RIBOSOMAL DNA ANALYSIS OF A HARMFUL ALGAL BLOOM (HAB) SPECIES, PYRODINIUM BAHAMENSE VAR. COMPRESSUM AND ITS ASSOCIATED MARINE MICROBES

GRACE JOY CHIN WEI LIE

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN ABAH FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2008

PUMS 99:1

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS[®]

JUDUL: RIBOSOMAL DNA ANALYSIS OF A HARMFUL ALGAL BLOOM (HAB) SPECIES, *PYRODINIUM BAHAMENSE* VAR. *COMPRESSUM*, AND ITS ASSOCIATED MARINE MICROBES.

IJAZAH: SARJANA SAINS (BIOLOGI MOLEKUL)

SESI PENGAJIAN: 2005 - 2008

Saya, GRACE JOY CHIN WEI LIE mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. TIDAK TERHAD

PERPUSTAKAAN ysia sabah Disahkan oleh

(Penulis: GRACE OY CHIN WEI LIE)

(TANDATANGAN PUSTAKAWAN)

(Penyelia: PROF. DATIN DR. ANN ANTON)

Tarikh:

Tarikh:

CATATAN: [®] tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, equations, summaries and references, which have been duly acknowledged.

21 July 2008

Grace Joy Chin Wei Lie PS04-013-008

CERTIFICATION

 TITLE
 : RIBOSOMAL DNA ANALYSIS OF A HARMFUL ALGAL BLOOM (HAB) SPECIES, PYRODINIUM BAHAMENSE VAR. COMPRESSUM AND ITS ASSOCIATED MARINE MICROBES.

DEGREE : MASTER OF SCIENCE (MOLECULAR BIOLOGY)

VIVA DATE : 15 JULY 2008

DECLARED BY

andula

SUPERVISORY COMMITTEE

1. PROF. DATIN DR. ANN ANTON Chairperson

2. MADAM TEOH PEIK LIN Committee Member

3. ASSOC. PROF. DR. VIJAY KUMAR Committee Member

ACKNOWLEDGEMENT

First of all, I would like to express my deepest gratitude to my supervisory committee, Prof. Datin Dr. Ann Anton, Madam Teoh Peik Lin and Assoc. Prof. Dr. Vijay Kumar for all their tireless guidance, encouragement and helpful advices they gave me throughout the course of this research. Not forgetting to thank all the Biotechnology Research Institute lecturers for their wonderful advices and motivation for this study.

My appreciation also goes to my fellow labmates, Mr. Awang Muhammad Sagaf, Mr. Adrian Ng, Mr. Kenneth Francis Rodrigues, Mr. Thien Yong Nam, Mr. Gordon John Thomas, and Ms. Chelven Lim Ai Chen, for helping me in the process of completing my research. They had always motivated me to find out more of everything that I had been learning all the while, and what I had not known previously.

I am also thankful to the staffs of Biotechnology Research Institute and Phycology and Aquatic Laboratory, especially Madam Vidarita Maikin and Mr. Richard Dailis, who had provided me a helpful working environment.

I would like to thank my parents for providing me not only financially, but also giving moral support towards the completion of my research project. I would like to express my deepest gratitude to all of the people who had helped me, directly or indirectly, in the process of completion of my master degree. Thank you very much.

Last but not least, I would like to thank God for giving me the chance to do my master degree in Universiti Malaysia Sabah and who had also supported me right from the start of this journey.

UNIVERSITI MALAYSIA SABAH

the section of the characteristic in the section of the descent section of the

ABSTRACT

RIBOSOMAL DNA ANALYSIS OF A HARMFUL ALGAL BLOOM (HAB) SPECIES, PYRODINIUM BAHAMENSE VAR. COMPRESSUM AND ITS ASSOCIATED MARINE MICROBES

