6: ADSORPTION-BIODEGRADATION OF PHENOL BY IMMOBILIZED *C. tropicalis* RETL-CR1 ONTO NATURAL AND SURFACTANT MODIFIED ZEOLITE

6.1 Int	oduction	99
6.2 Ma	6.2 Materials a <mark>nd Metho</mark> ds	
6.2	1 Preparation of Media and Culture Strain	100
6.2	2 Preparation of Phenol Stock	100
6.2	3 Preparation of Natural Zeolite and Surfactant Modified Zeolite	100
6.2	4 Immobilization of <i>C. tropicalis</i> RETL-Cr1 onto NZ and SMZ	101
6.2	5 Biodegradation of Phenol by Immobilized <i>C.tropicalis</i> RETL-Cr1	
	onto NZ and SMZ	101
6.2	6 Effect of Particle Size	102
6.2	7 Effect of Adsorbent Dose	102
6.2	8 Effect of Initial Phenol Concentration and Incubation Time	102
6.2	9 Effect of Agitation Rate	102
6.2	10 Adsorption Kinetic	102
6.2	11 Sample Analysis	104
6.3 Res	ults and Discussions	104
6.3	Effect of Particle Size	104
6.3	2 Effect of Adsorbent Dose	108
6.3	3 Effect of Agitation Rate	112
6.3	Effect of Initial Phenol Concentration, Incubation Time	
	and Catechol Production	113

Х

6.3.5	Comparative Study on Phenol Degradation by Free and	
	Immobilized C. tropicalis RETL-Cr1 onto NZ and SMZ	121
6.3.6	Kinetic of Adsorption-Biodegradation	128
6.4 Summa	ary	133
CHAPTER	7: SIMULTANEUOS AND SEPARATE ADSOR	PTION-
7.1 Introdu	ADAILON OF PHENOL AT HIGH CONCENTRATION	135
7.2 Materia	als and Methods	136
7.2.1	Preparation of Media and Culture Strain	136
7.2.2	Preparation of Phenol Stock	136
7.2.3	Preparation of Surfactant Modified Zeolite	137
7.2.4	Immobilization of C. tropicalis RETL-Cr1 onto SMZ	137
7.2.5	Simultaneous Adsorption Biodegradation of Phenol by	
	Immobilized C. tropicalis RETL-Cr1 onto SMZ	137
7.2.6	Separate Adsorption Biodegradation of Phenol by SMZ	
	and Suspensions of <i>C. tropicalis</i> RETL-Cr1	138
7.2.7	Sample Analysis	140
7.3 Results	and Discussions	140
7.3.1	Simultaneous Adsorption Biodegradation of Phenol by	
	Immobilized C. tropicalis RETL-Cr1 onto SMZ SIA SABAH	141
7.3.2	Separate Adsorption Biodegradation by SMZ and	
	Suspensions of <i>C. tropicalis</i> RETL-Cr1.	144
7.3.3	Comparative Study on Simultaneous Adsorption Biodegradation	
	and Separate Adsorption Biodegradation of Phenol	147
7.4 Summa	ary	150
CHAPTER	8: CONCLUSIONS	
8.1 Conclus	sions	152
8.2 Resear	ch Contributions to Science	155
8.3 Recom	mendations for Future Works	155
REFEREN	CES	157
APPENDI	CES	176

LIST OF TABLES

Table 2.1: Chemical and physical properties of phenol	11
Table 2.2: Phenol Intermediate and Applications	16
Table 2.3 List of various microorganisms involved in the phenol	
biodegradation	28
Table 2.4: Phenol degrading Candida tropicalis	30
Table 2.5: The Si:Al ratios for different types of natural zeolites	43
Table 2.6: General applications of zeolite	46
Table 2.7: Environmental applications of zeolite	46
Table 2.8: Zeolite and modified zeolite as a carrier	53
Table 2.9: Studies on phenolic compound adsorption by natural and	
modified zeolite reported in literature	56
Table 3.1: Reagents used in this study	60
Table 3.2: Colony Morphology of <i>C. tropicalis</i> RETL-Cr1	61
Table 4.1: Performance of different HDTMA-Brloading on SMZ	
in phenol removal	75
Table 5.1: Optimization experiment on immobilization protocols	82
Table 5.2: Immobilization profile of <i>C. tropicalis</i> RETL-Cr1 onto various	
sizes of NZ and SMZ	84
Table 5.3: Immobilization profile of <i>C. tropicalis</i> RETL-Cr1 onto various	
dose of NZ and SMZ	87
Table 5.4: Immobilization profile of various initial cells loading of	
C. tropicalis RETL-Cr1 onto NZ and SMZ	89
Table 5.5: Comparative study on various type of zeolite as a	
carrier for cells immobilization	96
Table 5.6: Comparative study on immobilization of Candida tropicalis	
onto various solid carrier	97
Table 6.1: Optimization experiment on biodegradation of phenol by	
immobilized C. tropicalis RETL-Cr1 onto NZ and SMZ	101
Table 6.2: Phenol removal profile by immobilized C. tropicalis RETL-Cr1	
onto NZ and SMZ	104

