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ABSTRACT 

Climate change is a significant change of weather pattern over long period of time. 

The issue is critical for the region which the economics relying on agriculture and 

natural resources including Malaysia country. The changing climate in the future 

period triggered by the future emission scenario could influence the ozone 

concentration, and eventually causing the health problem more pronounce. The 

present study examine the impact of regional climate change towards the future air 

quality over the Malaysia region under Representative Concentration Pathway (RCP) 

scenarios including RCP8.5 and RCP4.5. The primary investigation is focus on the 

model performance and how the future climate condition can affect the ozone 

mixing ratio besides the influence of the related oxidants and precursors. A coupled 

Weather Research Forecast - Community Multiscale Air Quality (WRF-CMAQ) 

modeling system has been applied by using the meteorological data from 

Community Earth System Model (CESM) and Model Inter-Comparison Study for Asia 

(MISC-Asia) emission inventory as main input to the model. Three sets of 

simulation were performed for each climate scenarios: one was the baseline period 

(2010) and another two were the future-day period (2050 and 2100), during the 

winter and summer monsoons. Generally, the simulation of RCP scenarios 

downscaled by Weather Research Forecast (WRF) modeling system agrees well 

with Climate Research Unit (CRU) observation and National Centers for 

Environmental Prediction (NCEP) reanalysis datasets in simulating the surface 

temperature by producing a good value of statistical analysis. However, the 

precipitation did not perform well. The future projection under RCP8.5 and RCP4.5 

scenarios revealed that the surface temperature increased across Malaysia region in 

2050 and 2100, which may associated with the impact of long-live greenhouse 

gases (GHG) emission. The patterns of total precipitation were varied for both 

RCP4.5 and RCP8.5 scenarios. The temperature increased under both scenarios 

lead to the increased of evaporation and thus causing the more precipitation on 

land area during that specific period. The study also identified the model 

deficiencies and evaluated the performance of coupled WRF-CMAQ modeling 

system in simulating air quality in Malaysia region. The simulation of RCP 

simulations reproduced well the observed dataset from Department of Environment 

(DOE) and NCEP reanalysis dataset for maximum 1-hour average surface ozone 

mixing ratio by producing a good value of statistical analysis. In comparison with 

present scenario, there was a small decrease of the maximum 1-hour average 

surface ozone mixing ratio under RCP8.5 scenario, but large decrease for RCP4.5 

scenario except the winter monsoon. Generally, the decreased of ozone mixing 

ratio was found to be affected by climate change as well as to the changes of 

ozone's oxidants such as hydroxyl radical (OH), nitrogen oxides (NOx) and acid 
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nitric (HN03). However, the future ozone mixing ratio under both RCP scenarios did 

not exceed the average 1 hour ozone concentration of the Malaysian Ambient Air 

Quality Guideline (MAAQG). Therefore, further tightening control measures on the 

present GHGs emission to reduce future surface ozone seems to be not necessary. 

However, continuous monitoring is vital to ensure efficient air quality management 

in Malaysia, and at the same time assessing any possibility of high ozone episodes 

that causes by other processes such as stratospheric ozone intrusion. 
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ABSTRAK 

KESAN PERUBAHAN IKLIM KE ATAS OZON PERMUKAAN DI 

RANTAU MALAYSIA 

Perubahan iklim adalah perubahan yang ketara bagi coral< cuaca dalam tempoh 

masa yang lama. Isu tersebut adalah kritikal bagi rantau di mana ekonominya 

bergantung kepada pertanian dan sumber asli termasuk negara Malaysia. 

Perubahan iklim dalam tempoh masa depan yang dicetuskan oleh senario 

pelepasan masa depan boleh mempengaruhi kepekatan ozon dan akhirnya 

menyebabkan masalah kesihatan yang lebih menonjol. Kajian ini mengkaji kesan 

perubahan iklim serantau terhadap kualiti udara masa depan di Malaysia di bawah 

scenario RCP termasuk RCPB.5 dan RCP4.5. Siasatan utama ada/ah memberi 

tumpuan kepada prestasi model dan bagaimanakah keadaan iklim pada masa 

depan boleh menjejaskan nisbah campuran ozon selain pengaruh oksidan dan 

prekursor yang berkaitan. WRF-CMAQ sistem pemodelan telah diaplikasikan dengan 

menggunakan data meteorologi daripada CESM dan MISC-Asia inventori pelepasan 

sebagai input utama kepada model. Tiga set simulasi telah dihas1'lkan untuk setiap 

senario iklim: salah satunya adalah tempoh asas (2010) dan dua lagi adalah 

tempoh masa depan (2050 dan 2100)
✓ 

bagi musim sejuk dan musim panas. Secara 

amnya/ simulasi senario RCP yang dikecilkan skala oleh WRF sistem pemodelan 

bersetuju baik dengan CRU pemerhatian dan NCEP dataset reanalysis dalam 

mensimulasikan suhu permukaan dengan menghasilkan nilai yang baik statistik 

analisis. Waiau bagaimanapun hujan tidal< menunjukkan prestasi yang baik. 