Harmful algal blooms in Sabah occur mostly in the coastal waters of west Sabah, where one of the causative organisms is the toxin-producing dinoflagellate, Pyrodinium bahamense var. compressum. Pyrodinium cells were isolated from four locations, namely, Sepanggar Bay, Gaya Bay, Kinarut and Kota Belud and cultured in f/2 medium, Ribosomal DNA fingerprinting of the five Pvrodinium isolates was done by means of Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) analysis of the 18S ribosomal DNA. A total of eight restriction enzymes, HaeIII, DpnII, AluI, RsaI, BsaII, BstNI, BstUI and TaqI, were used to determine the genetic relationship of the five isolates. The RFLP analysis yielded similar restriction patterns among the five isolates. The 18S rDNA sequences of all the Pvrodinium isolates were also obtained (Accession numbers: DO500119 to DO500123). The size of sequences ranged from between 1,580 to 1,544 base pair (bp). Based on the sequence data, a Pyrodinium-specific primer, CWL1R, was designed. To confirm the specificity of this DNA primer, a group of dinoflagellates, such as Cochlodinium polykrikoides, Gymnodinium catenatum, Amphidinium sp., Gambierdiscus sp., Prorocentrum micans, Prorocentrum lima, Ostreopsis sp., Coolia sp., Alexandrium minutum, Alexandrium tamarense, Crypthecodinium cohnii, Gonyaulax cochlea, Lingulodinium polyedra, Peridinium sp. and Pyrocystis lunula were selected for 18S rDNA amplification. The results showed that this primer could only amplify the rDNA of Pyrodinium. Therefore, the primer CWL1R has a great potential to be developed as a PCR-based DNA probe for the identification of Pyrodinium bahamense var. compressum. Sensitivity analysis was also conducted on Pvrodinium culture, G1. Based on the results obtained, PCR could amplify DNA template even after the DNA was serially diluted 11 times, where the DNA concentration was 1.6 x 10^{-9} ng/µl, which correspond to cell concentration of 2.5 x 10^{-5} cells/l. However, the calculated DNA template concentration for dilution factor 10⁻¹¹ was too low for PCR amplification. This is maybe due to cross-contamination between samples during the dilution process or error in obtaining the DNA concentration in the first undiluted sample. Besides that, ribosomal DNA-based restriction enzyme analysis for the identification of bacteria associated with Pvrodinium was also conducted. A total of 16 marine bacterial isolates were successfully obtained from clonal cultures of Pyrodinium. The study revealed that all bacterial isolates were Gram negative except for two isolates, which were Gram positive. Restriction enzyme analysis yielded eight different ribotypes. The 16S rDNA sequences of bacteria associated with Pyrodinium were obtained (Accession numbers: EF688604 to EF688619). Based on the sequencing results of 16S rDNA, the genetic diversity of the extracellular microbes associated with Pyrodinium was limited to the Phyla Proteobacteria and Actinobacteria. The majority of bacteria were Alcanivorax sp. and Hyphomonas sp., whereas Kocuria sp., Nesterenkonia sp., Alteromonas sp., Roseobacter sp., Xanthomonas sp., and Acinetobacter sp. were identified as minor isolates. These results showed that the dinoflagellate, Pyrodinium bahamense var. compressum might live, symbiotically or not, with various bacteria in the natural environment.