Table 6.3: Phenol removal profile by immobilized cells onto various	
dose of NZ and SMZ	108
Table 6.4: Phenol removal profile by various agitation rate	112
Table 6.5: Phenol removal profile by immobilized C. tropicalis	
RETL-Cr1 onto various IPC of NZ and SMZ	113
Table 6.6: Phenol removal profile by adsorption, biodegradation and	
adsorption-biodegrdation by immobilized C. tropicalis RETL-Cr1	
onto NZ and SMZ at various IPC	122
Table 6.7: Summary of different constants calculated from kinetic models	130
Table 7.1: Phenol removal profile by simultaneous adsorption	
biodegradation of immobilized C. tropicalis RETL-Cr1 onto SMZ	141
Table 7.2: Phenol removal profile by separate adsorption and biodegradation	
of free <i>C. tropicalis</i> RETL-Cr1	144
Table 7.3: Profile of separate adsorption biodegradation of phenol	
at high concentration	144
Table 7.4: Effect of various IPC on phenol removal by simultaneous	
adsorption biodegradation and separate adsorption	
biodegradation in filter column	148

LIST OF FIGURES

Figure 1.1: Thesis outline	9
Figure 2.1: Phenol (hydroxy benzene) structure	10
Figure 2.2: Production of phenol by cumene route	12
Figure 2.3: Flow chart of aerobic degradation pathway for phenol	
degradation	25
Figure 2.4: Framework of (a) Silicon Tetrahedron and (b)Aluminosilicate	44
Figure 2.5: The structure of hexadecyltrimethyl ammonium bromide	
(HDTMA-Br)	48
Figure 2.6 : Cationic surfactants adsorb on solid surface below CMC	
will form the (a) hemimicelle and exceed CMC will form	
(b) bilayer and (c) admicelle	50
Figure 3.1 The general experimental design for the study	59
Figure 4.1: Experimental design	65
Figure 4.2: XRD pattern of the (a) natural zeolite and	
(b) surfactant-modified zeolite	69
Figure 4.3: FTIR pattern for (a) natural zeolite, (b) HDTMA-Br and	
(c) surfactant modified zeolite	71
Figure 4.4: TGA results for (a) NZ, (b) SMZ with 0.5 HDTMA-Br [below	
CMC value] and (c) SMZ with 5.5mM HDTMA-Br	
[above CMC value]	73
Figure 4.5: SEM images of (a) NZ and (b) SMZ at magnification of	
2.00KX using Zeiss Evo MA 10	74
Figure 4.6: Phenol removal at various HDTMA-Br concentation	
used in zeolite modification	77
Figure 4.7: SEM image of immobilized C. tropicalis RETL-Cr1 onto	
(a) NZ and (b) SMZ at 2.00KX magnification (30°C, 70rpm, 24h,	
pH 7.4 and OD= 0.70 nm)	77
Figure 5.1: Experimental design for the immobilization of <i>C. tropicalis</i>	
RETL-Cr1 onto NZ and SMZ	80

