UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: CLIMATE CHANGE IMPACTS ON SURFACE OZONE IN MALAYSIA REGION

DOCTOR OF PHILOSOPHY

Saya <u>KONG SOON KAI</u>, Sesi Pengajian <u>2012-2016</u>, mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Univesiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

PERPUSTAXIUM

UMP/FRSTT MALAYSIA SABAK

TIDAK TERHAD

KONG SOON KAI PS20118252

Disahkan oleh, NURULAIN BINTI ISMAIL UNIPASIN MALAYSIA SABAH (Tandatangan Pustakawan)

(Assoc Prof. Dr. Justin Sentian) Penyelia

Tarikh: 20 Oktober 2016

CLIMATE CHANGE IMPACTS ON SURFACE OZONE IN MALAYSIA REGION

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2016

CLIMATE CHANGE IMPACTS ON SURFACE OZONE IN MALAYSIA REGION

KONG SOON KAI

THESIS SUBMITTED IN FULLFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE AND NATURAL RESOURCES UNIVERSITI MALAYSIA SABAH 2016

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

14 July 2016

Kong Soon Kai (PS20118252)

CERTIFICATION

NAME **KONG SOON KAI**

MATRIC NO : **PS20118252**

TITLE : CLIMATE CHANGE IMPACTS ON SURFACE OZONE IN MALAYSIA REGION.

- DEGREE : DOCTOR OF PHILOSOPHY
- VIVA DATE : 19 SEPTEMBER 2016

DECLARED BY;

1. SUPERVISOR

Assoc Prof. Dr. Justin Sentian

ACKNOWLEDGEMENT

I would like to express my deep gratitude and appreciation to my supervisor, Associate Professor Dr Justin Sentian of Faculty Sciences and Natural Resources, Universiti Malaysia Sabah, for his patient guidance, enthusiastic encouragement and supervise me throughout the research process. Advices given by him has been great help in completing the research work and writing of this thesis .

Besides my supervisor, I would also like to extend my thanks to Dr Roger Ming-Tung Chuang, Assistant Professor of Graduate Institute of Energy Engineering, National Central University, Taiwan in providing me an opportunity to join the training courses and also his effort in preparing the emission inventory.

My sincere thanks also goes to the Ministry of Education Malaysia for the research funding through Long Term Research Grant Scheme (LRGS) and the Faculty of Science and Natural Resources, Universiti Malaysia Sabah for supporting the research.

Finally, I wish to thank my parents for their support and encouragement throughout my study.

Kong Soon Kai PS20118252

ABSTRACT

Climate change is a significant change of weather pattern over long period of time. The issue is critical for the region which the economics relying on agriculture and natural resources including Malaysia country. The changing climate in the future period triggered by the future emission scenario could influence the ozone concentration, and eventually causing the health problem more pronounce. The present study examine the impact of regional climate change towards the future air quality over the Malaysia region under Representative Concentration Pathway (RCP) scenarios including RCP8.5 and RCP4.5. The primary investigation is focus on the model performance and how the future climate condition can affect the ozone mixing ratio besides the influence of the related oxidants and precursors. A coupled Weather Research Forecast - Community Multiscale Air Quality (WRF-CMAQ) modeling system has been applied by using the meteorological data from Community Earth System Model (CESM) and Model Inter-Comparison Study for Asia (MISC-Asia) emission inventory as main input to the model. Three sets of simulation were performed for each climate scenarios: one was the baseline period (2010) and another two were the future-day period (2050 and 2100), during the winter and summer monsoons. Generally, the simulation of RCP scenarios downscaled by Weather Research Forecast (WRF) modeling system agrees well with Climate Research Unit (CRU) observation and National Centers for Environmental Prediction (NCEP) reanalysis datasets in simulating the surface temperature by producing a good value of statistical analysis. However, the precipitation did not perform well. The future projection under RCP8.5 and RCP4.5 scenarios revealed that the surface temperature increased across Malaysia region in 2050 and 2100, which may associated with the impact of long-live greenhouse gases (GHG) emission. The patterns of total precipitation were varied for both RCP4.5 and RCP8.5 scenarios. The temperature increased under both scenarios lead to the increased of evaporation and thus causing the more precipitation on land area during that specific period. The study also identified the model deficiencies and evaluated the performance of coupled WRF-CMAQ modeling system in simulating air quality in Malaysia region. The simulation of RCP simulations reproduced well the observed dataset from Department of Environment (DOE) and NCEP reanalysis dataset for maximum 1-hour average surface ozone mixing ratio by producing a good value of statistical analysis. In comparison with present scenario, there was a small decrease of the maximum 1-hour average surface ozone mixing ratio under RCP8.5 scenario, but large decrease for RCP4.5 scenario except the winter monsoon. Generally, the decreased of ozone mixing ratio was found to be affected by climate change as well as to the changes of ozone's oxidants such as hydroxyl radical (OH), nitrogen oxides (NOx) and acid