Ledakan mikroalga berbahaya di Sabah kebanyakannya berlaku di perairan barat Sabah, dan salah satu organisma yang bertanggungjawab ialah mikroalga pengeluartoxin, Pyrodinium bahamense var. compressum. Sel-sel Pyrodinium bahamense var. compressum telah diisolatkan dari empat lokasi iaitu Sepanggar Bay, Gaya Bay, Kinarut dan Kota Belud dan dikulturkan dalam medium f/2. Pengecapiarian Ribosomal DNA (rDNA) kelima-lima isolat Pyrodinium telah dianalisakan dengan menggunakan kaedah polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) berdasarkan 18S rDNA mereka. Sejumlah lapan enzim pembatasan, HaeIII, DpnII, AluI, RsaI, BsaJI, BstNI, BstUI dan TagI, telah digunakan untuk menentukan pertalian genetik kelima-lima isolat tersebut. Keputusan RFLP menghasilkan corak-corak pembatasan yang sama di antara kelimalima isolat Prodinium. Jujukan DNA 18S rDNA kesemua Pyrodinium juga telah diperolehi (Accession numbers: DQ500119 hingga DQ500123). Saiz DNA yang telah diperolehi adalah dalam lingkungan 1,580 hingga 1,544 pasangan bes (bp). Berdasarkan data jujukan DNA, sebuah primer spesifik hanya kepada Pyrodinium, CWL1R, telah direka dan kajian populasi juga telah dilakukan dengan beberapa seperti Cochlodinium polykrikoides, Gymnodinium catenatum, mikroalga. Amphidinium sp., Gambierdiscus sp., Prorocentrum micans, Prorocentrum lima, Ostreopsis sp., Coolia sp., Alexandrium minutum, Alexandrium tamarense, Crypthecodinium cohnii, Gonyaulax cochlea, Lingulodinium polyedra, Peridinium sp. dan Pyrocystis lunula untuk menguji spesifikasi primer tersebut. Berdasarkan kajian populasi, primer tersebut didapati spesifik hanya kepada Pyrodinium. Dengan itu, primer CWL1R mempunyai potensi tinggi untuk dijadikan sebagai prob DNA dengan beraplikasikan PCR untuk mengidentifikasi Pyrodinium bahamense var. compressum. Analisis sensitiviti juga telah dilakukan atas kultur Pyrodinium, G1. Berdasarkan keputusan, PCR dapat menggandakan templat DNA yang telah dicairkan 11 kali, ini bersamaan dengan kepekatan DNA 1.6 x 10⁹ ng/µl dan kepekatan sel sebanyak 2.5 x 10⁵ cells/l. Walaubagaimanapun, kepekatan DNA templat pada faktor pencairan 10-11 yang dikira adalah sebenarnya tidak dapat digandakan melalui PCR. Ini mungkin disebabkan oleh pencemaran DNA antara sampel-sampel semasa proses pencairan ataupun kesalahan dalam mendapatkan kepekatan DNA pada sampel pertama yang belum dicairkan. Selain itu, analisis enzim pembatasan berdasarkan rDNA untuk identifikasikan bakteria-bakteria berkaitan dengan Pyrodinium juga telah dilakukan. Sejumlah 16 isolat-isolat bakteria telah berjaya diperolehi daripada kulturkultur Pyrodinium. Kajian awalan telah menunjukkan bahawa kesemua bakteria adalah gram negatif kecuali dua isolat bakteria yang bergram positif. Analisis enzim pembatasan menghasilkan lapan jenis ribotype. Berdasarkan keputusan penjujukan DNA, kepelbagaian genetik bakteria yang berkaitan dengan Pyrodinium adalah daripada Fila Proteobacteria dan Actinobacteria. Bakteria-bakteria utama yang dikenalpasti adalah Alcanivorax sp. dan Hyphomonas sp., manakala Kocuria sp., Nesterenkonia sp., Alteromonas sp., Roseobacter sp., Xanthomonas sp., dan Acinetobacter sp. telah dikenalpasti sebagai isolat-isolat minor. Keputusan ini telah menunjukkan bahawa mikroalga, Pyrodinium bahamense var. compressum hidup, secara simbiosis atau tidak, bersama-sama dengan pelbagai bakteria in persekitaran semulajadinya

TABLE OF CONTENTS

		Page
TITLI DECL CERT ACKN ABST ABST TABL LIST LIST LIST	ARATION FICATION OWLEDGEMENT RACT RAK E OF CONTENTS OF TABLES OF FIGURES OF ABBREVIATIONS	i ii iv v vi vi xi xii xiii xvi
CHAP 1.1 1.2 1.3	TER 1 INTRODUCTION Introduction Objectives Significance of Study	1 3 3
CHAP 2.1	LITERATURE REVIEW Overview of Harmful Algal Blooms2.1.1Harmful Algae2.1.2History of Harmful Algal Bloom2.1.3Causes of Harmful Algal Blooms2.1.4Impacts of Harmful Algal Blooms	5 6 6 7
2.2	Dinoflagellates 2.2.1 Morphological Characteristic of Dinoflagellates 2.2.2 Classification of Dinoflagellate 2.2.3 Ecology and Biology 2.2.4 Dinoflagellate Cyst 2.2.5 Life Cycle	9 9 12 13 13
2.3	Harmful Algal Blooms in Malaysia 2.3.1 <i>Pyrodinium</i> Blooms and PSP in Sabah	14 16
2.4	 Toxic Dinoflagellate, <i>Pyrodinium bahamense</i> var. <i>compressum</i> 2.4.1 The Motile Cell of <i>Pyrodinium bahamense</i> var. <i>compressum</i> 2.4.2 The Cyst of <i>Pyrodinium bahamense</i> var. <i>compressum</i> 2.4.3 Comparison Between <i>Pyrodinium bahamense</i> var. <i>compressum</i> and <i>Pyrodinium bahamense</i> var. <i>bahamense</i> 	18 19 20
2.5	Paralytic Shellfish Poisoning (PSP) 2.5.1 Chemical Characteristic of PSP 2.5.2 PSP Contaminated Shellfish 2.5.3 Detection of Paralytic Shellfish Toxins	21 23 24

