HIGH-RESOLUTION SATELLITE REMOTE SENSING FOR ABOVEGROUND BIOMASS ESTIMATION OF TROPICAL RAINFORESTS AND OIL PALM PLANTATIONS IN SABAH

ALEXIUS KOROM

PERFUSIAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2017

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL : HIGH-RESOLUTION SATELLITE REMOTE SENSING FOR ABOVEGROUND BIOMASS ESTIMATION OF TROPICAL RAINFORESTS AND OIL PALM PLANTATIONS IN SABAH

IJAZAH : DOCTOR OF PHILOSPHY (FORESTRY)

Saya **<u>ALEXIUS KOROM</u>**, Sesi **<u>2016 – 2017</u>**, mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat – syarat kegunaan seperti berikut:

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

ALEXIUS KOROM PF20109004

Disahkan Oleh, NURULAIN BINTI ISMAII LIBRARIAN (Tandatangan Pustakawan)

Tarikh: 30 Ogos 2017

(Prof. Madya. Dr. Phua Mui How) Penyelia

DECLARATION

I hereby declare that the material in this dissertation is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

24 March 2017

CERTIFICATION

NAME : ALEXIUS KOROM

MATRIC NO. : **PF2010-9004**

- TITLE
 : HIGH-RESOLUTION SATELLITE REMOTE SENSING FOR

 ABOVEGROUND BIOMASS ESTIMATION OF TROPICAL

 RAINFORESTS AND OIL PALM PLANTATIONS IN SABAH
- DEGREE : DOCTOR OF PHILOSOPHY (FORESTRY)
- VIVA DATE : 24 MARCH 2017

CERTIFIED BY

1. SUPERVISOR

Assoc. Prof. Dr. Phua Mui How

Signature

ACKNOWLEDGEMENTS

Associate Professor Dr. Phua Mui How supervised this piece of work and hereby acknowledged for providing valuable knowledge, motivation and assistance. My sincere appreciation also goes to Dr. Toshiya Matsuura, Dr. Hideki Saito and Dr. Yasumasa Hirata for their support and guidance in the field and providing valuable insights. Special thanks to Dr. Andreas Langner for his technical advice and guidance.

Biggest thanks to the GIS Laboratory team, lecturers and friends in UMS: Dr. Wilson Wong, Dr. Kamlisa Kamlun, Dr. Keiko Ioki, Mr. Rozaidi bin Hassan, Mr. David Kungin, Mr. Mohd. Rizan Gulam Hussein, Mr. Seliman Rajion, Mr. Erwan Sulin@Silin, Mr. Ahmad Dasuki, Ling Zia Yiing, Calvin Goh, Shahrul Azwan, Daniel James, Sue Wah Hue, Ang Wooi Ming and many others for all the motivations, contributions and the wonderful friendships. Thank you for being part in the journey of my study.

I also wish to acknowledge the assistance given by the Forests and Forest Products Research Institute (FFPRI) of Japan, Sabah Forest Department (SFD), Federal Land Consolidation and Rehabilitation Authority (FELCRA) of Sabah Regional Office, Sapi Plantations Sdn. Bhd. (Wilmar Group) and the management of Universiti Malaysia Sabah (UMS) (Faculty of Science and Natural Resources and Centre for Postgraduate Studies) and Universiti Teknologi MARA (UiTM), for all the support and cooperation. This study was made possible by the funding from the Ministry of Environment, Japan and therefore, my gratitude goes to them for their support.

Last but not least, my greatest appreciation goes towards my family for their unconditional love and support throughout my life. With great pleasure and a humble heart, I offer my praises and thanks to the Lord for health and strength HE showered upon me.