nitric (HNO₃). However, the future ozone mixing ratio under both RCP scenarios did not exceed the average 1 hour ozone concentration of the Malaysian Ambient Air Quality Guideline (MAAQG). Therefore, further tightening control measures on the present GHGs emission to reduce future surface ozone seems to be not necessary. However, continuous monitoring is vital to ensure efficient air quality management in Malaysia, and at the same time assessing any possibility of high ozone episodes that causes by other processes such as stratospheric ozone intrusion.

ABSTRAK

KESAN PERUBAHAN IKLIM KE ATAS OZON PERMUKAAN DI RANTAU MALAYSIA

Perubahan iklim adalah perubahan yang ketara bagi corak cuaca dalam tempoh masa yang lama. Isu tersebut adalah kritikal bagi rantau di mana ekonominya bergantung kepada pertanian dan sumber asli termasuk negara Malaysia. Perubahan iklim dalam tempoh masa depan yang dicetuskan oleh senario pelepasan masa depan boleh mempengaruhi kepekatan ozon, dan akhirnya menyebabkan masalah kesihatan yang lebih menonjol. Kajian ini mengkaji kesan perubahan iklim serantau terhadap kualiti udara masa depan di Malaysia di bawah scenario RCP termasuk RCP8.5 dan RCP4.5. Siasatan utama adalah memberi tumpuan kepada prestasi model dan bagaimanakah keadaan iklim pada masa depan boleh menjejaskan nisbah campuran ozon selain pengaruh oksidan dan prekursor yang berkaitan. WRF-CMAQ sistem pemodelan telah diaplikasikan dengan menggunakan data meteorologi daripada CESM dan MISC-Asia inventori pelepasan sebagai input utama kepada model. Tiga set simulasi telah dihasilkan untuk setiap senario iklim: salah satunya adalah tempoh asas (2010) dan dua lagi adalah tempoh masa depan (2050 dan 2100), bagi musim sejuk dan musim panas. Secara amnya, simulasi senario RCP yang dikecilkan skala oleh WRF sistem pemodelan bersetuju baik dengan CRU pemerhatian dan NCEP dataset reanalysis dalam mensimulasikan suhu permukaan dengan menghasilkan nilai yang baik statistik analisis. Walau bagaimanapun, hujan tidak menunjukkan prestasi yang baik. Unjuran masa depan di bawah RCP8.5 dan RCP4.5 senario mendedahkan bahawa suhu permukaan meningkat di seluruh rantau Malaysia pada tahun 2050 dan tahun 2100. Kejadian ini boleh dikaitkan dengan kesan GHG yang lamanya wujud. Corak jumlah hujan menunjukkan perubahan besar untuk kedua-dua RCP4.5 dan RCP8.5 senario. Suhu meningkat di bawah kedua-dua senario membawa kepada peningkatan penyejatan, dan seterusnya menyebabkan hujan lebihan di kawasan tanah dalam tempoh yang tertentu. Kajian ini juga bertujuan mengenalpasti kekurangan model dan menilai prestasi sistem pemodelan WRF-CMAQ dalam mensimulasi kualiti udara di rantau Malaysia. Simulasi RCP diterbitkan semula dengan baik dengan set data permerhatian daripada DOE dan NCEP reanalysis dataset untuk maksimum purata 1 jam bagi nisbah campuran ozon permukaan dengan menghasilkan nilai analisis statistik yang baik. Berbanding dengan senario pada masa kini, terdapat penurunan yang kecil bagi maksimum purata 1 jam bagi nisbah campuran ozon permukaan di bawah senario RCP8.5, tetapi penurunan yang besar untuk senario RCP4.5 kecuali musim sejuk. Secara umumnya, penurunan ozon didapati terjejas oleh perubahan iklim dan juga perubahan oksidan ozon seperti OH, NO_x dan HNO₃. Walau bagaimanapun, ozon pada masa depan di bawah kedua-dua senario RCP tidak melebihi purata 1 jam kepekatan ozon yang ditentukan oleh Kualiti Garis Panduan Udara Persekitaran Malaysia (MAAQG). Oleh itu, lebihan pengetakan dalam langkah kawalan ke atas GHG pelepasan untuk mengurangkan ozon permukaan masa depan seolah-olah tidak diperlukan. Walau bagaimanapun, pemantauan berterusan adalah penting untuk memastikan pengurusan kualiti udara yang cekap di Malaysia, dan pada masa yang sama menilai sebarang kemungkinan episod ozon yang tinggi yang diyebabkan oleh proses lain seperti pencerobohan ozon stratosfera.

