EFFECT OF NEUTRALIZATION ON pH AND HEAVY METALS CONTENT OF ACID MINE DRAINAGES

STELLA HO YEN LING

PEHPUSTAKAAN AUNIVERSITE VALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2017

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: **EFFECT OF NEUTRALIZATION ON pH AND HEAVY METALS** CONTENT OF ACID MINE DRAINAGES

IJAZAH: DOCTOR OF PHILOSOPHY (INDUSTRIAL CHEMISTRY)

Saya STELLA HO YEN LING, Sesi pengambilan 2009/2010, mengaku membenarkan tesis doctor falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malavsia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat Salinan untuk tujuan pengajian sahaja
- 3. Perpustakaan dibenarkan membuatkan Salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdariah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan

TERHAD

Atula

STELLA HO YEN LING PS2009-8247

Tarikh: 28 Julai 2017

Disahkan Oleh, NURULAIN BINTI ISMAIL LIBRARIAN CHARTE MALAYSIA SABAH (Tandatangan Pustakawan)

(Pref. Dr. Penvelia

DECLARATION

I hereby declare that the materials in this thesis is my own except for quotations, excerpts, equations, summaries and references, each of which have been duly acknowledged.

28th July 2017

Atelleflo

STELLA HO YEN LING PS2009-8247

CERTIFICATION

NAME : STELLA HO YEN LING

MATRIC NO. : **PS2009-8247**

 TITLE
 :
 EFFECT OF NEUTRALIZATION ON pH AND HEAVY

 METALS CONTENT OF ACID MINE DRAINAGES

- DEGREE : DOCTOR OF PHILOSOPHY (INDUSTRIAL CHEMISTRY)
- VIVA DATE : 11th May 2017

CERTIFIED BY;

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude to my supervisor, Professor Dr. Marcus Jopony for his tireless efforts in giving valuable advice, motivation, guidance, support and help throughout this project and over the course of the Doctorate programme. Additionally, I wish to acknowledge the support of the Ministry of Science, Technology and Innovation, Malaysia (MOSTI) for providing research funding of MYBRAIN-MyPhD, I am greatly indebted.

Mr. Sani Gorudin, assistant science officer, is thanked for helping with the fieldwork. Many thanks too, to Lab assistants Mr. Reycheidi and Mr. Yusry Jasli, for assisting for ICP-OES analyses.

To my peers, Mr. Morius Bantas, Ms. Fenny Angella Modi, Mr. EB Johnson Gubod, and Ms. Joyce Primus, I owed them for their invaluable discussions, useful ideas, constructive criticisms and encouragement throughout the writing of this thesis.

The kind help from other members and personnel at the Analytical Lab is very much appreciated. Many thanks to all my supportive friends for their endless co-operation and help whenever I need them. I am also very grateful to all who are not mention but have help in making this research project a successful one. Finally, not forgetting my sincere thanks to the Faculty of Science and Natural Resources for providing the amenities enabling this research project to be carried out successfully.

Last but not least, I could not have completed this thesis without the undivided support and encouragement from my mum, dad and my brothers. My utmost appreciation to my family-Thank you.