Alexius Korom 3 July 2017

ABSTRACT

The lack of research in the transition of reporting method in Reducing Emissions from Deforestation and Forest Degradation-plus (REDD+) program from using a low-resolution to high-resolution satellite image (HRSI) has led to this study. The approach of using geographical object-based image analysis (GEOBIA) towards the AGB quantification method is still not completely explored. The potential uses of HRSI in estimating the aboveground biomass (AGB) for two major land covers, oil palm plantations and tropical rainforests, in the middle of Sabah, East Malaysia was examined in this study. Field data collections to determine the AGB in oil palm plantation and forest reserve area were obtained through stratified random sampling method. Using HRSI, the effective spectral bands and vegetation indices were identified for segmentation and classification of objects where three kinds of useful information were extracted, that are spectral, geometrical and textural properties for modelling purposes. The AGB of oil palm plantation was estimated based on crown using a WorldView-2 image. A total of 222 samples of fieldcollected age-based data, AGB's regression towards the crown variables (crown diameter, crown area and crown perimeter) revealed the exponential nonlinear functions (R^2 of 0.80 ~ 0.85), which fulfil the lack of an allometric equation. Watershed technique was used to segment the oil palm crown at 4.8 % and 10.6 % of omission and commission errors. Due to overlaps in the oil palm's crown, agebased crown difference correction was implemented unto the detected crown. Among the crown variables, crown diameter was found to be the best in estimating the AGB for mature oil palm which improved from 62.9 Mgha⁻¹ (root-mean-square error (RMSE) 34.2 Mgha⁻¹) for detected crown to 122.5 Mgha⁻¹ (RMSE 16.4 Mgha⁻¹) for corrected crown; relative RMSE was 4.1 times lower after the correction. For crown area and crown perimeter, the relative RMSEs are both 1.8 times lower after the correction. On the other hand, AGB of the logged-over forest reserves were estimated using IKONOS-2 image based on two approaches; forest degradation classification and crown-based approach. Forest degradation classification approach utilised the spectral and textural information of forest surface roughness where else, a crown-based approach used the geometrical information from the crown. Forest degradation reduces AGB and alters forest canopy structure implicitly but

٧

related. Modelling by restricting the complexities of forest surface roughness into respective forest degradation classes (very-degraded, degraded and intact forests) was implemented. Regression analyses confirmed the best independent variables for modelling the AGB are textural and spectral properties for each forest type. The estimated AGBs for very-degraded, degraded and intact forests are 73.6, 148.4 and 270.7 Mgha⁻¹ with RMSEs of 15.9, 38.9 and 18.7 Mgha⁻¹ respectively. A comparison with the classical non-classified forest approach (AGB = 126.1 Mgha⁻¹, RMSE = 64.1 Mgha⁻¹) approved the advantage of forest degradation classification approach. Meanwhile, the approach to use geometrical information from crown has underestimated the AGB by 19.4 % (AGB = 115.8 Mgha⁻¹, RMSE = 87.9 Mgha⁻¹) from field-based AGB. In using optical high-resolution satellite remote sensing data, forest degradation classification approach had greatly improved the widely reported saturation problem in AGB estimation, which normally occurred at high AGB density. As a conclusion, this study had extensively examined the use of crown shape and forest texture to estimate the AGB of oil palm plantation and tropical rainforest; two major competing land use in tropics.

UNIVERSITI MALAYSIA SABAH

ABSTRAK

SATELIT PENDERIAAN JAUH BERESOLUSI TINGGI DALAM PENGANGGARAN BIOMASSA ATAS-TANAH BAGI HUTAN HUJAN TROPIKA DAN PERLADANGAN KELAPA SAWIT DI SABAH

Penyelidikan yang masih kurang untuk melihat keberkesanan peralihan kaedah pelaporan di dalam program Reducing Emissions from Deforestation and Forest Degradation-plus (REDD+), daripada menggunakan imej satelit resolusi-rendah kepada imej satelit resolusi-tinggi (HRSI), telah mendorong kajian ini. Potensi penggunaan HRSI dalam penganggaran biomassa atas-tanah (AGB) bagi dua kelas tutupan tanah utama, perladangan kelapa sawit dan hutan hujan tropika, di pertengahan Sabah, Malaysia Timur telah diperiksa dalam kajian ini. Pengumpulan data lapangan untuk menentukan AGB di ladang kelapa sawit dan kawasan hutan simpan telah dilaksanakan melalui kaedah pensampelan rawak berstrata. Pendekatan "geographical object-based image analysis" (GEOBIA) terhadap kaedah pengkuantifikasian AGB masih belum diterokai sepenuhnya. Dengan menggunakan HRSI, 'band' spektrum serta indeks tumbuhan yang efektif telah dikenal pasti dalam pensegmenan dan pengkelasan objek di mana tiga jenis maklumat penting telah diekstrak iaitu sifat-sifat spektrum, geometri dan tekstur bagi tujuan pemodelan. AGB ladang kelapa sawit dikira berasaskan silara pokok menggunakan imej WorldView-2. Berasaskan 222 sampel data lapangan yang bersandarkan pada umur pokok, regresi AGB terhadap pembolehubah silara pokok (diameter silara, luas silara dan perimeter silara) telah merungkaikan fungsi eksponen tak-linear (R² dari 0.80 ~ 0.85), yang dapat mengisi masaalah ketiadaaan persamaan alometrik. Teknik "watershed" digunakan untuk mensegmen silara kelapa sawit pada 4.8 % ralat terabai dan 10.6 % ralat terlebih-buat. Disebabkan masalah pertindihan silara pokok maka pembetulan beza silara bersandarkan umur telah dilaksanakan ke atas silara yang disegmen. Di antara semua pembolehubah silara, diameter silara adalah didapati paling berkesan dalam menganggarkan AGB bagi kelapa sawit matang yang mana menunjukkan penambahbaikan daripada 62.9 Mgha⁻¹ (ralat puncapurata- kuasa-dua (RMSE) 34.2 Mgha⁻¹) untuk silara yang disegmen kepada 122.5 Mgha⁻¹ (RMSE 16.4 Mgha⁻¹) untuk silara telah diperbetulkan; RMSE relatif adalah 4.1 kali lebih rendah selepas pembetulan. Untuk luas silara dan perimeter silara,

