EVALUATE THE IMMUNOGENICITY OF PLASMID ENCODING pscC PROTEIN OF *PSEUDOMONAS AERUGINOSA* IN RATS

PERPUSTAKAAN UNIVERSITI MALAYSIA SAFE

MD. SAFIUL ALAM BHUIYAN

UNIVERSITI MALAYSIA SABAH

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2015

EVALUATE THE IMMUNOGENICITY OF PLASMID ENCODING pscC PROTEIN OF *PSEUDOMONAS AERUGINOSA* IN RATS

MD. SAFIUL ALAM BHUIYAN

PERPUSTAKAAN UNIVERSITI MALAYSIA

THIS THESIS IS SUBMITTED TO FULFILL THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (BIOTECHNOLOGY)

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2015

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS

JUDUL: EVALUATE THE IMMUNOGENICITY OF PLASMID ENCODING pscC PROTEIN OF *PSEUDOMONAS AERUGINOSA* IN RATS

IJAZAH: MASTER OF SCIENCE (BIOTECHNOLOGY)

Saya **MD. SAFIUL ALAM BHUIYAN**, Sesi Pengajian 2011-2015, mengaku membenarkan tesis Doktor Falsafah ini disimpan di Perpustakaan Univesiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis ini adalah hak milik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (/)

TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

PERPUSTAKAAN UNIVERSITI MALAYSIA SABA+

Disahkan oleh, NORAZ YNNE MOHD. JOHAN @ JACKLYNE PUSTAKAWAN SITI MALAYSIA SABAH (Tandatangan Pustakawan)

(Dr. Kenneth Francis Rodrigues) Penyelia

MD. SAFIUL ALAM BHUIYAN

Tarikh: 8 Jun 2015

DECLARATION

I hereby declared that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

Date: 1st February, 2015

Md. Safiul Alam Bhuiyan PB20118054

CERTIFICATION

NAME	: MD. SAFIUL ALAM BHUIYAN
MATRIC NO	: PB20118054
TITLE	: EVALUATE THE IMMUNOGENICITY OF PLASMID
	ENCODING pscC PROTEIN OF PSEUDOMONAS AERUGINOSA
	IN RATS
DEGREE	: MASTER OF SCIENCE (BIOTECHNOLOGY)
	· 11 February 2015

CERTIFIED BY

1. SUPERVISOR

Dr. Kenneth Francis Rodrigues

Signature

UNIVERSITI MALAYSIA SABAH

K. Ledg

ACKNOWLEDGEMENT

In the name of Allah, all praise is to Allah the Almighty. Had it not been due to His will, this thesis will not be completed. This thesis is the result of two and half years of work whereby I have been accompanied and supported by many people. It is pleasant aspect and I have now the opportunity to express my gratitude for all of them.

First of all, I express my deep gratitude to Dr. Kenneth Francis Rodrigues for his imperative advice, continuous support and suggestion, constant encouragement during my research work. My sincere appreciations also dedicated to my respective teacher Dr. Daisy Vanitha, Madam Zarina and Dr. Adrian and for their support and useful discussion in making on this research took more proceeded and success.

I have also learned enormously from my lab members Mr. Zaidi and Mr. Fernandes, especially grateful to Mr. Zaidi who always helped to give me the research materials from his grant since the beginning. I am thankful to my lab assistant Ms. Vidarita, Ms. Nurul and Mr. Mony as well, who always facilitated during my work on time.

I wish to extend my appreciation to everyone, although not individually named here, who had contributed directly or indirectly to my project and thesis.

Last but not least, I would like to express my utmost appreciation to my beloved parents, my wife and my sweet kids, my elder sister, brother and brotherin-law for their endless love and supports which inspired me to greater efforts.

Md. Safiul Alam Bhuiyan, February, 2015.