Stella Ho Yen Ling 7TH November 2016

ABSTRACT

Alkaline materials are used for treatment of acidic water, including acid mine drainage (AMD), primarily to increase its pH. The efficacy of this treatment, however, depends on several factors. In this study, the significance of dissolved metals, in particular Fe³⁺ and Al³⁺, in neutralization efficiency was the main focus of investigation. In the case of AMD, the dissolved metals can also be represented by the parameter total acidity. Batch neutralization experiments using two alkaline materials, namely NaOH and calcareous sandstone, were carried out involving acidic aqueous solutions, without and with the presence of Fe^{3+} and/or Al^{3+} at concentration range 2mg/L-100 mg/L, as well as seven AMD samples collected from Mamut, Ranau. The physico-chemical characteristics of these AMD samples were analyzed according to APHA Standard Methods. The neutralization process was also studied at different dosage of calcareous sandstone and under the condition where this material is repeatedly exposed to acidic aqueous solutions in the presence of Fe³⁺ and/or Al³⁺ as well as to selected AMD samples. The principal parameter monitored and measured in these experiments was solution pH. Additionally, the effect of neutralization using both alkaline materials on dissolved metals concentration of selected AMD samples was also investigated. The final concentration of Fe, Al, Cu, Zn and Mn in solution was determined using ICP-OES. The results showed that the AMDs from Mamut, Ranau have varying pH (2.77-3.36), TDS (741-1485 mg/L), EC (1489-2975 µS/cm), total acidity (316-807 mg CaCO₃/L), sulfate (649-2148 mg/L), and concentration of Fe (0.34-8.93 mg/L), Al (35.59-111.24 mg/L), Mn (6.82-30.88 mg/L), Cu (3.60-26.99 mg/L) and Zn (1.77-9.10 mg/L). The total acidity of the samples was positively correlated ($R^2=0.968$) with dissolved Al concentration. During neutralization of aqueous acidic solutions with NaOH, increasing concentration of Fe³⁺ and/or Al³⁺ in solution resulted in increasing amount of base required to increase the pH to 7.0. At the same metal concentration (mg/L), the presence of AI^{3+} requires about 2X more alkalinity for this purpose compared with Fe³⁺. When calcareous sandstone was used as the alkaline material, the presence of Al³⁺ in solution slowed down the rate of increase in pH particularly at high concentration. Such effect was not evident in the presence of Fe³⁺. When AMD samples were used, the amount of alkalinity (NaOH) required to increase the pH to 7.0 increased with increase in dissolved Al concentration as well as total acidity of the AMD. When calcareous sandstone was used as the alkaline material, the rate of increase in pH was slow and vary between AMDs. The pH attained after 8 hours neutralization is dependent (R²=0.9415) on the total acidity whereby the value decreased with increase in total acidity of AMD. The effectiveness of calcareous sandstone in the neutralization process increased with dosage in the order 1.0 g > 0.5 g > 0.1 g, while at a fixed dosage (0.5g) decreased rapidly during successive 24h neutralization cycles when involving aqueous acidic solution with high concentration of Al³⁺ as well as AMD samples with high total acidity. Meanwhile, neutralization of AMD using NaOH resulted in effective removal of heavy metal from solution. This removal was pH dependent and occurred sequentially starting from Fe (pH \sim 4.0) followed by Al (pH \sim 5.0), Cu (pH \sim 7.0), Zn (pH~8.0) and Mn (pH~10.0). This removal also produced precipitates of which the amount increased with increased in pH attained as well as with increase in total acidity of AMD. By contrast, the effectiveness of neutralization using calcareous sandstone in removing heavy metals from solution decreased with increased in

total acidity of AMD. Overall, the significant presence of dissolved metals in particular at high concentration of Fe³⁺ and Al³⁺ can reduce the effectiveness of neutralization treatment, either using alkaline solution (NaOH) or alkaline generating material (calcareous sandstone), in increasing pH. Consequently, this can reduce the effectiveness of the treatment in removing heavy metals from AMD. Therefore, besides the initial pH, another parameter that need to be considered during treatment of AMD by alkaline materials is the total acidity of the AMD.

ABSTRAK

KESAN PENEUTRALAN KE ATAS pH DAN KANDUNGAN LOGAM BERAT SALIRAN ASID LOMBONG (SAL)