TABLE OF CONTENTS

			Page
τιτι	E		i
DEC	LARAT	ION	ii
CER	TIFICA	TION	111
АСК	NOWL	EDGEMENT	iv
ABS	TRACT		V
ABS	TRAK		vii
TAB	LE OF C	CONTENS	ix
LIST	OF FI	GURES	xiv
LIS	OF TA	BLES	xxiv
LIS	OF AP	PPENDIXS	xxvii
LIS	OF AB	BREVIATIONS/SYMBOLS	xxviii
		ATT NA TO A TO A	
СНА	PTER 1	I: INTRODUCTION	
1.1	Overvi	iew on Climate Change and Surface Ozone	1
1.2	Proble	em Statements	5
	1.2.1	Climate Change UNIVERSITI MALAYS	IA SABAH
	1.2.2	Surface Ozone	5
	1.2.3	Climate Modelling Resolution	5
	1.2.4	Climate Scenarios	7
	1.2.5	Air Quality Modelling Tools	8
1.3	Resea	arch Questions	9
1.4	Objec	tives and Scopes	9
CHA	PTER 2	2: LITERATURE REVIEW	
2.1	Global	I Climate Simulation - Global Climate Model (GCM)	12
	2.1.1	United States	13
	2.1.2	South America	13
	2.1.3	Europe	13
	2.1.4	Asia	14

	2.1.5	Southeast Asia (SEA)	15
	2.1.6	Malaysia	16
2.2	Regio	nal Climate Simulation - Regional Climate Model (RCM)	16
	2.2.1	United States	17
	2.2.2	South America	17
	2.2.3	Europe	18
	2.2.4	Asia	19
	2.2.5	Southeast Asia (SEA)	20
	2.2.6	Malaysia	22
2.3	Future	e Climate Change under IPCC RCP Scenarios	22
2.4	Effect	of Climate Change on Surface Ozone	24
	2.4.1	Formation and Removal of Surface Ozone	26
	2.4.2	Future ozone under IPCC SRES Scenarios	29
	2.4.3	Future ozone under IPCC RCP Scenarios	34
2.5	Model	Evaluation	36
	2.5.1	Providing Regional Climate System (PRECIS)	36
	2.5.2	Regional Climate Model (RegCM)	37
	2.5.3	Weather Research Forecast (WRF)	38
	2.5.4	MM5-CMAQ (Fifth-Generation Penn State/NCAR	39
		Mesoscale Model - Community Multiscale Air Quality)	
	2.5.5	WRF-CMAQ (Weather Research Forecast - Community	40
		Multiscale Air Quality)	
2.6	Uncer	tainty in Regional Climate Modeling (RCM)	40
	2.6.1	Future Emission Scenarios	40
	2.6.2	Future Concentrations	41
	2.6.3	Climate Response	41
	2.6.4	Natural Variability	42
	2.6.5	Regionalization of Climate Change	42
2.7	Uncer	tainty in Regional Air Quality Modeling	42
	2.7.1	Model Physics and Chemistry	42
	2.7.2	Meteorological Fields	43
	2.7.3	Emission Inventory	44