RMSE relatif bagi kedua-dua pembolehubah adalah masing-masing 1.8 kali lebih rendah selepas pembetulan. Sebaliknya, AGB bagi hutan simpan pernah-balak telah dianggar dengan menggunakan imej IKONOS-2 melalui dua pendekatan; kaedah pengkelasan degradasi hutan dan kaedah berasaskan silara pokok. Kaedah pengkelasan degradasi hutan menggunakan informasi spektrum dan tekstur "forest surface roughness" manakala kaedah berasaskan silara pokok menggunakan informasi geometri dari silara. Degradasi hutan mengurangkan AGB dan mengubah struktur kanopi hutan secara tersirat tetapi berkait. Pemodelan dengan mengehadkan kerumitan "forest surface roughness" kepada beberapa kelas degradasi hutan (hutan belukar, hutan muda dan hutan tebal) telah dilaksanakan. Analisa regresi untuk setiap ienis hutan telah mengesahkan bahawa pembolehubah tak-bersandar yang terbaik untuk memodelkan AGB adalah daripada sifat tekstur dan spektrum. Anggaran AGB untuk hutan belukar, hutan muda dan hutan tebal adalah 73.6, 148.4 dan 270.7 Mgha⁻¹ dengan RMSE masing-masing ialah 15.9, 38.9 dan 18.7 Mgha⁻¹. Perbandingan dengan kaedah klasik iaitu hutan tanpa pengkelasan (AGB = 126.1 Mgha⁻¹, RMSE = 64.1 Mgha⁻¹) telah menyokong bahawa kelebihan adalah terletak pada kaedah pengkelasan degradasi hutan. Sementara itu, pendekatan yang menggunakan informasi geometri dari silara pokok telah teranggar-rendah AGB sebanyak 19.4 % (AGB = 115.8 Mgha⁻¹, RMSE = 87.9 Mgha⁻¹ ¹) daripada AGB sebenar di lapangan. Melalui penggunaan data beresolusi tinggi satelit optik penderiaan jauh, pendekatan melalui pengkelasan degradasi hutan telah memperbaiki masalah ketepuan yang dilaporkan secara meluas dalam penganggaran AGB yang biasa berlaku pada kepadatan AGB tinggi. Kesimpulannya, kajian ini telah memeriksa secara mendalam penggunaan informasi sifat bentuk silara pokok dan tekstur hutan dalam penganggaran AGB ladang kelapa sawit dan hutan hujan tropika; dua pesaing utama penggunaan tanah di kawasan tropika.

TABLE OF CONTENTS

		Page
TITLE		i
DECL	ARATION	ii
CERT	IFICATION	iii
ACKN	IOWLEDGEMENTS	iv
ABST	RACT	v
ABS7	RAK	vii
TABL	E OF CONTENTS	ix
LIST LIST	OF TABLES OF FIGURES	xiv xix
LIST	OF ABBREVIATIONS	xxvi
LIST	OF SYMBOLS AND UNITS	xxviii
LIST	OF APPENDICES	xxix
СНАР	PTER 1: INTRODUCTION	1
1.1	Research overview	1
1.2	Objectives	4
1.3	Research scope	5
1.4	Significance of study	6
1.5	Flowchart and research layout	7