Bahan-bahan alkali adalah digunakan untuk rawatan air berasid, termasuk asid saliran lombong (SAL) untuk meningkatkan pH. Keberkesanan rawatan ini, walau bagaimanapun, bergantung kepada beberapa faktor. Dalam kajian ini, pengaruh logam terlarut, khususnya Fe^{3+} dan $A^{\beta+}$ terhadap efisiensi peneutralan adalah tumpuan utama. Dalam kes SAL, logam terlarut juga boleh diwakili oleh parameter jumlah keasidan. Eksperimen peneutralan batch menggunakan dua bahan alkali iaitu NaOH dan batu pasir berkapur, telah dijalankan melibatkan larutan akueus berasid, tanpa dan dengan kehadiran Fe^{3+} dan/atau $A^{\beta+}$ pada julat kepekatan 2 mg/L-100 mg/L, dan juga tujuh sampel SAL yang diperolehi dari Mamut, Ranau. Ciri-ciri fiziko-kimia sampel SAL dianalisis mengikut Kaedah Piawai APHA. Proses peneutralan juga dikaji pada dos batu pasir berkapur yang berbeza dan di bawah keadaan di mana bahan ini berulang kali didedahkan kepada larutan akues berasid dengan and tanpa kehadiran Fe^{3+} dan/atau $A^{\beta+}$ serta dengan sampel SAL yang terpilih. Parameter utama yang dipantau dan diukur dalam eksperimen ini adalah pH. Selain itu, kesan peneutralan menggunakan kedua-dua bahan-bahan alkali ini terhadap kepekatan logam dalam sampel SAL terpilih juga dikaji. Kepekatan akhir Fe, Al, Cu, Zn dan Mn dalam larutan ditentukan menggunakan ICP-OES. Hasil kajian menunjukkan bahawa sampel SAL dari Mamut, Ranau mempunyai pH (2.77-3.36), TDS (741-1485 mg/L), EC (1489-2975 µS/cm), jumlah keasidan (316-807 mg CaCO₃/L), sulfat (649-2148 mg/L), dan kepekatan Fe (0.34-8.93 mg/L), Al (35.59-111.24 mg/L), Mn (6.82-30.88 mg/L), Cu (3.60-26.99 mg/L) dan Zn (1.77-9.10 mg/L) yang berbeza-beza. Jumlah keasidan SAL didapati berkorelasi secara positif ($R^2 = 0.968$) dengan kepekatan Al terlarut. Semasa peneutralan larutan akueus berasid dengan NaOH, peningkatan kepekatan Fe³⁺ dan/atau A^{β+} dalam larutan menyebabkan peningkatan jumlah bes yang diperlukan untuk menaikkan pH kepada 7.0. Pada kepekatan yang sama (mg/L) bagi logam, kehadiran $A^{\beta+}$ memerlukan sekitar 2X lebih bes untuk tujuan ini, berbanding Fe³⁺. Apabila batu pasir berkapur digunakan sebagai bahan alkali, kehadiran A^{β+} dalam larutan memperlahankan kadar kenaikan pH terutamanya pada kepekatan yang tinggi. Kesan ini tidak ketara apabila Fe³⁺ yang hadir. Apabila sampel SAL digunakan, jumlah alkaliniti (NaOH) yang diperlukan untuk menaikkan pH kepada 7.0 meningkat dengan peningkatan kepekatan Al dan juga jumlah keasidan. Apabila batu pasir berkapur digunakan sebagai bahan alkali, kadar peningkatan pH adalah perlahan dan berbeza antara SAL. Nilai pH yang dicapai selepas 8 jam peneutralan bergantung (R²=0.9415) kepada jumlah keasidan di mana nilainya menurun dengan peningkatan iumlah keasidan. Keberkesanan batu pasir berkapur dalam proses peneutralan meningkat dengan peningkatan dos mengikut urutan 1.0 g> 0.5 g> 0.1 g, manakala pada dos yang tetap (0.5g), ianya menurun dengan cepat semasa kitaran 24j peneutralan berturut-turut dengan larutan akueus berasid dengan kepekatan A^{β+} tinggi serta dengan sampel SAL dengan jumlah keasidan yang tinggi. Sementara itu, peneutralan SAL menggunakan NaOH menyebabkan penyingkiran yang efektif terhadap logam berat dalam larutan. Penyingkiran ini bergantung kepada pH dan berlaku secara berturutan bermula dari Fe (pH~4.0) diikuti oleh Al (pH~5.0), Cu (pH~7.0), Zn (pH~8.0) dan Mn (pH~10.0).

Penyingkiran ini, walau bagaimanapun, menghasilkan mendakan yang amaunnya meningkat dengan peningkatan pH dan jumlah keasidan SAL. Sebaliknya, keberkesanan peneutralan menggunakan batu pasir berkapur dalam penyingkiran logam berat menurun dengan peningkatan jumlah keasidan SAL. Secara keseluruhannya, kehadiran logam terlarut khususnya Fe³⁺ and A^{β+} pada kepekatan yang tinggi boleh mengurangkan keberkesanan rawatan peneutralan, sama ada menggunakan larutan alkali (NaOH) atau bahan beralkali (batu pasir berkapur), dalam meningkatkan pH serta mengurangkan kepekatan logam dalam SAL. Dengan itu, selain pH, satu parameter lain yang wajar diberi pertimbangan semasa rawatan SAL oleh bahan beralkali ialah jumlah keasidan SAL.

TABLE OF CONTENTS

Page

TITLE		i		
DECLARATION				
CERTIFICA	TION	iii		
ACKNOWLE	DGEMENT	iv		
ABSTRACT		v		
ABSTRAK		vii		
LIST OF TA	BLES	xiii		
LIST OF FIG	GURES	xiv		
LIST OF AB	BREVIATIONS AND SYMBOLS	xix		
LIST OF AP	PENDICES	xxii		
CHAPTER	1 : INTRODUCTION	1		
1.1	Acid mine drainage and Environment	1		
1.2	Acid Mine Drainage Treatment	1		
1.3 Mamut Copper Mine				
1.4 Rationale of study				
1.5 Objectives of Study				
1.6 Scope of Study				
1.7	Outline of Thesis	8		
CHADTED	2 · ITTEDATUDE DEVIEW	0		
2 1		9		
2.1	2.1.1 Formation of AMD	9		
	2.1.2 Characteristics of AMD	11		
	2.1.3 Impacts of AMD on receiving water	11		
22	Acidity of AMD	16		
2:2	2.2.1 Total acidity	16		
	2.2.2 Mineral acidity	17		
23	AMD Treatment Method	20		
2.5		20		
2.7	2.4.1 Materials used	24		
	2.4.2 Effect of alkaling treatment	21		
		20		
	b Motal romoval	20		
2.5	D. Metal removal	32		
2.5	racions anecting Alkaline Treatment	33		