Figure 5.2: Immobilization efficiency (bar) and immobilized cells	
amount (line) at various sizes of NZ and SMZ	86
Figure 5.3: Immobilization efficiency (bar) and immobilized cells	
amount (line) at different adsorbent dose of NZ and SMZ	88
Figure 5.4: Effect of various initial cell loading of C. tropicalis RETL-Cr1	
on immobilization efficiency an immobilized cells abount onto	
NZ and SMZ	91
Figure 5.5: Effect of incubation time on the immobilized cells (full symbols)	
and free cells (empty symbols) onto NZ and SMZ	93
Figure 6.1: Biodegradation of phenol by immobilized <i>C. tropicalis</i> RETL-Cr1	
onto NZ and SMZ	100
Figure 6.2: Phenol removal efficiency (colored) and phenol removal	
rate by immobilized cells onto NZ at various sizes.	107
Figure 6.3: Phenol removal efficiency (colored) and phenol removal	
rate by immobilized cells onto SMZ at various sizes	107
Figure 6.4: Phenol removal efficiency (colored) and phenol removal	
rate by immobilized cells onto NZ at various dose	111
Figure 6.5: Phenol removal efficiency (colored) and phenol removal	
rate by immobilized cells onto SMZ at various dose.	111
Figure 6.6: Effect of agitation rate on NZ and SMZ in phenol biodegradation	113
Figure 6.7: Percentage of phenol removal (colored) and phenol	
removal rate by immobilized cells onto NZ at various IPC.	114
Figure 6.8: Percentage of phenol removal (colored) and phenol removal	
rate by immobilized cells onto SMZ at various IPC.	114
Figure 6.9: Percentage of phenol removal (colored) and phenol removal	
rate by immobilized cells onto NZ at various IPC.	118
Figure 6.10: Percentage of phenol removal (colored) and phenol removal	
rate by immobilized cells onto SMZ at various IPC.	118
Figure 6.11: Phenol removal (colored) and catechol production by	
immobilized cells onto NZ and SMZ at IPC 3mM	119
Figure 6.12: Phenol removal (colored) and catechol production by	
immobilized cells onto NZ and SMZ at IPC 5mM	119
Figure 6.13: Phenol removal (colored) and catechol production by	
immobilized cells onto NZ and SMZ at IPC 7mM	119

Figure 6.14: Phenol adsorption by NZ at various IPC	123
Figure 6.15: Phenol adsorption by SMZ at various IPC	123
Figure 6.16: Profile of phenol removal by free cells (FC) and immobilized	
cells onto NZ and SMZ at IPC of 3mM	127
Figure 6.17: Profile of phenol removal by free cells (FC) and immobilized	
cells onto NZ and SMZ at IPC of 5mM	127
Figure 6.18: Profile of phenol removal by free cells (FC) and immobilized	
cells onto NZ and SMZ at IPC of 7mM	127
Figure 6.19: Kinetics models of (a)Pseudo first order, (b)Pseudo second	
order and (c) Intraparticle diffusion for IPC=7mM on NZ	128
Figure 6.20: Kinetics model of (a)Pseudo first order, (b)Pseudo second	
order and (c) Intraparticle diffusion for IPC=7mML on SMZ	129
Figure 7.1: Experimental design of continuous flow in two modes;	
simultaneous and separate in the adsorption-biodegradation	
of phenol	136
Figure 7.2: Experimental set-up for simultaneous adsorption-biodegradation	
of phenol by immobilized C. tropicalis RETL-Cr1 onto SMZ in	
continuous flow	137
Figure 7.3: Experimental set up set-up for separate adsorption-biodegradation	
of phenol by SMZ and free C. tropicalis RETL-Cr1 in continuous	
mode	138
Figure 7.4: Phenol removal (colored) and phenol degradation rate at	
various IPC by simultaneous adsorption-biodegradation in	
continuous mode	142
Figure 7.5: Phenol removal (colored) and the growth pattern of <i>C. tropicalis</i>	
RETL-Cr1 in continuous mode of separate	
adsorption-biodegradation	145

LIST OF ABBREVIATIONS

ARE	7	Average relative error
CEC		Cation exchange capacity
C1,2D	-	Catechol 1,2-dioxygenase
ссМА	-	Cis,cis-muconic acid
CFU		Colony forming unit
СМС	-	Critical micelle concentration
ECEC	-	External cation exchange capacity
FTIR	-	Fourier transform infrared
HDTMA- Br	÷	Hexadecyltrimethylammonium bromide
2-HMSA		2-hydroxymuconic semialdehyde
IPC	T+ M	Initial phenol concentration
HPLC	-00	High-performance liquid chromatography
PH	-	Phenol hydroxylase
RM		Ramsay medium
rpm	A P A	Rotation per minute TI MALAYSIA SABAH
SMZ	- D II	Surfactant modified zeolite
sp.		Species
SEM	-	Scanning electron microscopy
рН	-	Hydrogen ion concentration
ррт		Parts per million
RETL-Cr1	-	Ramsey effluent of Treatment Lagoon-Cream 1
XRD	-	X-ray diffraction
UV	-	Ultra violet