ABSTRACT

Pseudomonas aeruginosa is a non-sporulating Gram negative, aerobic bacillus universally distributed in natural environment such as soil and water, which causes serious lethal infections. Its main targets are immunocompromised patients with attenuated host defense function which include burn victims, organ transplant and cancer patient's long term therapy involves the use of antibiotics. Currently, there is no commercially available vaccine that can confer immunity to P. aeruginosa; therefore this study was conducted to determine the antigenic potential of a protein associated with the cell surface, which could subsequently be translated into a DNA based vaccine. The complete genome of P. aeruginosa strain PA01 was screened to determine an outer membrane surface coat Type III secretion protein (pscC) which is an important virulence determinant of type III secretion system (T3SS). Specific primers used were designed based on P. aeruginosa PA01 genome sequence available at the GenBank (NP250407) and subsequently cloned into two different Escherichia coli expression vector pGS-21a and pET-22b. The recombinant protein was analyzed by MALDI TOF-TOF mass spectrometer followed by purification using size exclusion chromatography. Finally, pscC gene was cloned onto a mammalian expression vector for plasmid immunization. The pMC2.1-pscC recombinant plasmid was directly injected intramuscularly in laboratory Spraque Dawley rats. Recombinant pscC antigen induced a specific humoral immune response against the antigen which was validated by agglutination and ELISA tests. The results clearly demonstrated that anti-pscC antibody was elicited using the animal model. The antibody level increased in 3 weeks of post immunization of all experimental doses compared with control aroup. The surface virulence Type III secretion protein (pscC) which is encoded by the outer membrane of T3SS genes will lead to the development of commercial plasmid vaccines to induce protective immunity against virulent Pseudomonas infection.

ABSTRAK

MENILAI KEIMUNOGENAN PENGEKODAN PLASMID pscC PROTEIN PSEUDOMONAS AERUGINOSA DALAM TIKUS

Pseudomonas aeruginosa adalah bakteria aerobic bacillus gram negative yang tidak menghasilkan spora, bakteria ini boleh didapati secara meluas di alam sekitar seperti tanah dan air yang boleh menyebabkan maut jika dijangkiti. Sasaran utama bakteria ini adalah pesakit yang mempunyai antibody yang rendah seperti mangsa kebakaran, pesakit yang mengadakan pemindahan organ dan pesakit kanser. Pada masa ini, belum ada vaksin penawar yang boleh meningkatkan imuniti terhadap bakteria P. aeruginosa ditemui. Oleh itu, kajian ini dilakukan untuk menentukan protein antigen yang berpotensi terhadap permukaan sel di mana protin tersebut akan diterjemahkan kepada vaksin dengan menggunakan E.coli sebagai paparan. Keseluruhan informasi genetic (genom) P. aeruginosa PA01 di skrin untuk menentukan lapisan luar permukaan membrane Type III rembesan pscC protien di mana ia adalah ciri penting untuk menentukan tahap P. aeruginosa sebagai Type III secretion system (T3SS). Primer khas yang digunakan adalah berdasarkan rantaian genom pseudomonas PA01 yang diperolehi daripada GenBank (NP250407) di mana seterusnya di klon untuk menghasilkan dua E. coli ekspresi vector pGS-21a dan pET22b. Protein rekombinan dianalisis dengan MALDITOF-TOF mass spektrometer diikuti dengan penulinan menggunakan kromatografi penyisihan saiz. Akhirnya, pscC gen telah diklon ke ekspresi vector mamalia untuk proses imunisasi menggunakan plasmid. Plasmid rekombinan pMC2.1-pscC telah secara langsung disuntik otot di dalam makmal Sprague Dawley tikus. Penghasilan antigen rekombinan pscC yang disebabkan tindak balas tertentu humoral imun terhadap antigen yang telah disahkan dengan kit aglutinasi dan ELISA. Keputusan jelas menunjukkan bahawa antibodi anti-pscC telah dihasilkan dengan menggunakan model haiwan. Tahap antibodi meningkat dalam 3 minggu selepas imunisasi, semua dos eksperimen dibandingkan dengan kumpulan kawalan. Permukaan Jenis protein III rembesan pscC yang dikodkan oleh membran luar gen T3SS akan membawa kepada pembangunan vaksin plasmid komersial dan berpotensi mendorong imuniti perlindungan terhadap jangkitan Pseudomonas getir.