	2.5.1	Type of material	33
		2.5.2 Amount of alkaline material	35
		2.5.3 Particle size of alkaline material	37
		2.5.4 The presence of Fe^{3+} and/or Al^{3+}	38
		2.5.5 Concentration of dissolved Fe and/or Al	40
		2.5.6 Characteristics of AMDs	41
		2.5.7 Effect of coating or armoring	41
CHAPTER	3 :	METHODOLOGY	42
3.1	Water S	Samples	42
	3.1.1	Acidic aqueous samples	42
	3.1.2	Acidic aqueous samples containing dissolved metals Fe and/or Al	42
	a.	Acidic aqueous sample containing dissolved Fe	43
	b.	Acidic aqueous sample containing dissolved Al	43
	с.	Acidic aqueous sample containing dissolved Fe	
		and Al	43
	3.1.3	Acid mine drainage (AMD) samples	44
3.2	Determ	ination of Physico-chemical Characteristics	48
	3.2.1	PH	48
	3.2.2	Conductivity and Total Dissolved Solids	49
	3.2.3	Total acidity	49
	3.2.4	Sulfate UNIVERSITI MALAYSIA SABAH	49
	a.	Preparation of sulfate calibration curve	49
	b.	Analysis of sample	50
	3.2.5	Dissolved metals (Fe, Al, Mn, Cu, and Zn)	50
	a.	Operating condition of ICP-OES	50
	b.	Preparation of standard solutions	51
	с.	Preparation of calibration curve	51
	d.	Analysis of sample	51
3.3	Neutral	ization Experiments	51
	3.3.1	Alkaline materials used	51
	a.	NaOH	51
	b.	Calcareous sandstone	52
	3.3.2	Neutralization with NaOH	54
	3.3.3	Neutralization with calcareous sandstone	54
3.4	Effect o	of alkaline material dosage on Neutralization	55
3.5	Effect o	of Repeated Exposure on neutralization efficiency	

		of cald	careous sandstone	56
	3.6	Effect	of neutralization on metal concentration of AMD	57
		3.6.1	Alkaline solution (NaOH)	57
		3.6.2	Alkaline generating material (calcareous sandstone)	57
СНАР	TER	4 :	RESULTS AND DISCUSSION	59
	4.1	Physic	o-chemical Characteristics and Heavy metal content	
		of AMI	D Samples	59
	4.2	Intera	ction Between Acidic Aqueous solutions and NaOH	64
		4.2.1	Interaction in the absence of dissolved metal in	
			solution	64
		4.2.2	Interaction in the presence of Fe ³⁺	64
		4.2.3	Interaction in the presence of Al ³⁺	68
		4.2.4	Interaction in the presence of Fe^{3+} and Al^{3+}	70
	4.3	Intera	ction Between Acidic Aqueous solutions and	
		Alkalin	e Generating Material	73
		4.3.1	Interaction of acidic aqueous solution with	
			calcareous sandstone	73
		4.3.2	Interaction in the presence of Fe ³⁺	74
	E.	4.3.3	Interaction in the presence of Al ³⁺	79
		4.3.4	Interaction in the presence of Fe ³⁺ and Al ³⁺	81
		4.3.5	Effect of alkaline material dosage on	
			neutralization	83
	4.4	Effect	of Alkaline Treatment (Neutralization) on pH of AMDs	88
		4.4.1	Neutralization of AMD using alkaline solution, NaOH	88
		4.4.2	Neutralization of AMD using alkaline generating	
			Material	93
		4.4.3	Effect of calcareous sandstone dosage on	
			neutralization of AMD	96
	4.5	Effect	of repeated exposure of calcareous sandstone	
		to Acid	lic aqueous solutions	99
		4.5.1	Acidic aqueous solutions containing dissolved Fe ³⁺	
			and/or Al ³⁺	99
		4.5.2	AMD samples (AMD1, AMD4, and AMD6)	105
	4.6	Effect	of neutralization on dissolved metals (Fe, Al, Mn, Cu a	nd Zn)
		concer	ntration in AMD	110
		4.6.1	Neutralization of AMD using alkaline solution. NaOH	110
		4.6.2	Neutralization of AMD using alkaline generating,	

