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ABSTRACT 

This thesis presents a study of the heat and mass transfer performance in a 
laboratory-scale vacuum membrane distillation (VMD) process by using a 
rectangular cross-flow flat-sheet membrane module. One type of commercial 
polyvinylidene fluoride membrane with a nominal pore size of 0.2 µm and an 
effective area of 71.4 cm2 is tested. Results show that the traditional Nusselt and 
Sherwood correlations, which are frequently employed in the membrane distillation 
literature, are not suitably used to estimate the heat and mass transfer coefficients 
in the VMD system for Reynolds numbers ranging from 150 to 1400. By using 
distilled water as the feed solution, a new semi-empirical heat transfer correlation 
by suggesting Knudsen-viscous mechanism governs the water vapour transport 
across the membrane is developed. Compared to the feed flow rate, the feed 
temperature is the limit to the heat transfer. The heat transfer coefficients are 
strongly dependent on the physical properties of the feed solution, but less relied 
on the design of the membrane module. A semi-empirical mass transfer correlation 
is derived based on the analogy between heat and mass transfer. In a desalination 
experiment, it was observed that approximately 30% of the experimental data fit 
well with the semi-empirical Nusselt and Sherwood correlations. The heat transfer 
process is limited by the resistances in the feed boundary layer and the membrane. 
The heat transfer resistance in the membrane increases when that in the feed 
boundary layer decreases and vice versa. More than 50% of the heat transfer 
resistances occur in the liquid feed phase at feed flow rates below 1200 mL/min, 
whereas the remaining occur in the membrane itself. At feed flow rates that exceed 
1200 mL/min, the heat transfer resistance in the membrane becomes dominant. 
The Knudsen-viscous resistance controls the mass transfer through the membrane 
while the mass transfer resistance in the liquid feed phase is absent. The 
membrane deformed during the VMD operation as the result of the external 
pressure that originated from the hydraulic pressure of the feed solution and the 
vacuum pressure acts on the membrane downwardly. It was noticed that the 
dimples stamped on the membrane surface by the perforation of the support do 
not significantly affect the heat and mass transfer performance during VMD. The 
deformed membrane with the dimpled surface is compacted. The permeability of 
the deformed membrane is enhanced from 3 to 20% by the compaction as a result 
of the membrane thickness reduction. Nusselt and Sherwood correlations that 
consider membrane deformation are developed to predict the flux through the 
deformed membrane. The differences between the fluxes calculated using the 
correlations with membrane deformation effects and the correlations without 
membrane deformation effects are generally less than 9%, suggesting that 
membrane deformation due to the membrane permeability enhancement may exert 
no significant influence on the performance of VMD. 
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ABSTRAK 

Pencirian Pemindahan Haba dan Jisim Dalam Membran Berlembaran-rata 
Berbentuk Segiempat untuk Penyulingan Membran Vakum 