TABLE OF CONTENT

		Page
ΤΙΤΙ	E	I
DEC	LARATION	ii
CER	TIFICATION	iii
АСК	NOWLEDGEMENT	iv
ABS	TRACT	v
ABS	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	xi
LIST	OF FIGURES	xii
LIST	OF APPENDICES	xv
LIST	OF SYMBOLS AND ABBREVIATIONS	xvi
СНА	PTER 1 : INTRODUCTION	1
СНА	PTER 2 : LITUREATURE OF REVIEW	6
2.1	Pseudomonas aeruginosa VERSITI MALAYSIA SABAH	6
	2.1.1 General information	6
	2.1.2 Genome characteristics of <i>P. aeruginosa</i>	8
	2.1.3 Pathogenic characteristics of <i>P. aeruginosa</i>	10
2.2	Virulence factor	12
	2.2.1 Extra-cellular virulence factor	12
	2.2.2 Flagellum, Pillus and Alginate	14
	2.2.3 Biofilm	16
	2.2.4 Quorum sensing	16
2.3	Pseudomonas infection	18
2.4	Bacterial antibiotic resistance	21
	2.4.1 Membrane permeability	21
	2.4.2 Efflux pump	22
	2.4.3 Enzymatic modification	22

	2.4.4 Mutational resistance	23
2.5	Feature of T3SS pscC gene	24
2.6	Type III secretion protein (T3SS)	31
	2.6.1. General characteristics of T3SS	31
	2.6.2. T3SS apparatus	33
	3.6.3 Regulation of T3SS	36
	2.6.4. Type III secretional signal	37
2.7	Significant of T3SS and host immunity	37
2.8	T3SS pathogenicity	39
2.9	Outer membrane of T3SS and their immunogenicity	40
2.10	Antigenic principle of T3SS	42
2.11	Plasmid immunization	43
2.12	Mechanism of plasmid immunization	44
2.13	Summary of literature review	47
CHAP	TER 3 : METERIALS AND METHODS	49
3.1	Bacterial strain, Plasmid & growth media	49
3.2	DNA extraction	49
3.3	Plasmid mini-preparation (Alkaline lysis)	50
3.4	Protein size standards	51
3.5	Design of Primer	51
3.6	Construction of primer design for pscC Gene	52
3.7	Sequencing analysis	54
3.8	PCR (Polymerase Chain Reaction) amplification of pscC gene	54
3.9	PCR and plasmid Products on 1% Agarose Gel Electrophoresis	56
3.10	Restriction Enzymes (Plasmid & PCR Product) Digestion	56
3.11	Preparation of vector for ligation	56
3.12	Ligation of pscC gene in pGS-21a vector	58
3.13	Preparation of chemically competent cells	59
3.14	Transformation of E. Coli TOP10 with pGS-21a-psc	60
	3.14.1 Selection of pGS-psc competent cells	60
	3.14.2 Colony PCR	60

	3.14.3 Plasmid Extraction (Kit) -Gene JET [™] Plasmid Miniprep	61
	3.14.4 RE of pGS-pscC inserts plasmid (Conformation)	62
	3.14.5 Sequencing of plasmid insert pscC gene	62
3.15	Transformation of pGS-21a into expression host, E. Coli BL21 (DE3)	63
3.16	Expression of protein	63
	3.16.1 Protein Analysis by SDS-PAGE	63
	3.16.2 Culture Growth for expression of pscC Protein	63
	3.16.3 Preparation of 10% Resolving Gel	64
	3.16.4 Preparation of 5% Stacking Gel	64
	3.16.5 Sample Preparation	65
	3.16.6 SDS-Polyacrylamide gel electrophoresis	68
3.17	Expression based on cellular localization	68
3.18	Protein identification by MAS (Mass Spectrography)	69
3.19	Differential of soluble and insoluble fraction	70
3.20	Purification of protein by SEC (Size Exclusion chromatography)	70
3.21	Protein separation by alcohol/chloroform precipitation method	71
3.22	Determination of protein concentration	71
3.23	Plasmid immunization	71
	3.23.1 Plasmid	71
	3.23.2 Cloning in mammalian expressing pDream2.1/MCS vector	73
	3.23.3 Plasmid Preparation for Injection	74
	3.23.4 Immunization of animal	74
	3.23.5 Blood collection	77
3.24	Serological test	77
	3.24.1 Agglutination Test	78
	3.24.2 Measurement of positive antibody by ELISA test	78
CHAF	PTER 4: RESULTS & DISCUSSIONS	81
4.1	Prediction of amino acids	81
	4.1.1 Secondary protein structure prediction	81
	4.1.2 Single peptide prediction	84
	4.1.3 Hydrophobicity index prediction	85