APPENDICES 1					
REFERENCES					
CHAPTER	5:	CONCLUSION	130		
	4.7.2	Metal removal efficiency	128		
	4.7.1	Neutralization efficiency	127		
	and ca	alcareous sandstone) in the treatment of AMD	127		
4.7	Compa	Comparison of effectiveness of alkaline materials (NaOH			
		material, Calcareous sandstone	122		

LIST OF TABLES

			Page
Table	2.1 :	Oxidation reactions of other sulfide minerals commonly found in mine waste dumps	10
Table	2.2 :	Characteristics of mine waters from various locations	13
Table	2.3 :	Biological effects of metals on fish and human's health	15
Table	2.4 :	Acidity values of mine waters reported in selected studies	17
Table	2.5 :	Ionic Potentials of selected metal ions	19
Table	2.6 :	Various Methods of AMD treatments	23
Table	2.7 :	Typical alkaline materials used in AMD treatment	24
Table	2.8 :	Typical alkaline generating materials used in treating AMD	25
Table	2.9 :	Various types of alkaline minerals	30
Table	2.10 :	Solubility products of various carbonate minerals	31
Table	2.11 :	pH range for the formation of metal hydroxides	33
Table	3.1 :	Types of aqueous acidic samples investigated in this study	44
Table	3.2 :	GPS location and description of AMD samples	48
Table	3.3 :	ICP-OES operating condition	50
Table	3.4 :	Chemical composition of calcareous sandstone	53
Table	4.1 :	Values of pH, E_c , TDS, Total Acidity and sulfate of AMD samples	60
Table	4.2 :	Dissolved metals concentration according to AMD samples	61

LIST OF FIGURES

Ρ	а	q	e
		_	

Figure 1.1 :	A general map of Mamut Copper Mine (MCM)	6
Figure 1.2	An aerial view of Mamut Copper Mine (MCM)	7
Figure 2.1 :	Acidity compositions in various AMD samples	20
Figure 2.2 :	Relationship between acidity of AMD with dissolved Fe^{3+}	21
Figure 2.3 :	Relationship between acidity of AMD with dissolved Al ³⁺	21
Figure 2.4 :	Calculated versus measured acidity of AMD samples	22
Figure 2.5 :	Titration curve of a strong acid and strong base	26
Figure 2.6 :	Titration curve obtained from titration of AMD sample with NaOH	28
Figure 2.7 :	pH increase during alkaline treatment using different oxides, hydroxides and carbonates	32
Figure 2.8 :	Neutralization of AMD using limestone from different sources	35
Figure 2.9 :	Effect of neutralization on pH of acidic Fe aqueous solution (250 mg/L) at different amount of olivine	36
Figure 2.10 :	Interaction of AMD at different dolomite and limestone solid solution ratio (g/L)	36
Figure 2.11 :	Interaction of AMD and olivine of different water/rock ratio (W/R)	37
Figure 2.12 :	Effect of limestone size on neutralization reaction of acid sulfuric solution	38
Figure 2.13 :	Effect of metal ions on neutralization rate of acid sulfuric solution using limestone	39
Figure 2.14 :	Effect of different initial concentration of Fe^{3+} on neutralization using olivine	40
Figure 3.1 :	Location map of Mamut Copper Mine area	45
Figure 3.2 :	AMD sampling sites at the mine area	46

Figure	3.3 ;	Calcareous sandstone sampling site at stone quarry, Kudat	52
Figure	3.4 :	Particle size (1-2mm) of Calcareous Sandstone	53
Figure	3.5 :	X-ray diffraction (XRD) pattern of the calcareous sandstone used in this study [A = aragonite; C= calcite; D= dolomite; Q = quartz]	53
Figure	4.1 :	Relationship between pH and total acidity of AMDs	60
Figure	4.2 :	Relationship between total acidity and dissolved Fe of AMDs	62
Figure	4.3 :	Relationship between total acidity and dissolved Al of AMDs	63
Figure	4.4 :	Relationship between total acidity and dissolved Fe and Al of AMDs	63
Figure	4.5 :	Titration graph of an acidic aqueous solution and NaOH	65
Figure	4.6 :	Titration graphs of acidic aqueous solutions of different Fe ³⁺ concentrations	67
Figure	4.7	Effect of Fe ³⁺ concentration on the amount of base required to increase pH of an acidic aqueous solution to pH 7.0 (Initial pH = 3.0)	68
Figure	4.8 :	Titration graphs of acidic aqueous solutions of different Al ³⁺ concentrations	71
Figure	4.9 :	Effect of AI^{3+} concentration on the amount of base required for neutralization of acidic aqueous solution to pH 7.0 (Initial pH = 3.0)	72
Figure	4.10 :	The amount of base required for neutralization to pH 7.0 of acidic aqueous solution at different Fe^{3+} and AI^{3+} concentrations	72
Figure	4.11 :	Titration graphs of acidic aqueous solution of different \mbox{Fe}^{3+} and \mbox{Al}^{3+} concentrations	75
Figure	4.12 :	Effect of Fe^{3+} and Al^{3+} concentration on the amount of base require for neutralization of an acidic aqueous solution to pH 7.0 (Initial pH = 3.0)	red 76
Figure	4.13 :	Amount of base required for neutralization to pH 7.0 of acidic aqueous solution at various Fe ³⁺ and/or Al ³⁺ concentrations	76
Figure	4.14 :	pH change during interaction of acid aqueous solution with calcareous sandstone. The solid solution ratio used was 1:100	77