CHAPTER 3: EVALUATION AND ASSESSMENT OF REGIONAL CLIMATE MODELLING (RCM) SYSTEM

3.1	Introdu	uction	45
3.2	Method	dology	47
	3.2.1	Regional Climate Modelling (RCM) System	47
	3.2.2	Model Component	48
	3.2.3	Compiler and Resource	49
	3.2.4	Data Flow	50
	3.2.5	Post Processing utilizes	51
3.3	Experir	ment Design and setup	51
3.4	Datase	ts	54
	3.4.1	NCEP FNL (Final) Operational Global Analysis data (NCEP)	54
	3.4.2	Bias-corrected Community Earth System Model (CESM)	54
	3.4.3	Climate Research Unit observation dataset (CRU)	55
3.5	Evaluat	tions and Assessment of Regional Climate Model	55
3.6	Result	and discussion	57
	3.6.1	Evaluation of WRF_RCP8.5	57
	3.6.2	Evaluation of WRF_RCP8.5	70
3.7	Summa	UNIVERSITI MALAYSIA SABAH	81
СНА	PTER 4	REGIONAL CLIMATE CHANGE IN MALAYSIA REGION	
4.1	Introdu	uction	82
4.2	Method	lology	84
	4.2.1	Model Description	84
	4.2.2	Model Simulation and Climate Scenarios	85
4.3	Results	and Discussions	87
	4.3.1	Surface Temperature	88
	4.3.2	Total Precipitation	95
	4.3.3	Cloud Fraction	102
	4.3.4	Solar Radiation	107
	4.3.5	Water Vapor Mixing Ratio	112
4.4	Summa	ary	119

CHAPTER 5: EVALUATION AND ASSESSMENT OF REGIONAL AIR QUALITY MODELING SYSTEM

5.1	Introd	uction	122
5.2	Metho	dology	124
	5.2.1	Air Quality Modeling System	124
	5.2.2	Chemistry-transport Model Conceptual Formulation	125
	5.2.3	CMAQ Descriptions	127
		a. Initial Conditions Processor (ICON)	127
		b. Boundary Conditions Processor (BCON)	128
		c. Meteorology-Chemistry Interface Processor (MCIP)	128
		d. CMAQ Chemistry-Transport Model (CCTM)	129
		e. Photolysis Rate Processor (JPROC)	130
	5.2.4	CMAQ Chemistry-Transport Model Science Modules	130
	5.2.5	Gas-phase chemistry solvers	130
	5.2.6	Photolysis	131
	5.2.7	Advection and diffusion	132
	5.2.8	Particulate matter (aerosols)	132
	5.2.9	Clouds and aqueous-phase chemistry	133
5.3	Model	Setup and Experiment Design	133
5.4	Datase	et	135
	5.4.1	Model Inter-Comparison Study for Asia (MICS-Asia) Phase	135
		III	
	5.4.2	Measurement dataset	136
5.5	Result	and discussion	137
	5.5.1	Evaluation of CMAQ_RCP8.5	138
	5.5.2	Evaluation of CMAQ_RCP4.5	148
5.6	Summ	ary	157

CHAPTER 6: EFFECT OF REGIONAL CLIMATE CHANGE ON SURFACE OZONE

6.1	Introduction	159
6.2	Methodology	161

6.3	Results and Discussions		162
	6.3.1	Maximum Daily 1-hour Average Ozone	162
	6.3.2	Nitrogen Oxide (NO _x)	173
	6.3.3	Hydroxyl Radical (OH)	179
	6.3.4	Nitric Acid (HNO ₃)	185
	6.3.5	Carbon Monoxides (CO)	190
6.4	Summ	ary	197