4.2	Amplification of pscC gene from P. aeruginosa PA01 Strain	86
4.3	E coli expression vector	89
	4.3.1 Ligation and conformation of recombinant E. coli TOP10	89
	4.3.2 Sub cloning of <i>E. coli</i> BL21 (DE3) expression vector	94
4.4	Expression of pscC protein	95
	4.4.1. Whole cell lysate preparation	95
	4.4.2. Time course expression of pscC	96
	4.4.3. Cellular localization expression of pscC	97
4.5	Determination of solubility of pscC	99
4.6	Identification of protein by MAS	101
4.7	Purification	102
	4.7.1. Purification by SEC	102
4.8	Determination of protein concentration	105
4.9	Plasmid immunization	106
	4.9.1 Plasmid construction and transformation	106
	4.9.2 Plasmid Sequencing	110
4.10	Antibody measurement	110
	4.10.1 Agglutination	110
	4.10.2 Antibody measurement by ELISA test LAYSIA SABAH	111
СНАР	TER 5 : CONCLUSION	116

119

REFERENCES

Х

LIST OF TABLES

		Page
Table 2.1	The total Genome and ORF's size of P. aeruginosa PA01	9
Table 2.2	The clinical infestation of P. aeruginosa and their physical	19
	findings are shown in below table	
Table 2.3	The family of T3SS based on sequence homology and	26
	activities	
Table 3.1	Primer design with GC % content with nucleotide	52
	sequences of pscC	
Table 3.2	Sequence of primer, restriction sites (EcoRI & HindIII) and	52
	vector used for expressing pscC gene of <i>P. aeruginosa</i> PA01	
	strain	
Table 3.3	Constituents in PCR mixtures.	55
Table 3.4	PCR conditions	55
Table 3.5	Constituent of RE mixture	56
Table 3.6	The final concentration of required in ligation reaction	59
Table 3.7	Constituents for colony PCR SITI MALAYSIA SABAH	61
Table 3.8	Components for Resolving Gel	64
Table 3.9	Components for Stacking Gel	65
Table 3.10	Components of Loading Buffer	66
Table 3.11	Components for Staining and De-Staining	68
Table 3.12	Dose, treatment protocol (experimental design)	77
Table 4.1	The Hydrophobicity scale calculated based on individual	86
	value using Kyte-Doolittle scale	
Table 4.2	Sequences identities of the plasmid (pGS-21-psc) sequences	90
	assembly at nucleotides level using BLASTn	

LIST OF FIGURES

	Page
EM micrograph of Pseudomonas aeruginosa	7
P. aeruginosa PA01 genome and their chromosomal	
localization of the various secretion machines, which have	
only been experimentally studied in terms of the several	10
kinds of secretion devices are represented accordingly with	
the color code u sed	
The Extra-cellular virulence factor of P. aeruginosa	13
The features of P. aeruginosa have cell-associated	
flagellum, pilus, non-pilus adhesions, alginate, and	15
lipopolysaccharide	
Summary of Quorum sensing of P. aeruginosa	17
The different levels of <i>P. aeruginosa</i> infection	20
The Genomic Map showing the part of <i>P. aeruginosa</i>	
(PA01) chromosomal area around the explore pscC gene	27
and their subcellular localization class	
pscC gene sequence of <i>P. aeruginosa</i> PA01 data base	20
sequence (NCBI)	28
Compare proteins to nucleotides sequence with blast	20
sequences using Blastn (NCBI)	29
% of GC content of pscC	30
The T3SS apparatus in P. aeruginosa and their functional	22
activity of pscC secretin protein	32
Various classes of chaperon in type of Type III secretion	35
protein	
Humoral immune mechanism of plasmid immunization in	46
animal model	
Prestaining SDS protein marker	51
Blast sequence of pscC with primer design (NCBI)	53
	EM micrograph of <i>Pseudomonas aeruginosa</i> <i>P. aeruginosa</i> PA01 genome and their chromosomal localization of the various secretion machines, which have only been experimentally studied in terms of the several kinds of secretion devices are represented accordingly with the color code u sed The Extra-cellular virulence factor of <i>P. aeruginosa</i> The features of <i>P. aeruginosa</i> have cell-associated flagellum, pilus, non-pilus adhesions, alginate, and lipopolysaccharide Summary of Quorum sensing of <i>P. aeruginosa</i> The different levels of <i>P. aeruginosa</i> infection The Genomic Map showing the part of <i>P. aeruginosa</i> (PA01) chromosomal area around the explore pscC gene and their subcellular localization class pscC gene sequence of <i>P. aeruginosa</i> PA01 data base sequence (NCBI) Compare proteins to nucleotides sequence with blast sequences using Blastn (NCBI) % of GC content of pscC The T3SS apparatus in <i>P. aeruginosa</i> and their functional activity of pscC secretin protein Various classes of chaperon in type of Type III secretion protein Humoral immune mechanism of plasmid immunization in animal model Prestaining SDS protein marker Blast sequence of pscC with primer design (NCBI)