2.6	Ribopr 2.6.1	inting of Dinoflagellates Characteristic of Ribosomal DNA	25 26
2.7	Identif	fication of HAB Species Using Microscope	28
2.8	Identif 2.8.1	fication of HAB Species Using Molecular Probes Detection of HAB Species Using DNA Probe	29 32
2.9	Marine	Bacterial Associated with Dinoflagellates	34
	2.9.1	Taxin producing Pagtoria	35
	2.3.2	Identification of Pactoria by 165 rDNA Postriction Fragment	20
	2.9.3	Analyses	20
CHAP	TER 3	MOLECULAR CHARACTERIZATION AND IDENTIFICATION OF PYRODINIUM BAHAMENSE	
3.1	Introd	uction	40
3.2	Metho	dology	
	3.2.1	Collection and Isolation of Algae	43
	3.2.2	Algal Culture Media Preparation	44
	3.2.3	Growth Rate Estimation	46
	3.2.4	DNA Extraction	47
	3.2.5	Polymerase Chain Reaction Amplification	48
	3.2.6	PCR Product Purification	49
	3.2.7	Restriction Enzyme Digestion of 18S rDNA Sequence of Pyrodinium bahamense var. compressum	50
	3.2.8	Direct DNA Sequencing	51
	3.2.9	Bioinformatics Analysis VIVERSITI MALAYSIA SABAH	52
	3.2.10	Oligonucleotide Primer Specificity Study on Related Algae Species	54
	3.2.11	Oligonucleotide Primer Specificity Study on Field Samples	56
	3.2.12	Sensitivity Analysis with Cultured Pyrodinium Isolate, G1	57
3.3	Results	and Discussion	
	3.3.1	Algal Isolation	58
	3.3.2	Algal Culturing	59
	3.3.3	Growth Rate Estimation	60
	3.3.4	CTAB DNA Extraction	64
	3.3.5	PCR Amplification Using TPL1F and TPL1R	67
	3.3.6	PCR Product Purification	71
	3.3.7	Ribosomal DNA Fingerprinting of <i>Pyrodinium bahamense</i> var.	72
	3.3.8	DNA Sequencing and Data Analysis	75
	3.3.9	Development of Oligonucleotide Primer Targeting Specifically	83
		Towards Pyrodinium bahamense	
	3.3.10	Screening the Specificity of the Oligonucleotide Primers, CWL1R and TPL1E, on Related Algae Species	86
	3.3.11	Screening the Specificity of the Oligonucleotide Primer on Field Samples	91

CHAPTER 4		CHARACTERIZATION AND IDENTIFICATION OF MARINE BACTERIA ASSOCIATED WITH PYRODINIUM BAHAMENSE VAR. COMPRESSUM	
4.1	Introd	uction	102
4.2	Metho	dology	
	4.2.1	Cultivation and Isolation of <i>Pyrodinium bahamense</i> var.	104
	422	Compressum Pasterial Isolation and Culturing	104
	4.2.2	Bacterial Isolation and Culturing	104
	4.2.3	DNA Preparation and PCR Amplification of the 16S Ribosomal DNA	105
	4.2.5	Restriction Enzyme Digestion of 16S rDNA Sequence of Bacteria Associated with <i>Pyrodinium</i>	107
	4.2.6	Bioinformatics Analyses of the 16S rDNA Sequence of Bacteria Associated with <i>Pyrodinium</i>	108
4.3	Result	s and Discussion	
	4.3.1	Bacteria Isolation and Culture	110
	4.3.2	Gram Staining of Pyro-Bac	111
	4.3.3	PCR Amplification of 16S rDNA of Pyro-Bac Samples	115
	4.3.4	Restriction Enzyme Analysis of the 16S rDNA of Pyro-Bac Samples	117
	4.3.5	DNA Sequencing of the 16S rDNA of Bacteria Associated with Pyrodinium	123
	4.3.6	Multiple Sequence Alignment and Phylogenetic Analysis of Bacteria Associated with <i>Pyrodinium bahamense</i> var. <i>compressum</i>	130
CHAF	TER 5	SUMMARY AND CONCLUSION	
5.1	Molecu bahan	ular Characterization and Identification of <i>Pyrodinium</i>	135
	5.1.1	Future Studies	136
5.2	Charao Pyrodi	cterization and Identification of Marine Bacteria Associated with inium bahamense var. compressum	137
	5.2.1	Future Studies	138
REFE	RENCE	S	140
APPE		f/2 Medium Recipe	152
APPENDIX B		Virtual Digestion using Restrictionmapper Version 3	154
APPENDIX C		DNA Sequence of 18S SSU rDNA of <i>Pyrodinium</i> bahamense Available in the NCBI GenBank Database	164
APPENDIX D		DNA Sequence of <i>Pyrodinium bahamense</i> var. <i>compressum</i> Isolates Deposited in the NCBI GenBank Database	167