CHAP	TER 2: STUDY AREA	10
2.1	Site data collection	10
	2.1.1 Deramakot and Tangkulap Forest Reserves	10
	2.1.2 Oil palm at surrounding area	12
2.2	Topographic profiles	13
2.3	Soils	14
2.4	Climate	14
	2.4.1 Temperature	14
	2.4.2 Rainfall	14
2.5	Field data plot	14
СНАР	TER 3: LITERATURE REVIEW	18
3.1	Forest management in Sabah	18
3.2	Deforestation and degradation of tropical rainforests	20
3.3	Reduced Emission from Deforestation and	24
	Forest Degradation-plus (REDD+)	
3.4	Structure and AGB stocks of tropical rainforests and oil palm plantation	25
	3.4.1 Tropical rainforests	25
	3.4.2 Oil palm	27
3.5	AGB estimation and remote sensing	30
	3.5.1 AGB estimations in mixed landscapes of Borneo	32

	3.5.2	Potentials and limitations of high-resolution satellite image	33
CHAP	FER 4:	MODELLING OF OIL PALM ABOVEGROUND BIOMASS ESTIMATION USING WORLDVIEW-2 IMAGE	38
4.1	Introdu	uction	38
4.2	Method	ds	39
	4.2.1	Field data collections	41
	4.2.2	High-resolution satellite image	46
	4.2.3	Field data analysis	49
	4.2.4	Crown segmentation	50
		4.2.4.a Separation of oil palm versus non-oil palm	50
		4.2.4.b Individual oil palm crown delineation	54
		4.2.4.c Crown overlapping correction SIA SABAH	54
	4.2.5	Crown metric assessments	57
		4.2.5.a Area-based measures	58
		4.2.5.b Centroid-based measures	59
		4.2.5.c Overall goodness measures	59
	4.2.6	AGB estimation modelling	60
4.3	Results	5	62
	4.3.1	Growth AGB trend	62
	4.3.2	Relationship of AGB and crown structures	63

	4.3.3	Crown de	lineation	65
	4.3.4	AGB estin	nation model	68
4.4	Discus	sions		70
4.5	Conclu	isions		73
СНА	PTER 5:	MODELL	ING OF TROPICAL RAINFORESTS	74
		ABOVEG	ROUND BIOMASS ESTIMATION USING -2 IMAGE	
5.1	Introd	uction		74
5.2	Metho	ds		76
	5.2.1	High-reso	olution satellite image	76
	5.2.2	Field data	a collections	77
	5.2.3	Image sp	ectral bands and vegetation indices	79
	5.2.4	AGB estir approach	nation by forest degradation classification	80
		5.2.4.a	Forest segmentation	81
		5.2.4.b	Classification task	84
		5.2.4.c	AGB estimation model	87
	5.2.5	AGB estir	nation by crown-based approach	88
		5.2.5.a	Segmentation of tree crowns	88
		5.2.5.b	Comparison and selection of crown delineation technique	90
		5.2.5.c	Crowns extraction	92

		5.2.5.d	AGB estimation modelling	93
5.3	Results	5		95
	5.3.1	Estimating	GAGB by forest degradation classification	95
	5.3.2	Estimating	g AGB by individual tree crowns	100
5.4	Discus	sions		104
5.5	Conclu	ision		109
CHAP	TER 6:	CONCLU	SIONS	110
6.1	Resear	rch findings		110
6.2	Implic	ations		112
REFE	RENCE	STI M		115
APPEI	NDICE	S CO	UIVIS	132
			UNIVERSITI MALAYSIA SABAH	

LIST OF TABLES

		Page
Table 2.1:	List of study sites and their size	10
Table 3.1:	Extent of Sabah's Permanent Forest Reserves in 2010 and 2012	20
Table 3.2:	Allometry variables used in past research	31
Table 4.1:	Summary of oil palm data collection in Sapi Plantation and Sungai Ruku-ruku Plantation	46
Table 4.2:	Specification of WorldView-2 that covers Sungai Ruku-ruku Oil Palm Plantation	48
Table 4.3:	Pearson correlation between crown variables, AGB, DBH and palm age	49
Table 4.4:	Vegetation indices used for oil palm detection in plantation	50
Table 4.5:	Kappa classification assessment for the combined masks	53
Table 4.6:	Geometrical and spectral thresholds to define oil palm crown	54
Table 4.7:	Omission and commission errors of crown delineation	67
Table 4.8:	Area and centroid-based assessments of crown delineation	67

