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ABSTRACT 

The present world is on the verge of a severe 'global energy crisis' with limited 
energy reserves exceeding its supply. In such a scenario, biodiesel production using 
immobilized lipase has immense significance. Jatropha curcas oil (00) has gained 
much importance as a non edible biodiesel feedstock in many countries. The 
objective of this research was to produce biodiesel from 00 using Burkholderia 
cepacia lipase immobilized in hybrid matrix. The research was divided into two main 
parts. First part incorporated the immobilization of lipase onto hybrid matrix and its 
stability studies followed by the second part which included optimization of 
biodiesel production from 00 with the immobilized lipase. At first, the lipase was 
cross linked with glutaraldehyde prior to entrapment in a hybrid matrix of natural 
polymers of alginate and K-carrageenan. The lipase beads were spherical in shape 
with an average diameter of 3mm. A specific activity yield of 89.26% was obtained 
following immobilization. Further, a significant reduction of 65.76% enzyme leakage 
was observed. The immobilized lipase also retained 84.02% of its initial activity 
upon two weeks of storage. Optimum pH for immobilized lipase was found to be 7 
and temperature 40°C. Comparative kinetic parameters Km and Vmax values were 
found to be 3.15µM and 12.Sµmol/min for free lipase and 4.17µM and 
11.llµmol/min for immobilized lipase respectively. Immobilized lipase also retained
75.54% of its initial activity after 10 cycles of reuse.

In the second part of the research, the immobilized lipase in hybrid matrix 
was employed for biodiesel production from 00. A 100% yield of biodiesel (FAEE) � 
was obtained with the optimized parameters : 10g 00, 1: 10 molar ratio of oil to 
ethanol, 1 g water, 5.2g immobilized lipase, 35°C, 6 g x RCF and 24 hour reaction 
time. The immobilized lipase retained 73% relative transesterification activity after 
six cycles of reuse. On the other hand, a simple and effective external mass 
transfer model was established in a recirculated packed bed batch reactor (RPBBR) 
with immobilized lipase and 00. Based on different biopolymer material used in 
immobilized beads, Colburn factor J0 for alginate was 1.674 Re-o .4 and for 
K-carrageenan was 1.881 Re-o·3. In addition, the environmental friendly nature of
Jatropha biodiesel produced by immobilized lipase was affirmed through LCA.
Moreover, it was found out that when the immobilized lipase was reused for 10
times, the cost of Jatropha biodiesel production was similar to that of alkali
catalyzed one. Thus, in short, biodiesel produced from 00 using immobilized lipase
in hybrid matrix can be a sustainable fuel in the near future.
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ABSTRAK 

PENGHASILAN BIODIESEL DARIPADA MINYAK JATROPHA CURCAS 

DENGAN MENGGUNAKAN LIPASE STA TIK DALAM MATRIKS HIBRID 

Dewasa inl 'Krisis Tenaga Global' kian memuncak apabila tenaga simpanan yang 
terhad sedang mencapai tahap penggunaannya. Dalam sinario sebeginl 
penghasilan biodiesel menggunakan lipase statik kian menjadi keutamaan. Minyak 
Jatropha curcas (00) sedang menunjukkan potensi yang tinggi untuk menjadi 
bahan mentah bagi penghasilkan biodiesel di peringkat antarabangsa. Objektif 
dalam penyelidikan ini ada/ah untuk menghas11kan biodiesel daripada 00 
menggunakan lipase Burkholderia cepacia yang statik da/am matriks hibrid. 
Penyelidikan ini bo/eh dibahagikan kepada dua bahagian utama. Pertama, ikatan 
lipase da/am matriks hibrid dan ujian kestabilan lipase. Setelah itu d11kuti dengan 
pengoptimuman penghasilan biodiesel daripada 00 menggunakan lipase statik. 
Untuk permulaan, ikatan lipase dihasilkan dengan menggunakan glutaraldehyde 
dalam matriks hibrid polimer semulajadi alginate dan k-carrageenan. Bijian lipase 
berbentuk sfera dengan purata ukuran diameter 3mm. Aktiviti ikatan mampu 
menghasilkan penukaran 89.26%. Pemerhatian kemudiannya mendapati bahawa 
kebocoran matriks menjatuhkan Jumlah penghas11an kepada 65.76%. Lipase statik 
kekal menghasilkan penukaran sebanyak 84. 02% daripada aktiviti asa/ selepas 
penyimpanan selama dua minggu. pH yang optimum untuk lipase statik adalah 7 
dan pada suhu 411 C Melalui pembezaan, parameter kinetic Km dan Vmax 

adalah 3.15µM dan 12.Sµmol/min bagi lipase bebas manaka/a 4.17µM dan 
11.llµmol/min bagi lipase statik. Lipase statik mengekalkan penukaran 75.54%
daripada aktiviti asal selepas penggunaan semula sebanyak 1 O kali.