CHAPTER 7: SUMMARY AND CONCLUSIONS

7.1	Summary of Findings	200
7.2	Significant Findings	202
7.3	Limitation and Future Research	205

UNIVERSITI MALAYSIA SABAH

REFERENCE

APPENDIX

LIST OF PUBLICATION

208 231

LIST OF FIGURES

		Page
Figure 1.1:	The research domain over Malaysian region.	10
Figure 1.2:	The overall research framework.	11
Figure 3.1:	The overall research framework (Chapter 3).	47
Figure 3.2:	Framework of the WRF-ARW modelling system. ARW consists of four major programs such as WPS, WRF-DA, ARW solver and Post-processing and visualization.	49
Figure 3.3:	Framework of WRF preprocessing system (WPS). WPS consists of three major programs such as geogrid, ungrid and metgrid.	51
Figure 3.4:	The research domain (height) with two nested; Southeast Asia region as Domain 1 and Malaysia region as Domain 2.	52
Figure 3.5:	Mean surface temperature (°C) for (a)-(b) winter monsoon (January) and (c)-(d) summer monsoon (July) in WRF_RCP8.5 simulation (left) and CRU observation (right).	59
Figure 3.6:	Total Precipitation (mm/day) for (a)-(b) winter monsoon (January) and (c)-(d) summer monsoon (July) in WRF_RCP8.5 simulation (left) and CRU observation (right).	60
Figure 3.7:	Mean surface temperature (°C) for (a)-(b) winter monsoon (January) and (c)-(d) summer monsoon (July) in WRF_RCP85 simulation (left) and WRF_NCEP simulation (right).	65
Figure 3.8:	Changes of mean surface temperature (°C) between WRF_RCP8.5 and WRF_NCEP for January (a) and July (b) by 2010.	65

Figure 3.9: Total precipitation (mm/day) for (a)-(b) winter monsoon 66 (January) and (c)-(d) summer monsoon (July) in WRF RCP8.5 simulation (left) and WRF NCEP simulation (right). Figure 3.10: Changes of total precipitation (mm/dav) between 66 WRF RCP8.5 and WRF_NCEP for January (a) and July (b) by 2010. Figure 3.11: Cloud fraction for (a)-(b) winter monsoon (January) and 67 (c)-(d) summer monsoon (July) in WRF RCP8.5 simulation (left) and WRF NCEP simulation (right), Figure 3.12: Changes of cloud fraction between WRF RCP8.5 and 67 WRF_NCEP for January (a) and July (b) by 2010. Figure 3.13: Solar radiation (Wm⁻²) for (a)-(b) winter monsoon 68 (January) and (c)-(d) summer monsoon (July) in WRF RCP8.5 simulation (left) and WRF NCEP simulation (right). Figure 3.14: Changes of solar radiation (Wm⁻²) between WRF RCP8.5 68 and WRF NCEP for January (a) and July (b) by 2010. Water Vapor (gkg⁻¹) for (a)-(b) winter monsoon Figure 3.15: 69 (January) and (c)-(d) summer monsoon (July) in WRF_RCP8.5 simulation (left) and WRF_NCEP simulation (right). 69 Figure 3.16: Changes of water vapor (gkg⁻¹) between WRF RCP8.5 and WRF NCEP for January (a) and July (b) by 2010. 71 Figure 3.17: Mean surface temperature (°C) for (a)-(b) winter monsoon (January) and (c)-(d) summer monsoon (July) in WRF_RCP4.5 simulation (left) and CRU observation (right). 72 Figure 3.18: Total Precipitation (mm/day) for (a)-(b) winter monsoon (January) and (c)-(d) summer monsoon (July) in WRF_RCP4.5 simulation (left) and CRU observation (right).

- Figure 3.19: Mean surface temperature (°C) for (a)-(b) winter monsoon (January) and (c)-(d) summer monsoon (July) in WRF_RCP4.5 simulation (left) and WRF_NCEP simulation (right).
- Figure 3.20 : Changes of mean surface temperature (°C) between 76 WRF_RCP8.5 and WRF_NCEP for January (a) and July (b) by 2010.

- Figure 3.21: Total precipitation (mm/day) for (a)-(b) winter monsoon 77 (January) and (c)-(d) summer monsoon (July) in WRF_RCP4.5 simulation (left) and WRF_NCEP simulation (right).
- Figure 3.22: Changes of total precipitation (mm/day) between 77 WRF_RCP4.5 and WRF_NCEP for January (a) and July (b) by 2010.
- Figure 3.23:Cloud fraction for (a)-(b) winter monsoon (January) and
(c)-(d) summer monsoon (July) in WRF_RCP4.5
simulation (left) and WRF_NCEP simulation (right).78
- Figure 3.24:Changes of cloud fraction between WRF_RCP4.5 and78WRF_NCEP for January (a) and July (b) by 2010.
- Figure 3.25: Solar radiation (Wm⁻²) for (a)-(b) winter monsoon 79 (January) and (c)-(d) summer monsoon (July) in WRF_RCP4.5 simulation (left) and WRF_NCEP simulation (right).
- Figure 3.26:Changes of solar radiation (Wm-2) between WRF_RCP4.579and WRF_NCEP for January (a) and July (b) by 2010.
- Figure 3.27: Water Vapor (gkg⁻¹) for (a)-(b) winter monsoon 80 (January) and (c)-(d) summer monsoon (July) in WRF_RCP8.5 simulation (left) and WRF_NCEP simulation (right).
- Figure 3.28:Changes of water vapor (gkg-1) between WRF_RCP4.580and WRF_NCEP for January (a) and July (b) by 2010.
- Figure 4.1:The overall research framework (Chapter 4).84