Table 4.9:	Mean estimates of AGB for three classes of oil palm age of 15, 18 and 24 years old for individual and projected per ha values	68
Table 4.10:	Comparisons of crown extraction with other studies	72
Table 5.1:	Specification of IKONOS-2 satellite image	76
Table 5.2:	Summary of forest data collection	78
Table 5.3:	IKONOS-2 bands, panchromatic layer and vegetation indices used in this study	80
Table 5.4:	Observations on each trial of segmentation to select the best parametric settings using multi-resolution segmentation (eCognition) based on input parameters of blue, red and near-infrared bands	83
Table 5.5:	Forest segments by forest degradation classes based on biomass density	84
Table 5.6:	Segmentation and classification of IKONOS-2 image	85
Table 5.7:	Accuracy assessment for forest degradation classification	87
Table 5.8:	Strategic scale parametric assessment based on shape metric	89
Table 5.9:	Pearson correlations between the field and satellite variables	95

Table 5.10:	Summary of AGB estimation modelling by forest degradation classification (Appendix F to Appendix H) and the non-classified forest (Appendix I) approaches	97
Table 5.11:	Performance of three models of AGB estimation based on crown	103
Table 5.12:	Comparisons with other recent studies that used optical data	108
Table A-1:	Oil Palm Estate Block at Sungai Ruku-ruku Oil Palm Plantation	132
Table A-2:	Statistical summary of crown diameter, crown area, crown perimeter and AGB at respective age (number of palms \geq 10 for all ages, except for 3 and 18 years old palm) in 1.41 ha (equivalent to 20 plots)	133
Table D-1:	Summary of field data in Sungai Ruku-ruku Plantation	141
Table E-1:	Information of data collection in respective forest type	142
Table F-1:	RMSE for LOOCV regression model for Very-degraded forest	146
Table F-2:	Result of the model summary for Very-degraded forest	146
Table F-3:	Result of the model coefficients for Very-degraded forest	147
Table G-1:	RMSE for LOOCV regression model for Degraded forest	148
Table G-2:	Result of the model summary for Degraded forest	148

Table G-3:	Result of the model coefficients for Degraded forest	149
Table H-1:	RMSE for LOOCV regression model for Intact forest	150
Table H-2:	Result of the model summary for Intact Forest	150
Table H-3:	Result of the model coefficients for Intact Forest	151
Table I-1:	Result of the model summary for Non-classified forest	152
Table I-2:	Result of the model coefficients for Non-classified forest	152
Table I-3:	Result of the model summary, after mean-centering of variables, for Non-classified forest	153
Table I-4:	Result of the model coefficients, after mean-centering of variables, for Non-classified forest	153
Table J-1:	Statistical descriptions of the crown dataset (based on N = 591 list of pairwise data)	155
Table J-2:	Pearson correlations of the crown variables, AGB and DBH	156
Table K-1:	Table of model summary and parameter estimates for DBH – Crown Area model	157
Table K-2:	Table of model summary and parameter estimates for AGB – Crown Area model	157
Table K-3:	Table of model summary and parameter estimates for Ln(AGB) – Crown Diameter model	157

Table L-1: Statistical descriptions for by-plot estimated crown datasets
Table M-1: Statistical description of the forest segments (based on N = 1063 list of data)
Table N-1: Comparison between tree density and AGB for respective forest degradation (Very-degraded, Degraded, Intact Forest) and for overall forests (listed in Table E-1 at Appendix E)

LIST OF FIGURES

		Page
Figure 1.1:	Global greenhouse gases in 2010	2
Figure 1.2:	Flowchart of layout and setting of the research	8
Figure 2.1:	Map showing the locations of the study area	11
Figure 2.2:	Elevation using SRTM data	13
Figure 2.3:	Example of panoramic views in forest plots covering three degradation levels	16
Figure 2.4:	Example of panoramic views in oil palm plots covering ages ranged between 2 to 24 years old	17
Figure 3.1:	Forest classification in 2010	19
Figure 3.2:	Tropical forest area change rates from 1999 to 2000, 2000 to 2005, and 2005 to 2010	21
Figure 3.3:	Oil palm acreage growth (million hectares)	23
Figure 3.4:	Definition of tropical rainforests strata layers in this study	26
Figure 3.5:	Eight years old oil palm stands structure	29
Figure 3.6:	Differences between HRSI and LiDAR perspective of looking at forest canopy	36
Figure 3.7:	A group of oil palms viewed from panchromatic band	37