APPENDIX E	BlastN Results of Field Samples F7, F8, F13, F19 and F20	173
APPENDIX F	The Formula of DIFCO [™] Marine Agar	178
APPENDIX G	DNA Sequences of Bacteria Associated with <i>Pyrodinium bahamense</i> var. <i>compressum</i> Deposited in the NCBI GenBank	179
APPENDIX H	BlastN Resutls of the 16 Pyro-Bac Samples	197
APPENDIX I	Multiple Sequence Alignment of Bacteria Associate with <i>Pyrodinium bahamense</i> var. <i>compressum</i> Together with Sequences of Organisms Obtained from the GenBank Database	208

LIST OF TABLES

		Page
Table 2.1	Classes of paralytic shellfish toxins	22
Table 3.1	<i>Pyrodinium</i> samples used in this study, with locations and date of sampling for each samples	43
Table 3.2	PCR amplification reagents used for reaction for 18S rDNA amplification of <i>Pyrodinium</i> dinoflagellate	48
Table 3.3	The recognition site of each restriction enzymes used for rDNA fingerprinting the <i>Pyrodinium bahamense</i> var. <i>compressum</i>	50
Table 3.4	Reaction conditions of restriction enzymes used for cutting the 18S rDNA of <i>Pyrodinium bahamense</i> var. <i>compressum</i>	51
Table 3.5	Reaction mixtures for cycle sequencing	51
Table 3.6	Algal cultures used in oligonucleotide primer specificity study	55
Table 3.7	PCR amplification reagents used per reaction for specificity study	56
Table 3.8	Cell counts of each <i>Pyrodinium</i> isolates from day 0 to day 30	61
Table 3.9	The number of <i>Pyrodinium</i> cells (cells per ml) from day 0 to day 30	61
Table 3.10	Initial PCR amplification recipe (using MsSO ₄) used per reaction for 18S rDNA amplification of <i>Pyrodinium dinoflagellate</i>	69
Table 3.11	Restriction fragment sizes predicted for the mentioned restriction enzymes using RestrictionMapper version 3	74
Table 3.12	Results of multiple sequence alignment (CLUSTAL W, versio 1.81) of the five <i>Pyrodinium</i> isolates with two <i>Pyrodinium</i> sequences from the GenBank	77
Table 3.13	The description of each field samples used in this study	92
Table 3.14	Multiple sequence alignment of the five samples, FS7, FS8, FS13, FS19 and FS20	95

		ruge
Table 3.15	Absorbance results of G1 cultured samples at wavelength 260nm and 280nm	97
Table 3.16	Cell counts, DNA concentration and DNA purity ratio of G1 culture replicates used in sensitivity analyses	97
Table 3.17	The DNA concentration and the correspond cell concentration at dilution factor 10-11 of G1 culture replicates, SA1 and SA2	99
Table 4.1	PCR amplification reagents used per reaction for 16S rDNA amplification of marine bacteria associated with <i>Pyrodinium</i>	107
Table 4.2	The recognition site of each restriction enzymes used for rDNA fingerprinting of bacteria associated with <i>Pyrodinium bahamense</i> var. <i>compressum</i>	107
Table 4.3	Reaction conditions of each restriction enzymes used for cutting the 16S rDNA of bacteria associated with <i>Pyrodinium</i>	108
Table 4.4	The morphology and Gram stain of the 16 Pyro-Bac samples used in this study	115
Table 4.5	Restriction patterns produced restriction enzyme <i>Hae</i> III, <i>Dpn</i> II, <i>Alu</i> I and <i>Rsa</i> I	120
Table 4.6	Riboprints yielded by restriction enzymes <i>Hae</i> III, <i>Dpn</i> II, <i>Rsa</i> I and <i>Alu</i> I, among the 16 Pyro-Bac samples	121
Table 4.7	The sizes and accession number of each Pyro-Bac samples used in this study	124
Table 4.8	The summary of the BLASTN results of each Pyro-Bac samples	125