Pada bahagian kedua kajian inl Lipase statik digunakan untuk penghas11an 
biodiesel daripada 00. Penghasilan 100% biodiesel (FAE£) boleh dicapai apabila 
parameter-parameter yang berikut berada di tahap yang optimum: 10g 00, 1:10 
nisbah molar 1:10 minyak kepada etanol lg air, 5.2g lipase statit JS1C, 6 g x RCF 
and 24 Jam tindakbalas kimia. Lipase statik mengekalkan penukaran sebanyak 73% 
secara relatif dalam aktiviti transesterifikasi selepas penggunaan sebanyak enam 
kali. Sementara itu, model pemindahan Jisim yang mudah dan efektif ditubuhkan 
dalam 'recirculated packed bed batch reactor' (RPBBR} dengan lipase statik dan 
00. Berdasarkan bahan biopolymer berbeza dalam bijian statik, JD untuk alginate
adalah l.674Re-oA dan untuk K-carrageenan adalah 1.881 Re-o·3. Tambahan pula,
sifat mesra a/am biodiesel Jatropha yang dihasilkan melalui lipase statik telah dinilai
melalui LCA. Selain itu, apabila lipase statik digunakan semula melebihi 1 O kalt kos
penghasilan biodiesel Jatropha adalah bersamaan dengan la/uan penghasilan
menggunakan pemangkin alkali. Ringkasnya, penghasilan biodiesel daripada 00
menggunakan lipase statik dalam matriks hybrid boleh dijadikan sumber bahan api
yang mampan pada masa hadapan.
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CHAPTER 1 

INTRODUCTION 

1.1 General outlook on Energy 

The present world is on the verge of a severe 'global energy crisis' with limited 

energy reserves exceeding its supply. The reasons for this fast depletion of energy 

resources can be increase in population, economic growth, better standards of 

living, inappropriate utilization, ageing infrastructure, accidents at refineries and 

over consumption. One of the main explanations for energy crisis can be attributed 

to too much dependence on non-renewable resources rather than utilizing 

renewable energies to the maximum. Almost 90% of the world's energy is met by 

non-renewable sources such as natural gas, petroleum and coal (Lior, 2008) 

(Figure 1.1). 

Energy Resources 

Renewable energy Non-renewable energy 

Wind Coal 

Petroleum 

I Biomass I I Nuclear I 

---- Geothermal Natural Gas ---

Figure 1.1: Classification of energy resources 

Source: Demirbas, 2005 



Tremendous exploitation of non renewable energies has resulted in fast 

depletion of these reserves along with adverse effect on climate mainly due to the 

emissions from fossil fuel combustion, especially green house gases. In other 

words, the present population is making the earth a place same as primitive 

mankind used. This will have adverse effect on our future generations. 

The main contribution of green house gases comes from the use of carbon 

related fossil fuels such as coal and oil (Quadrelli and Peterson, 2007). Increase in 

green house gases like CO2 in the atmosphere eventually lead to increase in global 

temperature which has adverse effects on the earth. In such a scenario, measures 

have to be taken to curb energy related CO2 emissions through a number of timely 

implemented technologies (Ghoniem, 2011). Thus, accelerating the use of 

renewable energies could replace the shortage of fossil fuels in the near future as 

well as drive our earth to a safer and cleaner place. So nowadays, renewable 

energy exploitation has become an interesting area of research with future scope of 

powering the human activities to the maximum. 

1.2 Renewable Energy 

In today's world with fast exhaustion of fossil fuels, renewable energy is the 

inevitable choice for sustainable economic growth and future energy reserve. 

Renewable energies can be defined as those energies which are environment 

friendly and which can be recycled (Peidong et al., 2009). There is asignificant 

increase in energy supply from renewable sources as seen in recent years. 

However, still, the energy supply from renewable sources is a way far to go to be 

considered competitive with fossil fuels. 

There are different types of renewable energies such as solar, wind, 

biomass, tidal, hydro and geothermal energy. Out of these, biofuels grouped under 

the biomass category is gaining immense potential mainly because these can be 

produced from different feedstocks around the world. 
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1.3 Biofuels 

The term 'biofuel' or 'bio-renewable fuel' refers to solid, liquid or gaseous fuels 

mainlyproduced frombio-renewable feedstocks. Out of this, liquid biofuels are 

mostly used as fuel for vehicles in addition to power engines or fuel cells for 

electricity generation. Liquid biofuels produced from a variety of biomass feedstock 

include: biodiesel, bioethanol, methanol and Fischer-Tropsch diesel 

(Demirbas, 2008).It was found that there are two bio-renewable liquid fuels, which 

can replace gasoline and diesel in the near future, namely bioethanol and biodiesel. 

However, biodiesel has caught more attention of researchers due to its 

environmental benefits (Altun, 2011). 

Based on the production technologies, biofuels can be classified intofirst 

generation; second generation; third generation, fourth and fifth generation 

biofuels. Table 1.1 shows classification of biofuels based on production 

technologies. 

Table 1.1: Classification of biofuels based on production technologies 

Generation Feedstock Examples 

First-generation Sugar, starch, vegetable Bioalcohols, vegetable oil, 
biofuels oils or animal fats biodiesel,biosyngas, biogas 

Second generation Non food crops, wheat Bioalcohols, bio-oil, bio-
biofuels straw, corn, wood, solid DMF, biohydrogen, bio-

waste, energy crop Fischer-Tropsch diesel 

Third generation Algae Vegetable oil, biodiesel 
biofuels 

Fourth generation Vegetable oil, biodiesel Biogasoline 
biofuels 

Fifth generation biofuels Gaseous raw materials methane 

Source: Demirbas(2011); Porqueras et al ( 2012) 
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