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ABSTRACT 

A traditional direct single classifier can be easily applied to solve a multiclass 
classification problem. However, the performance of a single classifier is decreased 
with the existence of imbalanced data in multiclass classification tasks. Thus, an 
ensemble of classifiers is one of the methods used to solve multiclass classification 
tasks. In this thesis, the problem of learning from imbalanced multiclass data 
classification is studied. In the multiclass classification problem, decision can be 
estimated not only by the final single class label, but also by other appropriate class. 
Many real-world multiclass classification problems can be represented into a setting 
where non-crisp label need to be observed. An in-depth review and method to solve 
this special learning task is explained in this thesis. An alternative ensemble learning 
framework called Direct Ensemble Classifier for Imbalance Learning (DECIML) is 
proposed combining the advantages of existing single classifiers and ensemble 
methods and strategies. The learning framework consists of ensemble learning and 
decision combiner model with general supervised learning algorithms as base 
learner. Feature selection is also applied in DECIML in order to increase the 
performance of the ensemble learning. In order to facilitate the experiments and 
future research on the imbalanced multiclass problem, a standard pool of 
benchmark data is created, which consists of 16 datasets with different degrees of 
imbalanced ratio and 4 datasets for imbalanced multiclass with feature selection 
purposes. The benchmark data is used to evaluate and compare the proposed 
frameworks with several ensemble methods, such as bagging and adaboost. The 
DECIML with feature selection is also evaluated and compared with methods named 
CFsSubsetEval and Filteredsubseteval. The results obtained show that the proposed 
learning frameworks are comparable to other methods. In addition, the selected 
benchmark data, experiments and the results are useful for future research on the 
imbalanced multiclass classification problem. Furthermore, the DECIML framework 
was applied to the real world leaf classification problem based on the shape 
features. Extensive experiments and results show that the DECIML method does 
provide a promising performance in imbalanced multiclass with highly noisy data. 
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ABSTRAK 

A DIRECT ENSEMBLE CLASSIFIER FOR LEARNING IMBALANCED 

MUL TICLASS DATA 

Algoritma pengelasan tunggal tradisional boleh digunakan dengan mudah secara 
langsung untuk pelbagai masalah klasifikasi berbilang-kelas. Waiau bagaimanapun/ 
prestasi pengelas tungga/ akan menurun dengan kewujudan ketidakseimbangan 
dalam tugas klasifikasi berbilang kelas. O/eh itu/ kombinasi pengelas adalah salah 
satu kaedah dalam tugas klasifikasi berbilang-kelas untuk masalah 
ketidakseimbangan dalam perlombongan data dan pembelajaran mesin. Da/am tesis 
inl masalah pembelajaran dari klasifikasi data berbilang-kelas tidak seimbang dikaji. 
Dalam masa/ah pengelasan berbilang-kelas/ keputusan boleh dianggarkan bukan 
sahaja oleh label kelas akhir tunggal, tetapi kelas yang sesuai yang lain. Klasifikasi 
masalah berbilang-kelas dalam dunia sebenar kebanyakannya boleh diwakilkan 
menggunakan label bukan tunggal yang perlu dipatuhi. Suatu kajian semula yang 
mendalam dan kaedah untuk menyelesaikan tugas pembelajaran khas dijelaskan 
dalam disertasi ini. Rangka kerja altematif bagi kombinasi pembelajaran yang 
dikenali sebagai Kombinasi Pengelas Pembelajaran Ketidakseimbangan Berbilang 
Ke/as Secara Langsung (DECIML) dicadangkan berdasarkan kepada kelebihan 
pengelas tunggal yang sedia ada dan kaedah serta strategi kombinasi. Rangka kerja 
pembelajaran ini terdiri daripada kombinasi pembe/ajaran dan penggabung 
keputusan model dengan algoritma pembelajaran terselia sebagai pembelajar asas. 
Satu lagi rangka kerja pembe/ajaran ialah menggabungkan DECIML dan pemilihan 
ciri untuk meningkatkan prestasi kombinasi pembelajaran. Bagi memudahkan ujikaji 
dan kaj1an akan datang untuk data berb1'lang-kelas tidak seimbang/ satu senarai 
piawai data sebagai tanda aras diwujudkan yang mana terdiri daripada 16 set data 
dengan darjah nisbah ketidakseimbangan yang berbeza dan 4 dataset untuk 
berbilang-ke/as tidak seimbang untuk tujuan pemilihan ciri. Data penanda aras ini 
digunakan untuk menilai dan membandingkan rangka kerja yang dicadangkan 
dengan beberapa kaedah kombinas1; seperti bagging dan adaboost. DECIML 
dengan pemilihan ciri juga dim'lai dan dibandingkan dengan kaedah seperti 
CFsSubsetEva/ dan Filteredsubseteval. Hasil kajian menunjukkan bahawa rangka 
kerja pembe/ajaran yang dicadangkan adalah setanding dengan kaedah lain. Di 
samping itu/ data tanda aras yang d1p11ih eksperimen dan keputusan boleh 
digunakan untuk penyelidikan masa depan dalam masalah klasifikasi berbilang-kelas 
tidak seimbang. Di samping itU; rangka kerja DEC/ML telah digunakan untuk 
klasifikasi dunia sebena0 masa/ah klasifikasi daun berdasarkan ciri-ciri bentuk. 
Ujikaji yang mendalam dan keputusan yang diperolehi menunjukkan bahawa kaedah 
DECIML memberikan prestasi yang baik dalam masalah berbilang-kelas tidak 
seimbang dengan data yang sangat bising. O/eh itu/ penemuan menarik daripada 
keputusan eksperimen adalah sumbangan kajian mengenai masa/ah pembelajaran 
ini. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Over the decades, knowledge discovery through data mining and machine learning 