Pane

LIST OF FIGURES

		Page
Figure 2.1	Principle features of an armoured dinoflagellate	10
Figure 2.2	The classification of algae from the Dinophyceae class	11
Figure 2.3	Section through a thecate dinoflagellate, showing the typical organelles	12
Figure 2.4	Life cycle of a free-living dinoflagellate	14
Figure 2.5	Map of Malaysia showing several sites where harmful algae were found	15
Figure 2.6	Map of Sabah showing sites where <i>Pyrodinium</i> blooms were reported	16
Figure 2.7	Pyrodinium bahamense var. compressum	19
Figure 2.8	Cyst form of pyrodinium bahamense var. compressum	20
Figure 2.9	Chemical structure of saxitoxin	22
Figure 2.10	Illustrations of two chemical transformations, epimerization and acid hydrolysis that occur when STX passes to shellfish	23
Figure 2.11	Diagram of the risosomal DNA region of eukaryotes, showing the position of the three genes and two ITS region	27
Figure 3.1	Drawn-out micropipette for Pyrodinium isolation	44
Figure 3.2	Culture chamber used for Pyrodinium culturing	45
Figure 3.3	Culturing of Pyrodinium at the culture room	45
Figure 3.4	Growth rate estimation of the five <i>pyrodinium bahamense</i> var. <i>compressum</i> isolates in culture	63
Figure 3.5	<i>Pyrodinium bahamense</i> var. <i>compressum</i> cells (a) single cell (100 x magnifications), (b) two-cell chain (400 x magnifications), and (c) four-cell chain (100 x magnifications)	63

Page

Figure 3.6	DNA extracted from sample G1 using CTAB DNA extraction with or/and without PVP and beta-mercaptoethanol	65
Figure 3.7	PCR amplicons of about 1.6 kb in size using DNA samples from CTAB DNA extraction with or/and without PVP and beta-mercaptoethanol	66
Figure 3.8	DNA extracted using a modified CTAB DNA extraction method	67
Figure 3.9	PCR amplification performance using 2.0 mM MgSO ₄	69
Figure 3.10	PCR products using Q-solution at the size of approximately 1.6kb	70
Figure 3.11	Purified PCR products of Pyrodinium of about 1.6 kb in size	71
Figure 3.12	Digestion of the 18S rDNA of <i>Pyrodinium bahamense</i> var. <i>compressum</i> with <i>Hae</i> III (A), <i>Dpn</i> II (B), <i>Alu</i> I (C), <i>Rsa</i> I (D), <i>Bsa</i> JI (E), <i>Bst</i> NI (F), <i>Bst</i> UI (G) and <i>Taq</i> I (H)	73
Figure 3.13	Multiple sequence alignment of <i>Pyrodinium</i> sequence with sequences of other dinoflagellates, which showing the site of the designed reverse primer, CWL1R	84
Figure 3.14	DNA extraction of the five isolates (target species)	86
Figure 3.15	PCR products produced using the designed primer CWL1R and TPL1F against the five <i>Pyrodinium</i> isolates resolved on an ethidium bromide-stained 2.0 % agarose gel	87
Figure 3.16	DNA extracted from the eight dinoflagellates that were found in the Sabah waters	87
Figure 3.17	PCR amplification using the CWL1R and TPL1F against dinoflagellates found in Sabah waters	88
Figure 3.18	Dinoflagellates that were used in specificity analysis of the oligonucleotide primers, CWL1R and TPL1F	89
Figure 3.19	DNA extraction of the seven dinoflagellates purchased from CCMP	90
Figure 3.20	PCR amplification using the oligonucleotide primer against dinoflagellates that are closely related with <i>Pyrodinium</i>	90