Figure 4.2: Box and whisker plots of the mean surface temperature for 2010(1st box), 2050(2nd box) and 2100(3rd box) under RCP8.5 scenario (a)-(b) and under RCP4.5 scenario (c)-(d). Cumulative distribution function of the mean surface temperature for 2010(red line), 2050(blue dot line) and 2100(green dash line) under RCP8.5 scenario (e)-(f) and under RCP4.5 scenario (g)-(h). The left panel indicating the winter monsoon and right panel as summer monsoon. 89

93

94

- Figure 4.3: RCP8.5: Mean surface temperature (°C) (left panel) and temperature changes (right panel) during winter by (a)-(b) 2050, (c)-(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h) 2100.
- Figure 4.4: RCP4.5: Mean surface temperature (°C) (left panel) and temperature changes (right panel) during winter by (a)-(b) 2050, (c)-(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h) 2100.
- Figure 4.5: Box and whisker plots of the total precipitation for 2010(1st box), 2050(2nd box) and 2100(3rd box) under RCP8.5 scenario (a)-(b) and under RCP4.5 scenario (c)-(d). Cumulative distribution function of the mean surface temperature for 2010(red line), 2050(blue dot line) and 2100(green dash line) under RCP8.5 scenario (e)-(f) and under RCP4.5 scenario (g)-(h). The left panel indicating the January period and right panel as July period.
- Figure 4.6: RCP8.5: Total precipitation (mm/day) (left panel) and 100 precipitation changes (right panel) during winter by (a)-(b) 2050, (c)-(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h) 2100.
- Figure 4.7: RCP4.5: Total precipitation (mm/day) (left panel) and 101 precipitation changes (right panel) during winter by (a)-(b) 2050, (c)-(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h) 2100.

Figure 4.8: Box and whisker plots of the cloud fraction for 2010(1st box), 2050(2nd box) and 2100(3rd box) under RCP8.5 scenario (a)-(b) and under RCP4.5 scenario (c)-(d). Cumulative distribution function of the mean surface temperature for 2010(red line), 2050(blue dot line) and 2100(green dash line) under RCP8.5 scenario (e)-(f) and under RCP4.5 scenario (g)-(h). The left panel indicating the January period and right panel as July period.

- Figure 4.9: RCP8.5: Total cloud fraction (left panel) and changes 105 (right panel) during winter by (a)-(b) 2050, (c)-(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h) 2100.
- Figure 4.10: RCP4.5: Total cloud fraction (left panel) and the changes 106 (right panel) during winter by (a)-(b) 2050, (c)-(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h) 2100.
- Figure 4.11: Box and whisker plots of the solar radiation for 2010 (1st 108 box), 2050 (2nd box) and 2100 (3rd box) under RCP8.5 scenario (a)-(b) and under RCP4.5 scenario (c)-(d). Cumulative distribution function of the mean surface temperature for 2010(red line), 2050(blue dot line) and 2100(green dash line) under RCP8.5 scenario (e)-(f) and under RCP4.5 scenario (g)-(h). The left panel indicating the January period and right panel as July period.
- Figure 4.12: RCP8.5: Solar radiation (left panel) and the changes 110 (right panel) during winter by (a)-(b) 2050, (c)-(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h) 2100.
- Figure 4.13: RCP45: Solar radiation (left panel) and the changes 111 (right panel) during winter by (a)-(b) 2050, (c)-(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h) 2100.
- Figure 4.14: Box and whisker plots of the water vapor for 2010 (1st 114 box), 2050 (2nd box) and 2100 (3rd box) under RCP8.5 scenario (a)-(b) and under RCP4.5 scenario (c)-(d). Cumulative distribution function of the mean surface temperature for 2010(red line), 2050(blue dot line) and 2100(green dash line) under RCP8.5 scenario (e)-(f) and under RCP4.5 scenario (g)-(h). The left panel indicating the January period and right panel as July period.