Figure 4.1:	Flow chart of oil palm modelling approach	40
Figure 4.2:	Sungai Ruku-ruku plantation overlaid on WorldView-2 image with example of few plots on over-mature palm's block	41
Figure 4.3:	Circle plot design (15 m radius) showing a relative distance and direction of individual oil palm from the plot centre	44
Figure 4.4:	Measuring the oil palm in plot	45
Figure 4.5:	Estimation of frond base thickness for four years old palm	45
Figure 4.6:	Two years old palm without trunk	46
Figure 4.7:	Normalized Difference Vegetation Index representation of the WorldView-2 image	48
Figure 4.8:	The illustration of strategic settings for parameter threshold	51
Figure 4.9:	Distribution of 245 random sample points for accuracy assessment	52
Figure 4.10:	Separation performance using CVI	53
Figure 4.11:	Separation performance using Red Edge band	53
Figure 4.12:	Theoretical crown overlapping phenomenon	56

Figure 4.13:	Comparison between digitised crowns (yellow line) and detected crowns (red line) inside one enclosed plot (green line)	57
Figure 4.14:	Relationship between crown diameter difference and palm age for modelling	61
Figure 4.15:	Relationship between crown area difference and palm age for modelling	61
Figure 4.16:	Relationship between crown perimeter difference and palm age for modelling	61
Figure 4.17:	Graphs of crown diameter, crown perimeter, crown area and AGB versus palm age	63
Figure 4.18:	Graph of individual AGB versus crown diameter by age	64
Figure 4.19:	Graph AGB versus crown area	64
Figure 4.20:	Graph AGB versus crown perimeter	65
Figure 4.21:	Crown delineation using watershed technique	66
Figure 4.22:	Comparison of detected crown and digitised crown for plot O-02	66
Figure 4.23:	Comparison between actual and estimated AGB	69
	for detected crown	
Figure 4.24:	Comparison between actual and estimated AGB for corrected crown	69

Figure 4.25:	Estimated AGB map in oil palm plantation	70
Figure 5.1:	Map of Tangkulap and Deramakot Forest Reserve overlaid by IKONOS-2 image	77
Figure 5.2:	Circle plot design with random tree distribution	79
Figure 5.3:	Example of three degradation classes of forest segments displayed in mode of B:Near infrared, G:Red, and R:Blue	86
Figure 5.4:	Crown comparison between (a) watershed segmentation	90
	segmentation in eCognition (brown polygon), and (c) manual digitised crowns (yellow polygon)	
	based on three different plot degradation classes	
Figure 5.5:	Graph of detected crown area, multi-resolution (eCognition) and watershed (ArcGIS), versus manually digitised crown area	91
Figure 5.6:	Example of crown detection for six plots (M01, PSP 9, PSP 20, PSP 19, PSP 16 and PSP 1), ranged from	93
	a to f, with measured AGB ranged from 18.0 to 328.4 Mgha ⁻¹ . Mode of display in above figures is R:Near infrared, G:Near infrared, and B:Blue	
Figure 5.7:	Extracted crown properties	94
Figure 5.8:	Comparison between field-based and estimated AGB from the two approaches; forest degradation classification	98
	type and non-classified forest type	

xxii

Figure 5.9:	Estimated AGB derived from IKONOS-2 image.	99
Figure 5.10:	Graphs performance of crown detection versus tree density for 62 plots	100
Figure 5.11:	Graphs for the best-correlated variables between field and satellite variables ($n = 591$ trees)	102
Figure 5.12:	Estimated AGB versus field-based AGB	104
Figure A-1:	Instrument used during the ground data collection	135
Figure B-1:	The appearance and organization of oil palm leaves	136
Figure C-1:	Overall flow of the semi-automatic segmentation algorithm	137
Figure C-2:	The additional of Normalized Difference Vegetation Index with scalar '1' and setting up the boundary of project	137
Figure C-3:	The formation of Combined Vegetation Index and clipping the raster image according to area of interest (AOI)	138
Figure C-4:	Create the first mask by thresholding the Combined Vegetation Index to separate vegetation pixels from non-vegetation pixels and insert the red edge band using the created mask	138
Figure C-5:	Create the second mask by thresholding the red edge band to separate oil palm pixels and non-oil palm pixels and then clipping the raster image according to pre-selected boundary	139