Figure	4.15 :	pH change during interaction of acid aqueous solutions containing Fe ³⁺ at different concentrations with calcareous sandstone. The solid solution ratio used was 1:100	78
Figure	4.16 :	pH change during interaction of acid aqueous solutions containing Al ³⁺ at different concentrations with calcareous sandstone. The solid solution ratio used was 1:100	80
Figure	4.17 :	pH change during interaction of acid aqueous solutions containing both Fe^{3+} and Al^{3+} at different concentrations with calcareous sandstone. The solid solution ratio used was 1:100	82
Figure	4.18 :	pH change during interaction of acidic aqueous solutions containing Fe^{3+} (100 mg/L) with calcareous sandstone at various dosages (0.1 g, 0.5 g and 1.0 g)	84
Figure	4.19 :	pH change during interaction of acidic aqueous solutions containing AI^{3+} (100 mg/L) with calcareous sandstone at various dosages (0.1 g, 0.5 g and 1.0 g)	85
Figure	4.20 :	pH change during interaction of acidic aqueous solutions containing Fe^{3+} and Al^{3+} (100 mg/L) with calcareous sandstone at various dosages (0.1 g, 0.5 g and 1.0 g)	87
Figure	4.21 :	Titration graphs of AMD samples	90
Figure	4.22 :	Titration graph of weak acid and strong base	91
Figure	4.23 :	Amount of NaOH required for neutralization of AMD samples to pH 7.0	91
Figure	4.24 :	Relationship between total acidity and mmoles of base required to increase the pH to 7.0	92
Figure	4.25 :	Relationship between concentration of Al and mmoles of base required to increase the pH to pH 7.0	92
Figure	4.26 :	Relationship between concentration of Fe and mmoles of base required to increase the pH to 7.0	93
Figure	4.27 :	Effect of neutralization using calcareous sandstone on the pH of AMDs at solid solution ratio 1:100	94
Figure	4.28 :	Relationship between total acidity and pH attained after 8 hours of neutralization interaction of calcareous sandstone with AMDs	96
Figure	4.29 :	Interaction of AMD6 with calcareous sandstone at various dosages (0.1 g, 0.5 g and 1.0 g)	97

Figure	4.30 :	pH change in acidic 100 mg/L Fe ³⁺ solution during 15 successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	100
Figure	4.31 :	pH change in acidic 100 mg/L Al ³⁺ solution during 12 successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	100
Figure	4.32 :	pH change in acidic 100 mg/L Fe ³⁺ and Al ³⁺ solution during 11 successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	101
Figure	4.33 :	Proportion of acidity in acidic aqueous solution containing 100 mg/L Fe ³⁺ during 15 successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	103
Figure	4.34 :	Proportion of acidity in acidic aqueous solution containing 100 mg/L Al ³⁺ during 12 successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	103
Figure	4.35 :	Proportion of acidity in acidic aqueous solution containing 100 mg/L Fe ³⁺ and Al ³⁺ during 11 successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	104
Figure	4.36 :	Schematic diagram of armoring on calcareous sandstone by Fe and/or Al precipitates	104
Figure	4.37 :	Armoring on calcareous sandstone MALAYSIA SABAH	105
Figure	4.38 :	pH change in AMD1 during successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	107
Figure	4.39 :	pH change in AMD4 during successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	108
Figure	4.40 :	pH change in AMD6 during successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	108
Figure	4.41 :	Proportion of acidity neutralized in AMD1 during successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	109
Figure	4.42 :	Proportion of acidity neutralized in AMD4 during successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	109
Figure	4.43 :	Proportion of acidity neutralized in AMD6 during successive neutralization cycles (24 hours/cycle) at solid solution ratio 1:100	110