Tesis ini mengkaji pemindahan haba dan jisim bagi sebuah sistem penyulingan 
membran vakum (PMV) berskala makmal. Sistem PMV tersebut dikaji dengan 
menggunakan satu modul membran berlembaran-rata yang berbentuk segiempat. 
Sejenis membran komersial yang diperbuat daripada fluorida polivinilidene telah 
diuji. Membran tersebut mempunyai saiz liang nominal berukuran 0.2 µm. Keluasan 
membran yang digunakan ada/ah 71.4 crn2. Keputusan kajian menunjukkan 
bahawa korelasi-kolerasi Nusselt dan Sherwood tradisional, yang mana sering 
digunakan dalam kajian-kajian penyulingan membran adalah tidak sesuai 
digunakan untuk menganggarkan pekali pemindahan haba dan Jisim bagi sistem 
PMV dalam kajian ini yang beroperasi dalam lingkungan nombor Reynolds dari 150 
hingga 1400. Satu kolerasi separa-empirik untuk pemindahan haba telah 
dibangunkan dengan menggunakan air suling sebagai suapan. Mekanisme 
Knudsen-likat menguasai pemindahan wap menerusi membran. Suhu suapan lebih 
mempengaruhi proses pemindahan haba jika dibandingkan dengan kadar aliran 
suapan. Pekali pemindahan haba adalah sangat bergantung kepada ciri-ciri fizikal 
larutan suapan tetapi ia kurang dipengaruhi oleh rekabentuk modu/ membran. Satu 
kolerasi separa-empirik untuk pemindahan Jisim diperolehi berdasarkan analogi 
antara pemindahan haba dan jisim. Satu kajian penyahgaraman mendapati bahawa 
kira-kira 30% daripada data eksperimen menepati nilai-nilai yang dianggarkan 
dengan menggunakan korelasi-kolerasi separa-empirik Nusselt dan Sherwood 
tersebut. Rintangan da/am fasa suapan dan fasa membran mengehadkan 
pemindahan haba. Pengaruh rintangan dalam fasa membran bertambah apabila 
rintangan dalam fasa suapan berkurang dan sebaliknya. Rintangan dalam fasa 
suapan mengawal lebih 50% daripada Jumlah rintangan pemindahan haba apabila 
sistem PMV beroperasi kadar aliran suapan kurang dari 1200 ml/min. Rintangan 
dalam fasa membran menguasai process pemindahan haba apabHa kadar aliran 
suapan melebihi 1200 ml/min. Rintangan bermekanisme Knudesn-likat dalam fasa 
membran mengawal proses pemindahan Jisim dalam PMV manakala rintangan 
pemindahan jisim dari fasa suapan bo/eh diabaikan. Permukaan dan struktur 
membran terubah bentuk kerana tekanan dari suapan dan tarikan vakum 
dikenakan pada membran semasa PMV beroperasi. Lekuk yang terbentuk pada 
permukaan membran tidak mempengaruhi proses pemindahan haba dan jisim/ 
manakala ketelapan membran tersebut bertambah dari 3 hingga 20% yang 
disebabkan pemadatan di mana ketebalan membran berkurangan. Kolerasi-kolerasi 
Nusselt dan Sherwood telah dibangunkan dengan mempertimbangkan kesan 
membran terubah bentuk. Perbezaan antara fluks yang dianggarkan berdasarkan 
korelasi-ko/erasi iaitu dengan mengambil kira kesan membran terubah bentuk dan 
tanpa kesan membran terubah bentuk ada/ah kurang daripada 9%/ di mana kesan 
membran terubah bentuk boleh diabaikan. 
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sample subjecting to the VMD operation for various feed 
temperatures under a feed flow rate of 600 ml/min. 

Figure 4.22: Membrane permeability enhancement due to membrane 157 
deformation and compaction after tested in the VMD 
operation at various feed temperatures under respective 
constant feed flow rates. 

Figure 4.23: Development of the Nusselt correlation by considering the 159 

membrane permeability enhancement due to membrane 
deformation and compaction. (a) log(Nu) versus log(Re) for 
the respective constant feed temperatures from 75 to 95°C. 
The solid lines are linear least squares fits of the 
experimental data. (b) Iog(Nu/ Re 0 •95) versus log(Pr) for
feed temperature from 75 to 95°C and feed flow rate from 
450 to 1200 ml/min. The solid line is linear least squares fit 
of the experimental data. The dashed lines represent 97% of 
confidence interval. 

Figure 4.24: A comparison of the experimental fluxes and the fluxes 161 
calculated by the correlations. (a) Distilled water is feed 
solution; (b) NaCl solutions are the feed solutions. 

Figure B.1: The lab-fabricated VMD system employed in this work 189 

Figure B.2: Lab-fabricated low pressure gas permeation system 190 
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LIST OF ABBREVIATIONS 