Figure 3.3	pGS -21a vector indicating the location and orientation of the pscC gene	57
Figure 3.4	Constriction of pGS-21a vector with pscC gene for expression	58
Figure 3.5	Flow chart for preparation of protein (pscC) samples used for SDS-polyacrylamide gel electrophoresis.	67
Figure 3.6	pDream2.1/MCS vector and their sequences followed the location of pscC gene	72
Figure 3.7	pMC2.1-pscC plasmid ligation and multiplication	73
Figure 3.8	pscC Protein expression in vivo on laboratory rat	76
Figure 3.9	Plasmid immunization applied by I/M (Intramuscular) in ABSL3 lab	80
Figure 3.10	Blood collection done by Reto-orbital bleeding in ABSL3 lab	80
Figure 4.1	Prediction of secondary structure of pscC protein	82
Figure 4.2	Target sequence followed visualization of both by	
	prediction obtained from PRED-TMBB for the pscC of <i>P.</i> aeruginosa	83
Figure 4.3	Graphical output Signal Peptide	84
Figure 4.4	The Kyte-Doolittle hydrophobicity graph of individual value of pscC sequences	85
Figure 4.5	Agarose gel electrophoresis of amplify the pscC gene from <i>P. aeruginosa</i> PA01 Strain	87
Figure 4.6	RE analysis of recombinant pGS-21a vector inserted pscC and ligation	92
Figure 4.7	Agarose gel electrophoresis of the pscC product of E. coli	93
	TOP10 colony PCR clones with RE	
Figure 4.8	Colony PCR results in <i>E.coli</i> BL21 (D3) showed by 1% agarose gel	94
Figure 4.9	SDS-PAGE analysis of the over expressed recombinant	97
	protein in BL21 (DE3) clones	

Figure 4.10	Expression of recombinant pscC in BL21 (DE3)	98
	PAGE analysis	
Figure 4.11	SDS-PAGE analysis of the expressed purified recombinant	99
Figure 4.12	SDS-PAGE SDS analysis of the over expressed recombinant soluble and insoluble protein	100
Figure 4.13	pscC protein identification by Mass spectrophotometer	101
Figure 4.14	Analysis of the expressed purified recombinant soluble protein by Size exclusion chromatography (SEC)	103
Figure 4.15	Gel filtration chromatography and SDS PAGE analysis of pscC Protein	105
Figure 4.16	The graph showed the fusion protein along with BSA standard by BCA Assay	106
Figure 4.17	Electrophoresis of pscC PCR product and pDream2.1/MCS plasmid sample after digested <i>EcoR</i> I and <i>Hind</i> III	107
Figure 4.18	Electrophoresis of Gel testing of positive screening colonies after transformation into <i>E coli</i> TOP10 by colony PCR	108
Figure 4.19	Electrophoresis of pDream2.1/MCS plasmid sample digested using on 1% agarose gel	109
Figure 4.20	Slide Agglutination showed the clumping indicated the tentative positive serum	111
Figure 4.21	Serum antibodies were measured by indirect ELISA	113