Unjuran masa depan di bawah RCPB.5 dan RCP4.5 senario mendedahkan bahawa 

suhu permukaan meningkat di seluruh rantau Malaysia pada tahun 2050 dan tahun 

2100. Kejadian ini bo/eh dikaitkan dengan kesan GHG yang lamanya wujud. Corak 

}um/ah hujan menunjukkan perubahan besar untuk kedua-dua RCP4.5 dan RCPB.5 

senario. Suhu meningkat di bawah kedua-dua senario membawa kepada 

peningkatan penyejatan/ dan seterusnya menyebabkan hujan lebihan di kawasan 

tanah dalam tempoh yang tertentu. Kajian ini juga bertujuan mengenalpasti 

kekurangan model dan menilai prestasi sistem pemodelan WRF-CMAQ dalam 

mensimulasi kualiti udara di rantau Malaysia. Simulasi RCP diterbitkan semula 

dengan baik dengan set data permerhatian daripada DOE dan NCEP reanalysis 

dataset untuk maksimum purata 1 jam bagi nisbah campuran ozon permukaan 

dengan menghasilkan nilai anal/sis statistik yang baik. Berbanding dengan senario 

pada masa kini, terdapat penurunan yang kecil bagi maksimum purata 1 Jam bagi 

nisbah campuran ozon permukaan di bawah senario RCPB.� tetapi penurunan 

yang besar untuk senario RCP4.5 kecuali musim sejuk. Secara umumnya/ 

penurunan ozon didapati teljejas a/eh perubahan iklim dan Juga perubahan oksidan 

ozon seperti Ofi NOx dan HNO3. Waiau bagaimanapun ozon pada masa depan di 
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bawah kedua-dua senario RCP tidak melebihi purata 1 jam kepekatan ozon yang 

ditentukan oleh Kualiti Garis Panduan Udara Persekitaran Malaysia (MAAQG). Oleh 

itu/ lebihan pengetakan dalam langkah kawalan ke atas GHG pelepasan untuk 

mengurangkan ozon permukaan masa depan seolah-olah tidak diperlukan. Waiau 

bagaimanapun pemantauan berterusan adalah penting untuk memastikan 

pengurusan kualiti udara yang cekap di Malaysia/ dan pada masa yang sama 

menilai sebarang kemungkinan episod ozon yang tinggi yang diyebabkan oleh 

proses lain seperti pencerobohan ozon stratosfera. 
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Figure 4.15: RCP8.5: Water vapor (g/kg) (left panel) and the 115 

changes (right panel) during winter by (a)-(b) 2050, (c)-

(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h)

2100.

Figure 4.16: RCP4.5: Water vapor (g/kg) (left panel) and the 116 

changes (right panel) during winter by (a)-(b) 2050, (c)-

(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h)

2100.
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Figure 5.11: Changes of CO (ppb) between CMAQ_RCPS.5 and 145 
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Figure 5.23: Changes of OH (ppm) between CMAQ_RCP4.5 and 155 

CMAQ_NCEP for January (a) and July (b) by 2010. 
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Figure 6.6: RCP8.5: Hourly average nitrogen oxides (NOx) (ppb) (left 177 

panel) and changes (right panel) for 2050 and 2100, and 

during winter monsoon (a-d) and summer monsoon (e-

h). 
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scenario (e)-(f) and under RCP4.5 scenario (g)-(h). The 

left panel indicating the January period and right panel 

as July period. 

Figure 6.9: RCP8.5: Hourly average hydroxyl radical (OH) (ppb) (left 183 

panel) and changes (right panel) for 2050 and 2100, and 

during winter monsoon (a-d) and summer monsoon (e-

h). 

Figure 6.10: RCP4.5: Hourly average hydroxyl radical (OH) (ppb) (left 184 

panel) and changes (right panel) for 2050 and 2100, and 

during winter monsoon (a-d) and summer monsoon (e-

h). 

Figure 6.11: Box and whisker plots of the HNO3 mixing ratio (pbb) for 186 

2010(1st box), 2050(2nd box) and 2100(3rd box) under 

RCP8.5 scenario (a)-(b) and under RCP4.5 scenario ( c)-

( d). Cumulative distribution function of HNO3 for 

2010(red line), 2050(blue dot line) and 2100(green dash 

line) under RCP8.5 scenario (e)-(f) and under RCP4.5 

scenario (g)-(h). The left panel indicating the January 

period and right panel as July period. 

xxii 


