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ABSTRAK 

Bungkil inti kelapa sawit {PKC) ada/ah salah satu bahan buangan kelapa sawit yang 
penting. PKC telah digunakan sebagai makanan bagi haiwan ruminan dan ternakan 
itik dan ayam. Kegunaan PKC da/am makanan ternakan ayam dan itik adalah 
terhad kerana sifat anti- nutrisi seperti galaktomanan dan xy/an yang terdapat 
dalam PKC Sifat anti-nutrisi ini meningkatkan keviskusan diet akibat daripada 
penyerapan air yang tinggi dan ini akan menghadkan penyerapan nutrisi oleh 
haiwan ternakan. Satu cara untuk mengatasi masalah ini ialah dengan merawat 
PKC dengan enzim atau mikroorganisma yang menghasilkan enzim yang boleh 
mendegredasikan komponen tegar kepada nilai pemakanan. Oleh itu, projek ini 
dilaksanakan untuk mengasingkan bakteria mesofilik dan termofilik serta menyaring 
bakteria tersebut dalam keupayaan mereka menghasilkan enzim 
galactomannanase, cel/ulase, xylanase dan lipase. Enzim-enzim tersebut dapat 
meningkatkan kualiti nutrisi PKC sebagai ''single cell protein {SCP}'� Pengasingan 
dilakukan dengan menggunakan kaedah 'dilution plate' diatas Nutrient agar untuk 
bacteria, Starch Casein Nitrate agar {SCA) untuk actinomycete mesofilik, Czapex­
dox Yeast Extract Casamino Acid agar {CYC) untuk actinomycete termofilik, yeast 
extract peptone glucose agar (YEPD) untuk yeast dan potato dextrose agar (PDA) 
untuk fungi. Substrat komersil; Azo-carob-galactomannan, Azo-xylan (oat) dan Azo­
CM-cel/ulose digunakan untuk menyaring galactomannanase, xylanase dan cellu/ase 
manakala sobitan monolaurate {Tween 20) digunakan sebagai substrat untuk 
aktiviti lipase. Sebanyak 1146 mikroorganisma telah diasingkan daripada beberapa 
sumber kompos ''empty fruit bunch" (EFB), larutan mikrob efektif dan EFB mentah. 
Daripada itu, 627 bakteria, 219 actinomycete, 101 yis dan 199 fungi telah 
diasingkan dan disaring. Enam be/as asingan dengan keupayaan menghasilkan 
enzim mannanase, ce/lulase, xylanase telah dikira aktiviti mannanase, cellu/ase dan 
xylanase secara quantitatif. Didapati tiga asingan Bacillus sp. yang berlainan 
memberikan aktiviti mannanase {Asingan 7DY7, 7DU3 and 4DB3 masing-masing 
dengan aktiviti maximum sebanyak 1.30 U/µg protein, 0.95 U/µg protein and 0.92 
U/µg protein), cellulase {Asingan 7DY7, 7DU3 and 4DB13 masing-masing dengan 
aktiviti maksimum sebanyak 0.08 U/µg protein, 0.35 U/µg protein and 0.11 U/µg 
protein) dan xylanase (Asingan 7DY7, 7DU3 and 4D88 masing-masing dengan 
aktiviti maksimum sebanyak 0.15 U/µg protein, 0.08 U/µg protein and 0.21 U/µg 
protein) yang agak tinggi jika dibandingkan dengan 13 asingan bakteria yang lain. 
Enam be/as asingan bakteria tersebut dicari kenalpasti menggunakan jujukan 165 
rDNA masing-masing. Sebelas Bacillus sp. dan asingan tunggal bagi 
Micromonospora sp., Streptomyces sp. dan Thermoactinomyces sp. masing-masing 
dikenalpasti dengan membandingkan jujukan separa 16S rDNA asingan-asingan 
tersebut dengan jujukan 16S rDNA yang terdapat dalam GenBank dengan 
menggunakan Basic Alignment Search Tool (BLAST). Mikroorganisma yang 
diasingkan dapat digunakan untuk merawat PKC untuk meningkatkan nilai nutrisi 
makanan dalam PKC 
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CHAPTER 1 

INTRODUCTION 

The oil palm sector is one of the major industries in Malaysia. The growth of the 

palm oil industry in Malaysia has been phenomenal over the last 30 years. From 

merely 400 hectares planted in 1920, the total planted oil palm area increased 

progressively to 54,000 hectares by 1960 and by 1998, the oil palm planted area 

had increased to more than 3.0 million hectares (Industrial Processes and the 

Environment. Handbook No.3. Crude Palm Oil Industry, 1999). In 2007, the total oil 

palm planted area increased by 3.4% to 4.3 million hectares where Sabah 

remained as the largest oil palm planted State with 1.27 million hectares or 30% of 

the total planted area (Malaysian Palm Oil Board, 2007). 