LIST OF SYMBOLS

°C	-	Degree Celsius
Co	-	Initial Concentration
CFU	1	Colony Forming Unit
cm	-	Centi meter
d	-	Day
g	-	Gram
hr	-	Hour
kv	-	Kilo volt
L	-	Liter
m	*	Meter
М	TIM	Molar
mA	- 44	Mili ampere
mAu		Mili Absorbance Unit
meq		Mili equivalent
mg	the al man	Mili gram
min	ABA	Minute
mL	-	Mili Liter
mm	-	Mili meter
mmol	-	Milimol
mM	-	Mili mol
OD	-	Optical Density
ppm	-	Part per million
rpm	-	Rotation per minute
S	-	Seconds
v	-	Volume
μm	-	Micro meter
θ	-	Angular

LIST OF APPENDICES

		Page
APPENDIX A	Growth Curve of Candida tropicalis RETL-Cr1	176
APPENDIX B	Preparation of Ramsey Media	177
APPENDIX C	Heterotrophic Plate Count Test Method APHA 9215	178
APPENDIX D	Phenol Standard Curve	179
APPENDIX E	Catechol Standard Curve	180
APPENDIX F	HPLC-Analytical Parameters for Determination of Phenol and Catechol	181
APPENDIX G	Preparation of Phosphate Buffered Saline SIA SABAH	182
APPENDIX H	Publication	183

CHAPTER 1

INTRODUCTION

1.1 Research Background

Environmental pollution is a worldwide problem that is faced by developing and developed countries over the year. With urbanization and extensive industrialization, the pollution of the environment with man-made (synthetic) organic compounds has become a major problem (Mohanty, 2012). Environmental pollution is now considered as a side effect of modern industrial society. The United State Environmental Protection Agency (EPA) had published the current list of 126 Priority Pollutants on (EPA, 2013). It was a set of chemical pollutants that were being regulated and have several developed analytical test methods. Among the commonly found wastes are arsenic, benzene, chloroform, cadmium, chromium, lead, phenol, PCB's, trichloroethylene and toluene.

UNIVERSITI MALAYSIA SABAH

Organic pollutants comprise a potential group of chemicals which can be dreadfully hazardous to human health. As they persist in the environment, they are capable of long range transportation, bioaccumulation in human and animal tissue and bio-magnifications in food chain. Phenolic compounds are hazardous pollutants that are toxic at relatively low concentration (Nair *et al.*, 2008). Phenol or phenolic compounds are widely distributed in the environment partly as a result of natural processes and more importantly, due to human and industrial activities. Phenols, being persistent compounds and due to their toxic, mutagenic and carcinogenic characteristics, are classified as highly hazardous chemicals (Crawford *et al.*, 2008).

Phenol has been classified as an important contaminant, thus most country has created laws regulating the phenol level in drinking water and effluents discharged from factories as pollution prevention action in order to monitor, control and regulate it. For instance, U.S. Environmental Protection Agency (US EPA) and World Health Organization (WHO) have set a guideline of the maximum permissible level for phenol in environment is 0.1 mg/L (Hsieh *et al.*, 2008). European Council Directive has set up a phenol limit of 0.5μ g/L to control the phenol concentration in drinking water (Tziotzios *et al.*, 2005), while Japan Ordinance No 15 law (JEGS, 2012) permitted the phenol level of 5 mg/L in water source. United Arab Emirate also limits the concentration of phenols in industrial effluent to the environment to 0.1 mg/L (Al Zarooni and Elshorbagy, 2006). At Argentina, law 24051 of hazardous residues was established and the level of phenol in drinking water is limited to 2µg/L (Coniglio *et al.*, 2008).

In Malaysia, Department of Environment (DOE) has restricted the limit of phenol as 0.001 mg/L and 1.0mg/L for Standard A and Standard B respectively. This is the guidelines under the Environmental Quality (Sewage and Industrial Effluents) Regulation, 1979 (IWK, 2012). Despite being very harmful to environment and living organisms, phenol is widely used in many industries. These compounds originate mainly from industrial processes such as resin manufacturing, oil refineries, petrochemicals, pharmaceuticals, dyes, textiles and plastic industries (Ahmad *et al.*, 2012).

UNIVERSITI MALAYSIA SABAH

Crawford *et al.*, (2008) conclude that phenol is released to the air and water as a result of its manufacture, its use in phenolic resins, and organic synthesis. Phenol is found in petroleum products such as coal tar, and creosote and can be released by combustion of wood and auto exhaust. Phenol may be formed in the environment caused by the natural degradation of benzene, since phenol is a major metabolite of benzene (Crawford *et al.*, 2008) and is found extensively in the environment (ASTDR, 2008).The main source of phenol pollution in water is industrial effluent discharge.