Figu	ire	4.44 :	Changes in Fe, Al, Mn, Cu and Zn concentration with increasing pH for AMD1 $$	113
Figu	ire	4.45 :	Changes in Fe, Al, Mn, Cu and Zn concentration with increasing pH for AMD4 $$	114
Figu	ire	4.46 :	Changes in Fe, Al, Mn, Cu and Zn concentration with increasing pH for AMD6 $$	115
Figu	ire	4.47 :	Metal removal (Fe, Al, Mn, Cu and Zn) as a function of pH for AMD1	116
Figu	ire	4.48 :	Metal removal (Fe, Al, Mn, Cu and Zn) as a function of pH for AMD4	116
Figu	ire	4.49 :	Metal removal (Fe, Al, Mn, Cu and Zn) as a function of pH for AMD6	117
Figu	ire	4.50 :	Weight of precipitate as a function of pH for AMD1, AMD4 and AMD6	118
Figu	ire	4.51 :	Relationship between weight of precipitates formed and total acidity of AMDs	118
Figu	ire	4.52 :	Precipitates formed from AMD1 at various pH values	119
Figu	ire	4.53 :	Precipitates formed from AMD4 at various pH values BAH	120
Figu	ire	4.54 :	Precipitates formed from AMD6 at various pH values	121
Figu	ire	4.55 :	Changes in Fe, Al, Mn, Cu and Zn concentration with time for AMD1 during interaction with calcareous sandstone	123
Figu	ire	4.56 :	Metal removal (Fe, Al, Mn, Cu and Zn) for AMD1 after 24 hours of interaction with calcareous sandstone	125
Figu	ire	4.57 :	Metal removal (Fe, Al, Mn, Cu and Zn) for AMD4 after 24 hours of interaction with calcareous sandstone	126
Figu	ire	4.58 :	Metal removal (Fe, Al, Mn, Cu and Zn) for AMD6 after 24 hours of interaction with calcareous sandstone	126
Figu	ire	4.59 :	Aluminium precipitates formed in Sg. Poring	127

mL	-	milliliter
L	-	Litre
Ν	-	Normality
mg/L	÷	milligram per liter
mg CaCO ₃ /L	(1)	milligram calcium carbonate per liter
nm	-	nanometer
µS/cm	-	microsiemens per centimeter
Fe	-	Iron
Al	-	Aluminium
Fe ³⁺	-	Ion Iron (III)
Al ³⁺	-	Ion Aluminium (III)
AI(OH) ₂	- 1	Aluminium hydroxides
Mn		Manganese
Mn(OH)2	1-	Manganese hydroxides
Cu BA	- U	CopperSITI MALAYSIA SABAH
Cu(OH) ₂	-	Copper hydroxides
Zn	-	Zinc
Zn(OH) ₂	-	Zinc hydroxides
Cd	-	Cadmium
Cr	-	Chromium
TDS	-	Total dissolved solids
SO42-	-	sulfate
CO32-	-	Carbonate
HCO₃ ⁻	1	Bicarbonate
H ₂ CO ₃	-	Carbonic acid

H⁺	-	proton
OH-	-	Hydroxide
CaCO ₃	2	Calcium carbonate
H_2SO_4	-	Sulphuric acid
HCI	-	Hydrochloric acid
NaOH	•	Sodium hydroxide
H_2O_2	-	Hydrogen peroxide

LIST OF APPENDICES

		Page	
APPENDIX A	Standard Solutions Preparation		
APPENDIX B	Preparation of metal stock solution	147	
APPENDIX C	Data for total acidity calculation	148	
APPENDIX D	Preparation of solutions for determination of sulfate		
	concentration	149	
APPENDIX E	Data for sulfate concentration	150	
APPENDIX F	Preparation of metal solutions (ICP-OES)	151	
APPENDIX G	Calibration graphs in WINLAB for Fe, Al, Mn, Cu and Zn	152	
APPENDIX H	pH, EC, TDS, Total acidity and dissolved metals data for AMD	153	
APPENDIX I	Number of moles of NaOH used in AMD potentionmetric titration	on	
	to reach pH 7.0	155	
APPENDIX J	Interaction between Acidic Aqueous Solution and NaOH	156	
APPENDIX K	Interaction between Acidic Aqueous Solution and Alkaline		
	Generating Material	165	
APPENDIX L	Calcareous sandstone dosages	171	
APPENDIX M	Effect of Alkaline treatment (Neutralization) on pH of AMDs	174	
APPENDIX N	Repeated Exposure Test	186	
APPENDIX O	Effect of neutralization on metals (Fe, Al, Mn, Cu and Zn)		
	concentration in AMD1, AMD4 and AMD6	189	
APPENDIX P	Metal removal (Fe, Al, Mn, Cu and Zn) for AMD1, AMD4 and		
	AMD6 after 24 hours of interaction with calcareous sandstone	191	