Today, Malaysia is the world's largest producer and exporter of palm oil 

accounting for nearly 49.5% of world production and 64.5% of world exports 

(Industrial Processes and the Environment. Handbook No.3. Crude Palm Oil 

Industry, 1999). In the year 2007, Malaysia produced 15.8 million tonnes of crude 

palm oil and 1.91 million tonnes of crude palm kernel oil which showed a decline of 

0.4% and 2.5% compared to the year 2006 for crude palm oil and crude palm 

kernel oil respectively. The decline was mainly attributed to the effects of flood 

damage during the early part of the year and biological stress, which affected 

the palm trees especially during the first half of 2007. However, the crude palm oil 

production is predicted to rise to 16.2 million tonnes in 2008 because of 

improvement in yields and an expansion in matured area (Malaysian Palm Oil 

Board, 2007). Malaysia exported a variety of oil palm products which include palm 

oil, palm kernel oil, palm kernel cake, oleochemicals and finished products. The 

total export volume of oil palm products declined by 3.0% or 0.60 million tonnes to 

19.56 million tonnes in 2007 from 20.16 million tonnes in 2006 (Malaysian Palm Oil 

Board, 2007). 



The extensively rapid expansion of the palm oil sector had generated 

abundant of by-products. Palm kernel cake (PKC), empty fruit bunches (EFB), fibre, 

shell and potato ash are among the major by-products generated in the palm oil 

extraction process. This has subsequently given rise to their disposable problem. 

The government has opted for a "zero waste
11 

concept which is environment 

friendly and is centered on complete recycling or utilization of all perceived waste 

components and by-products generated by the oil palm sector (Industrial Processes 

and the Environment. Handbook No.3. Crude Palm Oil Industry, 1999). 

Palm kernel cake (PKC) is one of the many major oil palm by-products and 

is obtained from the kernel after the oil has been extracted. Nutritionally, PKC 

contain a moderate amount of protein and carbohydrate making it a useful source 

of protein and energy for livestock and it is commonly used in animal feed 

(Hutagalung, 1981). PKC has been widely used as ruminant feed (Broderick et al., 

1988; Moss and Givens, 1994; Umunna et al, 1994; Chandrasekariah et al., 2001), 

pig diets (Thorne et al., 1989; Agunbiande et al, 1999; Kim et al., 2001) and rabbit 

diets (Aduku et al., 1988; Aganga et al., 1991). Due to the presence of fibrous 

materials in PKC such as mannan, galactomannan, xylan and arabinoxylan coupled 

with high fibre content, low palatability and lack of several essential amino acids, 

their inclusions in poultry diet are very limited. Much research has been carried out 

to determine the quality of PKC and its maximum level in poultry diets 

(Wignjosoesastro et al., 1972; Onwundike, 1986; Paniraghi, 1992; Perez et al., 

2000) but few studies have been done to overcome the physical and nutritional 

barriers. Methods that had been used to improve the quality of PKC are through 

supplementation with biotin (Oloyo, 1991), sodium hydroxide (Nwokolo et al., 

1977) and enzymes (Pluske et al., 1997). 

Treatment of PKC with enzymes to improve the availability of nutrients and 

proteins of PKC is done either by adding fibrolytic enzyme-producing 

microorganisms to the PKC-based poultry feed or by adding purified fibrolytic 

enzymes to the PKC based feed. The latter is commonly practice in Malaysia but it 

is very costly as commercially available enzymes are expensive. Malaysia has to 

purchase the enzymes abroad either from Denmark, Netherlands, Belgium and 
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other country, making the cost of using PKC feed produced by Malaysia very 

expensive (Ibrahim, 2008). 

One way to overcome the high cost of production of treated PKC is to treat 

PKC using locally isolated fibrolytic microorganisms. Malaysia has a very diverse 

genetic resources and microorganisms (Krishnapillay et al., 2003). These 

microorganisms produce various useful enzymes such as galactomannanases, 

endoglucanases and xylanases that can be used to treat PKC (Arcand et al., 1993; 

Stoll et al, 1999). Studies on the use of enzymes to improve the nutritive value of 

PKC were mainly carried out by applying a single enzyme, particularly the 

mannanase. At the moment, no data is available on the supplementation of PKC 

with combinations of enzymes in feeding trials with poultry. As PKC contain a 

number of non-starch polysaccharides which are mostly indigestible, the inclusion 

of several non-starch polysaccharide-degrading enzymes can support and 

accelerate their digestion in the alimentary tract of poultry. 

Hence, this study was carried out to identify the potential microorganisms 

with fibrolytic activities capable of digesting mannan, xylan, cellulose and other 

fibrous materials, and at the same time be able to produce lipase to enable them to 

grow on PKC. The focus of this study was on the fibrolytic enzymes which include 

galactomannanase, cellulase, and xylanase. Empty fruit bunch (EFB) compost was 

chosen as the source of microorganisms because EFB is another major by-product 

of oil palm and is highly fibrous in nature. During its composting process, three 

general categories of microorganisms: bacteria, actinomycetes and fungi were 

present (Thambirajah et al., 1995). In general, composting is a process managed 

by humans involving the cultivation of microorganisms that degrade organic matter 

in the presence of oxygen. Additionally, microorganisms from the environment and 

the EFB itself will contribute to the composting process. At certain stage of 

composting, the compost becomes so heavily populated with thermophilic 

microorganisms that it generates massive heat in the composting process that 

formed an ideal environment for thermophilic microorganisms to grow 

(Cooperband, 2000). Thus, the diversity of microorganisms in the composting 

process coupled with the high incubation temperature of the compost makes EFB 
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