AGMD Air gap membrane distillation 

CPC Concentration polarisation coefficient 

DCMD Direct contact membrane distillation 

DW Distilled water 

LEPw Liquid entry pressure of water 

V-L Vapour-liquid 

MD Membrane distillation 

MDE Membrane deformation effect 

MTBE methyl tert-butyl ether 

NaCl Natrium chloride 

PE Polyethylene 

pp Polypropylene 

PTFE Polytetrafluoroethylene 

PV Pervaporation 

PVDF Polyvinylidene fluoride 

PVP Polyvinylpyrrolidone 

RO Reverse osmosis 

SEM Scanning electron microscopy 

SGMD Sweeping gas membrane distillation 

SMS Smooth membrane surface 

TCA 1, 1, 1-trichloroethane 

TCE trichloroethylene 

TPC Temperature polarisation coefficient 

VLE Vapour-liquid equilibrium 

VMD Vacuum membrane distillation 

voc Volatile organic compound 

XX 



LIST OF SYMBOLS 

a - Empirical constant for Equation (3.29)

A - Area (m2
)

c - Concentration ( moljm3)

C - Membrane distillation coefficient, mass transfer coefficient (kg/m2 s

Pa)

CP 
- Heat capacity (J/kg K)

d - Diameter (m)

D - Diffusion coefficient (m2/s)

Fe - Tube-row correction factor(-)

g - Gravitation acceleration (9.81 m/s2)

Gr - Grashof number (-)

Gz - Graetz number (-)

h - Individual heat transfer coefficient (W /m2 K)

H - Overall heat transfer coefficient (W/m2 K); Henris constant (Pa)

!!,.Hv - Heat of vaporisation (J/kg)

J - Mass flux (kg/m2 s or kg/m2 h)

k - Individual mass transfer coefficient (kg m/mol s or m/s); thermal

conductivity (W /m K)

k8 - Boltzmann constant (1.38 x 10-23 J/K)

kn - Knudsen number (-)

Km - Membrane permeability coefficient (s mole112 m-1 kg-112)

K - Overall mass transfer coefficient (W/m K)

L - Length (m)

m - Mass (kg)

M - Molecular weight (kg/mol)

n
5 

- Mole fraction of solute (-)

n+, n_ - Valence (-)

Nu - Nusselt number (-)

p - Partial pressure (Pa)
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P - Vapour pressure, absolute pressure (Pa)

f5 - Mean partial pressure (Pa)

p
0 - Saturation vapour pressure (Pa)

Pr - Prandtl number(-)

Q - Heat flux (J/m2 s)

r - Radius (m)

R - Resistance (m2 s K/J or m2 s Pa/kg); rejection (%); universal gas

constant (8.31 J/mol K)

Rv - Removaval efficiency(%)

Re - Reynolds number (-)

s - Standard deviation (kg/m2 s)

sw - Minimum weighed standard deviation (-)

Sc - Schimidt number (-)

Sh - Sherwood number (-)

t - Time (s)

T - Temperature (K)

v - Diffusion valume (m3); velocity (m/s)

V - Volume (m3)

w - Weight (kg)

w Rate of water vapour lost (kg/s)

x - Mass fraction (-)

y - Mole fraction in vapour phase (-)

Subscript 

0 - Initial

1 Final, upstream

2 Downstream

A - Component A

b Bulk

B - Component B

C - Cold

cal - Calculated
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exp 
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i,j 

Kn 
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op 
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U-D
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vis 
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Superscript 

b,c 

HT 

MT 

* 

Greek letter 

a 

One drop 

Discharging 

Exposed 

Experimental 

Feed 

Gas 

Hot; hydraulic 

Component i,j 

Interface 

Knudsen-type 

Liquid 

Membrane 

Operation 

Permeate; pore 

Percentage (%) 

Retentate 

Solid; smooth 

Total 

Upstream to downstream 

Vaporisation; vapour 

Viscous-type 

Water 

Empirical constants for Equation (3.29) 

Heat transfer 

Mass transfer 

Equilibrium 

Separation factor (-) 

Concentration factor(-); thermal expansion coefficient (K-1)
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y - Surface tension (N/m); activity coefficient (-)

o - Thickness (m)

E - Porosity ( -)

Tlv - Viscosity of vapour (Pa s)

0 - Angle (0)

11. Mean free path (m)

il+ , il_ Limiting ionic conductance (-)

µ - Viscosity of liquid (Pa s)

p Density (kg/m3)

a - Collisions diameter (m)

T - Tortuosity (-)
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