CHAPTER 1

INTRODUCTION

1.1 Acid mine drainage and Environment

Acid Mine Drainage (AMD) is synonymous with base metals and coal mining activities. Typically, AMD is characterized by low (acidic) pH, high acidity, and high concentration of dissolved heavy metals (Singh, 1987; Gray, 1997; Nordstrom *et al.*, 2000; Bell *et al.*, 2001). Many rivers or streams in ex-mining areas worldwide are known to be affected by AMD pollution (Banks *et al.*, 1997; Gray, 1997; Lottermoser, 2010). Continuous inputs of AMD into nearby streams and/or rivers can adversely affect water quality, including acidic pH and elevated concentrations of heavy metals (Singh, 1987; Gray, 1997; Nordstrom *et al.*, 2000; Bell *et al.*, 2001). Subsequent precipitation of heavy metals can increase the suspended solid load besides blanketing the bottom sediment (Stoertz *et al.*, 2002; Levings *et al.*, 2005). These characteristics will lead to the destruction of the aquatic habitat, which can be evident several kilometres downstream of mine area (Sengupta, 1993; Allan, 1995; Evangelou and Seta, 1999).

1.2 Acid mine Drainage Treatment

Due to the adverse impacts arising from AMD, it is important that AMD produced at a mine area undergoes proper and effective treatment prior to final discharge into the surrounding aquatic environment. A number of treatment techniques are available including neutralization (Sengupta, 1993; Cravotta and Trahan, 1999; Potgieter-Vermaak *et al.*, 2006), adsorption (Mohan and Singh, 2002; Hughes and Gray, 2013; Falayi and Ntuli, 2014), ion-exchange (Feng *et al.*, 2000; Prasad and Kumar, 2015), oxidation-reduction (Younger *et al.*, 2002), biological treatment (Hallberg and Johnson, 2005), membrane filtration (Barton, 1978) and electrolysis (Park *et al.*, 2015). Among these, the most commonly used

is neutralization (or alkaline treatment) where alkaline materials are used to increase the pH of the AMD to a desired value. Additionally, this process will lead to reduction of dissolved concentration of heavy metals (Singh and Rawat, 1985; Skousen *et al.*, 2000; Cravotta and Trahan, 1999; Kalin, 2004).

The efficacy of neutralization treatment is however dependent on several factors including the type of alkaline material, the amount used, particle size, contact time and AMD characteristics (Barton, 1978; Evangelou, 1995; Sengupta, 1993; Skousen *et al.*, 2000; Bernier, 2005). A conventional alkaline material such as sodium hydroxide (NaOH) or caustic soda is more effective due to its high solubility than non-conventional materials, such as limestone, which are lower in solubility (Sengupta, 1993; Evangelou, 1995; Skousen *et al.*, 2000; Kalin *et al.*, 2006). In the case of non- conventional alkaline materials, the efficiency is higher for smaller particle sizes (Barton and Vanathanam, 1976).

Besides the nature of the alkaline material used, another critical factor in AMD treatment is the characteristics of the AMD being treated. Based on its pH value, there may be little variation between AMD samples, but based on total acidity values, there can be significant variation between samples (Singh, 1987; Chon and Hwang, 2000; Younger, 2001; Espaňa *et al.*, 2005). AMD can also vary in heavy metal content, which is an important parameter associated with total acidity (Chon and Hwang, 2000; Kirby and Cravotta, 2005). The significance of AMD characteristics in neutralization treatment, however, has mainly been demonstrated using aqueous acid solutions or synthetic AMD (Barton and Vatanatham, 1976; Volpicelli *et al.*, 1981; Maree *et al.*, 1992; Du Plessis and Maree, 1994; Maree and Du Plessis, 1994) while very limited work was done using real AMD samples (Maree and Du Plessis, 1994). Acidic aqueous solutions or synthetic AMD can only partially represent the actual characteristic of real AMD samples, but nevertheless the information obtained can serve as the fundamental basis in designing an effective treatment of AMD.

In general, the purpose of neutralization treatment is to increase the pH of an acidic solution from an initial value (e.g. pH~3.0) to a much higher value (e.g.