Figure 4.15:	RCP8.5: Water vapor (g/kg) (left panel) and the changes (right panel) during winter by (a)-(b) 2050, (c)-(d) 2100, and during summer by (e)-(f) 2050 and (g)-(h) 2100.	115
Figure 4.16:	RCP4.5: Water vapor (g/kg) (left panel) and the changes (right panel) during winter by (a)-(b) 2050, (c)-	116
	(d) 2100, and during summer by (e)-(f) 2050 and (g)-(n) 2100 .	
Figure 5.1:	The overall research framework (Chapter 5).	124
Figure 5.2:	CMAQ chemistry-transport model and associated preprocessors.	127
Figure 5.3:	Function of MCIP: Convert the format of RCM output to be ingested into CCTM.	129
Figure 5.4:	Simulations of WRF and CMAQ modeling system for the Baseline scenario (year 2010).	134
Figure 5.5:	The monitoring stations utilized in the present study.	137
Figure 5.6:	Maximum daily average 1 hour surface ozone (ppb) for (a)-(b) January or winter season and (c)-(d) July or summer season in CMAQ_RCP8.5 simulation (left) and NCEP reanalysis (right).	143
Figure 5.7:	Changes of Maximum daily average 1 hour surface ozone (ppb) between CMAQ_RCP8.5 and CMAQ_NCEP for January (a) and July (b) by 2010.	143
Figure 5.8:	NO _x (ppb) for (a)-(b) January or winter season and (c)-(d) July or summer season in CMAQ_RCP8.5 simulation (left) and NCEP reanalysis (right).	144
Figure 5.9:	Changes of NO_x between CMAQ_RCP8.5 and CMAQ_NCEP for January (a) and July (b) by 2010.	144
Figure 5.10:	CO (ppb) for (a)-(b) January or winter season and (c)- (d) July or summer season in CMAQ_RCP8.5 simulation (left) and NCEP reanalysis (right).	145

Figure 5.11:	Changes of CO (ppb) between CMAQ_RCP8.5 and CMAQ_NCEP for January (a) and July (b) by 2010.	145
Figure 5.12:	OH (ppm) for (a)-(b) January or winter season and (c)- (d) July or summer season in CMAQ_RCP8.5 simulation (left) and NCEP reanalysis (right).	146
Figure 5.13:	Changes of OH (ppm) between CMAQ_RCP8.5 and CMAQ_NCEP for January (a) and July (b) by 2010.	146
Figure 5.14:	HNO_3 (ppb) for (a)-(b) January or winter season and (c)- (d) July or summer season in CMAQ_RCP8.5 simulation (left) and NCEP reanalysis (right).	147
Figure 5.15:	Changes of HNO_3 (ppb) between CMAQ_RCP8.5 and CMAQ_NCEP for January (a) and July (b) by 2010.	147
Figure 5.16:	Maximum daily average 1 hour surface ozone (ppb) for (a)-(b) January or winter season and (c)-(d) July or summer season CMAQ_RCP4.5 simulation (left) and NCEP reanalysis (right).	152
Figure 5.17:	Changes of Maximum daily average 1 hour surface ozone (ppb) between CMAQ_RCP4.5 and CMAQ_NCEP for January (a) and July (b) by 2010.	152
Figure 5.18:	NO_x (ppb) for (a)-(b) January or winter season and (c)- (d) July or summer season in CMAQ_RCP4.5 simulation (left) and NCEP reanalysis (right).	153
Figure 5.19:	Changes of NO_x (ppb) between CMAQ_RCP4.5 and CMAQ_NCEP for January (a) and July (b) by 2010.	153
Figure 5.20:	CO (ppb) for (a)-(b) January or winter season and (c)- (d) July or summer season in CMAQ_RCP4.5 simulation (left) and NCEP reanalysis (right).	154
Figure 5.21:	Changes of CO (ppb) between CMAQ_RCP4.5 and CMAQ_NCEP for January (a) and July (b) by 2010.	154
Figure 5.22:	OH (ppm) for (a)-(b) January or winter season and (c)- (d) July or summer season in CMAQ_RCP4.5 simulation (left) and NCEP reanalysis (right).	155