LIST OF APPENDICES

		Page
APPENDIX A:	Preparation of solution for electrophoresis	142
APPENDIX B:	Preparation of media and solution	143
APPENDIX C:	Strain and plasmid used	144
APPENDIX D:	pscC gene sequences exclusive of parts of plasmid sequences	145
APPENDIX E:	OD ₄₀₅ Values for different weeks of serum from post immunized.	146
APPENDIX F:	pscC sequences and their composition	147
APPENDIX G:	DSB (Diethanolamaine substrate buffer) Buffer	148
APPENDIX I:	Amino acid composition of pscC protein	149

LIST OF SYMBOLS AND ABBREVIATIONS

AHWLA	Assessing the Health and Welfare of Laboratory Animals
Amp	Ampicillin
APC	Antigen presenting cell
APS	Ammonium per sulfate
АТР	Adenosine triphosphate
BLAST	Basic Local Alignment Search Tool
BSA	Bovine serum albumin
BSA	Bovine serum albumin
cDNA	Complementary deoxyribonucleic acid
CMV	Cytomegalo virus
COPD	Chronic obstructive pulmonary diseases
CTL	Cytotoxic T cell
DTT	Dithiothreiotol
DNA	Deoxyribonucleic acid
dNTP	Dioxynuclotides triphosphate
DSB	Diethanolamaine substrate buffer
EDTA	Ethylene diamine tetra acetic acid AYSIA SABAH
GST	Glutathione –S-transferase
His (H)	Histidine
hr	Hour
IB	Inclusion body
Ig G	Immunoglobulin G
IPTG	Isopropyl thiogalactosidase
kb	Kilo base
kDa	Kilo dalton
LB	Luria-Bertani
LPS	Lipopolysaccharides
MALDI-TOF	Matrix-Assisted-Laser Desorption-Time-of-Flight
MCS	Molecular cloning site
MDR	Multi drug resistance

LIST OF SYMBOLS AND ABBREVIATIONS

AHWLA	Assessing the Health and Welfare of Laboratory Animals
Amp	Ampicillin
APC	Antigen presenting cell
APS	Ammonium per sulfate
АТР	Adenosine triphosphate
BLAST	Basic Local Alignment Search Tool
BSA	Bovine serum albumin
BSA	Bovine serum albumin
cDNA	Complementary deoxyribonucleic acid
СМУ	Cytomegalo virus
COPD	Chronic obstructive pulmonary diseases
CTL	Cytotoxic T cell
DTT	Dithiothreiotol
DNA	Deoxyribonucleic acid
dNTP	Dioxynuclotides triphosphate
DSB	Diethanolamaine substrate buffer
EDTA	Ethylene diamine tetra acetic acid AYSIA SABAH
GST	Glutathione -S-transferase
His (H)	Histidine
hr	Hour
IB	Inclusion body
Ig G	Immunoglobulin G
IPTG	Isopropyl thiogalactosidase
kb	Kilo base
kDa	Kilo dalton
LB	Luria-Bertani
LPS	Lipopolysaccharides
MALDI-TOF	Matrix-Assisted-Laser Desorption-Time-of-Flight
MCS	Molecular cloning site
MDR	Multi drug resistance

min	Minuto
	Milli moler
mm	
mRNA	Messenger ribonucleic acid
MS	Mass spectophotography
NCFB	Non-cystic fibrosis bronchiectasis
Nm	Nanometer
NF	Non flageller
OD	Optical density
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate buffered saline
PCR	Polymerase Chain Reaction
pmol	Picomol
PRRs	Pattern recognition receptors
RE	Restriction enzyme
RNase	Ribonuclease
RND	Resistance nodulation of cell division
Rpm	Rotations per min
RT	Room temperature
SDS	Sodium dodecyl sulphate
sec	Second
TAE	Tris acetate EDTA
ТВЕ	Tris borate EDTA
TEMED	N, N, N', N'-tetramethylethylenediamin
TLR4	Toll-like receptor 4
Tm	Melting temperature
тмнмм	Transmembrane based on a hidden Markov Model
TNFơ	Tumor necrosis factor Alpha
TPR's	Tetratricopeptide repeats
tRNA	Transfer RNA
Xg	Rotation per min