have been extensively studied and applied in various fields. It continues to solve 

many real world problems and applications, such as pattern recognition, computer 

vision, image processing, bioinformatics, and a lot more complicated domains. 

Researches in this massive artificial intelligence domain bring notable advantages 

where data mining and machine learning algorithms provide assistance in helping 

people for the knowledge discovery in databases (KDD). 

The classic definition of KDD is "the non-trivial process of identifying valid, 

novel, potentially useful, and ultimately understandable patterns in data" (Fayyad et

al., 1996). Knowledge discovery is one of artificial intelligence contributions to 

research community which includes the processes of gathering data and 

information, pre-processing, analyzing data, extracting hidden knowledge (with data 

mining), constructing knowledge, knowledge evaluations and knowledge reuse. 

Knowledge discovery is not only using artificial intelligence techniques but it is also 

supported by other theories in database, retrieval theories, computing, visualization, 

statistics, etc. Generally, the data mining processes are grouped into three major 

key steps: preparation of input data, mining of data, and post-processing of output 

patterns (Du, 2010). 

Knowledge and decisions applied today were learned from past experiences 

and they are iteratively refined to be applied in future problems encountered. Data 

mining is one of the steps in the knowledge discovery process that can be used to 

automate the discovery of patterns or data modeling for selected empirical data, 

visualize and finally use the learned knowledge in response to future unseen data. 

Data mining is defined as the extraction of implicit, previously unknown, and 

potentially useful knowledge from data (Witten and Frank, 2000). In other words, 



data mining can be interpreted as the task of employing an algorithm that 

processes raw data automatically or semi-automatic and extracts any meaningful 

patterns that will be used for prediction tasks on new unseen data. Machine 

learning specifically provides various methods and learning algorithms that can be 

used to find and describe any structural patterns in data. Thus, the study of 

machine learning algorithms has emerged as the technical basis for any data mining 

works. 

Currently, many of these common algorithms and their advanced variations 

provide high classification performance in various empirical data. Advanced 

techniques, such as ensemble learning methods, are employed which apply 

different learning algorithms for different applications and these methods provide 

even higher classification accuracy. For example, ensemble learning approaches 

have been applied in a shape classification task is able to classify MPEG-7 shape 

and Swedish leaf shape dataset as high as 95 percent and 98 percent (Temlyakov 

et al., 2010). As a result, it is substantially harder for new researchers propose any 

better classification methods. The result of high performance accuracies produced 

by these advanced techniques indicates that the advancement of data mining 

methods and machine learning algorithms are almost stagnant and it can solve 

almost any classification tasks. However, real world problem is far from the reality 

of no unsolvable classification problem. There is still exist diverse problem requiring 

different efforts to find efficient solution for comparison, such as new dataset (even 

in the similar domain which was solved before), massive data, incomplete data 

(caused by noise or missing values), etc. For example, one of the most challenging 

data mining problems that are still receiving attention among researchers is the 

multiclass and imbalance classification problem (Alejo et al., 2008; Ghanem et al., 

2010; Lerteerawong and Athimethphat, 2011; Tahir et al., 2010; Valizadegan et al., 

2008; Zhou and Liu, 2010). 

In data mining, multiclass classification problem refers to assigning one of 

the several class labels to an input object. Unlike the binary classification, learning a 

multiclass problem is a more complex task due to the fact that each example can 

only be assigned to exactly one class label (Valizadegan et al., 2008). In fact, 

numerous attempts of using binary classification methods have failed to perform 

2 