Phenol is generally biodegrade rapidly in soil. However, biodegradation of phenol in water or soil may be hindered or precluded by the presence of high, toxic concentrations of phenol or other chemicals, or by other factors such as a lack of nutrients or microorganisms capable of degrading phenol. If biodegradation is sufficiently slow, phenol in sunlit water will undergo photo-oxidation with photochemically produced peroxyl radicals, and phenol in soil will leach to groundwater. Phenol may remain in air, water, and soil for much longer periods if it is continually or consistently released to these media from point sources.

Thus, with the massive urbanization, it is difficult to have free-phenol environment. Phenol presences in environment are toxic in nature and cause various health hazards. Exposure to phenol by any routes; inhalation, oral and dermal can produce various health problems to human and animals. Long-term exposure to phenol at work has been associated with cardiovascular disease. Ingestion of liquid products containing concentrated phenol can cause serious gastrointestinal damage and even death. Application of concentrated phenol to the skin can cause severe skin damage. Investigations on phenol toxicology to the animals have been done in the laboratory. The effect may vary depending on the duration of exposure. Short-term exposure to high levels of phenol has caused irritation of the respiratory tract and muscle twitching. Longer-term exposure to high levels of phenol caused damage to the heart, kidneys, liver, and lungs (ATSDR, 2008). Drinking water with extremely high concentrations of phenol has caused muscle tremors, trouble walking, and death in animals. Short-term application of phenol to the skin has produced blisters and burns (ATSDR, 2008).

UNIVERSI II MALAYSIA SABAF

Hence, the treatment of wastewater containing phenol is a necessity. Generally there are 3 main methods of phenol treatment; chemical, physical and biological. Phenol removal by chemical treatment arise secondary pollution due to the excessive use of chemical usage. High cost in purchasing chemical reagents and the high electrical energy demand makes chemical treatment for phenol not favorable. Phenol removal by physical method is demanding a good adsorbent. The expensive cost, limited lifetime, hard pretreatment and regeneration process of adsorbent makes the physical treatment less preferable. Biological method is generally preferred due to lower costs and possibility of complete mineralization as mentioned methods have serious drawbacks such as high cost and formation of hazardous by-products (Basha *et al.*, 2010). Many microorganisms (bacteria, fungi and algae) are capable of using aromatic compounds as the sole source of carbon and energy which includes both aerobic and anaerobic microorganisms. Pure and mixed cultures of the *Pseudomonas* genus are the most commonly utilized biomass

3

(bacteria) for the biodegradation of phenols (Stoilova *et al.,* 2007) and they are believed to have good potential for different biotechnological applications.

Fungi share a significant part in the recycling of aromatic compounds in the biosphere and several studies have shown that diverse fungi are capable of phenols mineralization. They are capable of consuming a wide variety of carbon sources by enzymatic mechanisms, thus providing possibilities for metabolizing phenols and other aromatic derivates (Stoilova *et. al.,* 2007). The most abundant fungi in polluted environments are yeasts. Some yeasts such as *Candida tropicalis, Fusarium flocciferium*, and *Trichosporon cutaneum* are capable of utilizing phenol as the major carbon and energy source (Agarry and Aremu, 2012; Al-Khalid and El-Naas, 2012). This makes them an interesting subject for studies aimed at the development of technologies for purification of contaminated soils and waters.

However, microbial growth will restrain the concentration of phenol at high concentrations (Pradeep *et al.*, 2015). Several strategies have been proposed to overcome substrate inhibition. These include cell acclimatization to higher concentrations of phenol, the use of genetically engineered microorganisms and cell immobilization (Benerjee and Goshal, 2011). An immobilized cell is one of the approaches for incorporating bacterial biomass into an engineering process. The advantages of the process based on immobilized biomass include enhancing microbial cell stability, allowing continuous process operation and avoiding the biomass-liquid separation requirement (Annadurai *et al.*, 2007).

In order to extend the scope of biodegradation, considerable amounts of research have been carried out on the biodegradation of phenol by immobilization technique for its high removal efficiency and low cost. Combined with immobilization technique, the biodegradation process was updated by some advantages including enhancing microbial cell stability, allowing continuous process operation and avoiding the biomass–liquid separation requirement. In addition, this effective technique was also employed to protect the microbe from high phenol concentrations.

4