CHAPTER 1

INTRODUCTION

Psudomonas aeruginosa is a gram-negative versatile bacterium found in a wide range of environmental habitats. This opportunistic pathogen causes both acute and chronic infections in patients with hospital-acquired pneumonia (Driscoll, 2007). It has been classified as the fourth leading cause of nosocomial infection and is associated with cystic fibrosis; burn wound infection, and pneumonic septicemia (Daniel Sel, 2002; Bernhardt et al., 2002). Pseudomonas infections have become more complex and life-threating due to recurrent causes of nosocomial infection, as standard treatment are becoming ultimately ineffective. This organism displays intense signs of antibiotic resistance to wide variety of anti-microbiological agent, including β -lactam, chloramphenicol and fluoroguinolone (Zhang *et al.*, 2001). As a result, effective immune therapy is more desirable than conventional antibiotic therapy (Crazy et al., 1984). It is vital to implement therapeutic vaccination schemes against Pseudomonas infections. P. aeruginosa PA01 strain may produce virulence factors such as extra or intra-cellular enzyme and toxin containing pili, flagella, protease, esterase, alginate, lipopolysaccharides, pyocyanin and rhamnolipid, all of which are known to contribute to the pathogenicity of *Pseudomonas* infections (Lui et al., 1973; Stanysalvisky et al., 1997). These virulence factors may cause tissue damage through induction of free radicals within host cells, resulting in the inhibition of host's protective immune cells (Lau et al., 2004; Palmer et al., 2005).

The physical factor which governs the virulence of *P. aeruginosa* is the Type III secretion system (T3SS). *P. aeruginosa* relies on the T3SS pathway, which forms a channel for the translocation of bacterial effectors into the host cell and plays a great role in pathogenesis of the murine acute pneumonic infection model (Hauser, 2009; Diaz *et al.*, 2008). T3SS virulences factors are mainly considered during the interaction of the infective pathogen within the host cells and bacterial surface localization. T3SS is a complex protein secretory pathway which plays an important

role in Pseudomonas pathogenesis (Moreas et al., 2008). However, a number of secretory proteins are encoded by the T3SS operon and these exhibits a wide-range of functions which include proteolysis, haemolysis, cytotoxicity, and protein phosphorylation, which are all toxic to host cells. T3SS pathways used a powerful needle complex which injects a virulence protein to be transported from the bacterial cytoplasm to the outer membrane of the host cell envelope. This secretion system is largely associated with sec-depended, auto transporter and flagellar system to release their toxin and convey virulent proteins into the host cell. However, T3SS relies on the sec secretory system mostly to transport the protein from the inner to the outer membrane (Hahn et al., 2003; Henderson et al., 2004). The effector proteins are virulent proteins that affect the host's immune defense mechanism. At the same time, the translocons are other secretory proteins that allow the relocation of effector proteins via the needle apparatus (Stein, 2003). The virulent pscC protein is the domain of the outer membrane needle apparatus, which acts as a secretory precursor of T3SS. Moreover, the pscC protein regulates the secretion of translocation to attachment the cell membrane of the host, intoxication of translocation and signaling movement during pathogenesis. This study has attempted to produce plasmid vaccine against *Pseudomonas* infection using the pscC antigen.

NIVERSITI MALAYSIA SABAH

Effective vaccines are designed to stimulate the innate immune response, as well as deliver antigens to specific subcellular sites for the elicitation of antigen-specific cytotoxic T cells. Physical delivery to specific locations within a cell is one of the major challenges when developing a suitable T3SS antigen candidate as a vaccine. Secretory needle antigens of T3SS are easily processed through T3SS pathways. This T3SS complexes form a host-pathogen interaction to identify the molecular pathogenesis to develop an effective vaccine. As a result, the secretory T3SS antigen directly stimulates antigen-specific cytotoxic T cells through the delivery of antigens to the antigen presenting cells (APC), causing a humoral immune response (Amanna *et al.*, 2011; Rossmann *et al.*, 1998; Chen *et al.*, 2006).