155 Figure 5.23: Changes of OH (ppm) between CMAQ RCP4.5 and CMAQ_NCEP for January (a) and July (b) by 2010. 156 Figure 5.24: HNO₃ (ppb) for (a)-(b) January or winter season and (c)-(d) July or summer season in CMAQ RCP4.5 simulation (left) and NCEP reanalysis (right). Figure 5.25: Changes of HNO₃ (ppb) between CMAQ_RCP4.5 and 156 CMAQ NCEP for January (a) and July (b) by 2010. Figure 6.1: The overall research framework (Chapter 6). 161 Figure 6.2: Box and whisker plots of the maximum daily average 1-164 hour ozone mixing ratio (pbb) for 2010(1st box), 2050(2nd box) and 2100(3rd box) under RCP8.5 scenario (a)-(b) and under RCP4.5 scenario (c)-(d). Cumulative distribution function of the maximum daily average 1-hour ozone mixing ratio (pbb)for 2010(red line), 2050(blue dot line) and 2100(green dash line) under RCP8.5 scenario (e)-(f) and under RCP4.5 scenario (g)-(h). The left panel indicating the January period and right panel as July period. Figure 6.3: RCP8.5: Maximum daily average 1 hour ozone (ppb) (left 167 panel) and changes (right panel) for 2050 and 2100, and during winter monsoon (a-d) and summer monsoon (eh). 168 Figure 6.4: RCP4.5: Maximum daily average 1 hour ozone (ppb) (left panel) and changes (right panel) for 2050 and 2100, and during winter monsoon (a-d) and summer monsoon (eh). 174 Figure 6.5: Box and whisker plots of the nitrogen oxides (NOx) mixing ratio (pbb) for 2010(1st box), 2050(2nd box) and 2100(3rd box) under RCP8.5 scenario (a)-(b) and under RCP4.5 scenario (c)-(d). Cumulative distribution function of the nitrogen oxides (NOx) for 2010(red line), 2050(blue dot line) and 2100(green dash line) under RCP8.5 scenario (e)-(f) and under RCP4.5 scenario (g)-

right panel as July period.

(h). The left panel indicating the January period and

- Figure 6.6: RCP8.5: Hourly average nitrogen oxides (NO_x) (ppb) (left 177 panel) and changes (right panel) for 2050 and 2100, and during winter monsoon (a-d) and summer monsoon (e-h).
- Figure 6.7: RCP4.5: Hourly average nitrogen oxides (NO_x) ppb (left 178 panel) and changes (right panel) for 2050 and 2100, and during winter monsoon (a-d) and summer monsoon (e-h).
- Figure 6.8: Box and whisker plots of the hydrogen oxides (OH) 180 mixing ratio (pbb) for 2010(1st box), 2050(2nd box) and 2100(3rd box) under RCP8.5 scenario (a)-(b) and under RCP4.5 scenario (c)-(d). Cumulative distribution function of hydrogen oxides (OH) for 2010(red line), 2050(blue dot line) and 2100(green dash line) under RCP8.5 scenario (e)-(f) and under RCP4.5 scenario (g)-(h). The left panel indicating the January period and right panel as July period.
- Figure 6.9: RCP8.5: Hourly average hydroxyl radical (OH) (ppb) (left 183 panel) and changes (right panel) for 2050 and 2100, and during winter monsoon (a-d) and summer monsoon (e-h).
- Figure 6.10: RCP4.5: Hourly average hydroxyl radical (OH) (ppb) (left 184 panel) and changes (right panel) for 2050 and 2100, and during winter monsoon (a-d) and summer monsoon (e-h).
- Figure 6.11: Box and whisker plots of the HNO₃ mixing ratio (pbb) for 2010(1st box), 2050(2nd box) and 2100(3rd box) under RCP8.5 scenario (a)-(b) and under RCP4.5 scenario (c)-(d). Cumulative distribution function of HNO₃ for 2010(red line), 2050(blue dot line) and 2100(green dash line) under RCP8.5 scenario (e)-(f) and under RCP4.5 scenario (g)-(h). The left panel indicating the January period and right panel as July period.