It is also true that secretion processes occur through unique pathways which are specific to a specific secretion protein (Pugsley *et al.*, 1993). Therefore, the current study has applied the *Pseudomonas* outer membrane protein (T3SS) coding pscC gene immunized into the rat. The proteins designed to transport of T3SS pathway have distinct signals that direct them to the secretion machine to stimulate T-helper cells, conferring protection to a diversity of infectious diseases (Galan *et al.*, 2006). The primary aim of this study was to determine if the animal model could be applied to characterize the immune response elicited by the pscC antigen. It has been suggested in many studies that recombinant plasmid immunization may allow long-term persistence of immunogenic action in host cells without any risk of infection (Okada *et al.*, 2011; Frantz *et al.*, 2011). Plasmid DNA encoding a specific antigen is introduced into the muscle cell using mammalian plasmid expression vector. Further, the plasmid DNA is taken up by the host cells, expressed under the influence of a CMV promoter and subject to post-translation modification within the host (Robert-Guroff, 2007). Clinical trials have attested to the safety, efficiency and efficacy, as well as wide application of this immunization technique (James *et al.*, 2009).

Plasmid immunization represents the third generation vaccine, usually prepared by plasmids containing exogenous genetically engineered plasmid DNA for the purpose of creating antigens (Kaufmann et al., 2011). Similarly, plasmid DNA vaccines may provoke a rapid and strong immunological response when highly active mammalian expression plasmids are applied and result in ideal protection for human bodies (Hawkridge et al., 2011). First and second generation vaccine have several limitations, such as efficiency and non-specific immune reactions; plasmid immunization overcomes these limitations and there is need for an additional booster dose. The present study has been undertaken to describe a method to isolate the partial length of pscC gene from P. aeruginosa PA01 strain by PCR technique affording the rapid amplification of DNA fragments for cloning. The pGS-21a cloning vector has been used as an expression vector due to its compressive multiple cloning sites with appropriate antibiotics which contains an immuno-detectable oligo-peptide sequence fused to a 6X-HisTag and glutathione S-tranferase (GST) at the N-terminal sequences. The recombinant protein products, which are expressed when the plasmid is induced in *E. coli* (BL21) cells using IPTG, can be purified and concentrated using size exclusion chromatography. Concurrently a plasmid (pDream2.1/MCS vector) constructed with a pscC gene directly transferred to a muscle cell encoding an antigenic protein for the purpose of immunization and vaccine development. In

an experimental study, Sprague Dawley rats were immunized pMC2.1-pscC, formulated with 0.25% Bupivacaine followed with the single dose application. It has been posited that bupivacaine acts as an immunomodulator. As a result, production of the protein within the cell occurs through biosynthetic processing and post-translational modifications induced by activation of the humoral cell response (Feltquate *et al.*, 1997). The serological screening was carried out using serum from the immunized rats, with recombinant protein as an antigen, and confirmed by agglutination and indirect ELISA. These tests are the most popular for confirming the immunogenic nature of a protein and antigen detection system.

The T3SS is the part of important virulence determinant of *P. aeruginosa*, in which the pscC protein is a fundamental part of the needle tip for *Pseudomonas* T3SS. The pscC protein has been established to be an important protective antigen of the bacterium. Once the bacterium interacts with host cell membranes, the T3SS system is activated and this in turn inhibits signal transduction resulting in cellular cytotoxicity or changes in the host immune response. This T3SS antigen may react with the host cell, whose maximum component should play a significant role in the host immunity. Therefore, we focused on the current understanding of the mechanisms involved in antigenic expression of pscC. Similarly, we highlighted the experiential development of alternative vaccination approach using a plasmid DNA immunization in animal model for the production of polyclonal antibody. Direct plasmid DNA immunization can lead to the expression of the recombinant protein within the muscle, thus reducing the time and effort required for production of the protein in alternative hosts. It has been proven that the recombinant antigens expressed from DNA vaccines can elicit a strong humoral immune response against antigens derived from bacterial secretory components. The cell surface display of a heterologous antigenic determinant is advantageous for the induction of an antibody against a specific antigen. The orientation of target antigens has been used to develop plasmid vaccines using recombinant DNA for immunization on rats for the capture and detection of an antibody from serum (Stober et al., 2002). Therefore, it will be emphasized on display targeting and heterologous protein expression to outer surface of the bacteria in vivo after plasmid immunization. In conclusion a recombinant version of the *P. aeruginosa* pscC needle protein will be used as a

4