		Page
Figure 3.21	PCR products of field samples (FS1 – FS20) resolved in an ethidium bromide-stained 2.0 % agarose gel	93
Figure 3.22	Sensitivity analyses of serially diluted (10 to 10 ¹¹) DNA of G1 replicate SA1 resolved on a ethidium bromide-stained 2 % agarose gel	98
Figure 4.1	The streak plate method of obtaining pure cultures	105
Figure 4.2 (a – p)	Gram staining of the 16 Pyro-Bac isolates: (a) 19A; (b) 22A; (c) 25A; (d) 27A; (e) 27B; (f) 27C; (g) 27D; (h) 27E; (i) 27F; (j) 27G; (k) 28A; (l) 29A; (m) 30B; (n) B5; (o) B9 and (p) B18	111-113
Figure 4.3	PCR amplification of the 16 Pyro-Bac samples using the universal primers 27F and 1492R	116
Figure 4.4 (A – F)	Digestion of the 16S rDNA of bacteria associated with <i>Pyrodinium bahamense</i> var. <i>compressum</i> with <i>Hae</i> III (A), <i>Dpn</i> II (B), <i>Alu</i> I (C), <i>Rsa</i> I (D), <i>Bam</i> HI (E) and <i>Xho</i> I (F)	118-119
Figure 4.5	Division of the 16 Pyro-Bac samples based on the restriction patterns produced by RE <i>Hae</i> III, <i>Dpn</i> II, <i>Rsa</i> I and <i>Alu</i> I	120
Figure 4.6	Molecular phylogenetic tree (neighbor-joining) of the partial 16S rDNA for bacteria associated with <i>Pyrodinium</i> bahamense var. compressum	131

LIST OF ABBREVIATIONS

	alaha
α	alpina
β	beta
3	epsilon
γ	gamma
λ	lambda
%	percent
°C	degree Celsius
uO	microgram
ul l	microlitre
um	micrometer
μM	micromolar
	amplified ribecomal DNA restriction analysis
ARDRA	amplified househild DNA resultation
AUAC	Association of Analytical Communities
BLASIN	basic local alignment search tool for nucleotide
BSA	bovine serum albumin
bp	base pair
Cl ⁻	chloride
CTAB	cetyltrimethylammonium bromide
CV	crystal violet
dH ₂ O	distilled water
DNA	deoxyribonucleic acid
dNTP	deoxynucleoside triphosphate
FBI	European Bioinformatics Institute
FDTA	ethylenediamine tetraacetic acid
FLISA	onzyme-linked immunosorbent assay
EMDI	European Melecular Biology Laboratory
	ethidium humaide
ELDI	ethidium bromide
g	gram
GIX	gonyautoxin
HAB	harmful algal bloom
HPLC	high performance liquid chromatography
h	hour
I	iodine
ITS	internal transcribed spacer
kb	kilobase pair
LD	light dark
LSU	large subunit
M	molar
ma	milligram
MaCh	magnesium chloride
Maso	magnesium culobate
min min	
min	
mi	millitre
mm	millimeter
mM	millimolar
nm	nanometer

NaCl	sodium chloride
NCBI	National Center for Biotechnology Information
NEO	neosaxitoxin
NO ₃	nitrate nitrogen
PCR	polymerase chain reaction
pmol	pico molar
PO ₄	phosphate
PVP	polyvunylpyrrolidone
RIA	radioimmunoassay
RE	restriction enzyme
RFLP	restriction fragment length polymorphisms
rpm	revolution per minute
rDNA	ribosomal Deoxyribonucleic acid
rRNA	ribosomal Ribonucleic acid
S	second
SSU	small subunit
STX	saxitoxin
Taq	Thermus aquaticus
TBE	Tris Borate EDTA
TE	Tris-HCI EDTA
Tris-HCl	Tris (hydroxymethyl) aminomethane hydrochloride
tRNA	transfer ribonucleic acid
U	unit
UV	ultra violet
V	volt
v/v	volume over volume
w/v	weight over volume
	AL DEST

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Harmful algal blooms (HAB) are defined as the multiplication or proliferation of plankton algae until they reach high concentrations (usually up to millions of cells per litre) that the surface of the sea becomes discoloured. This phenomenon is also known as "red tides", and can sometimes have negative effects towards aquaculture, fisheries and the tourism industries, as well as environmental and human health. There are approximately 5000 species of extant marine phytoplankton known throughout the world, where around 300 species can cause red tides, while only 80 or so species have the ability to produce potent biotoxins that can be transferred through the marine food chain and eventually end up in humans (Hallegraeff, 2004).

Red tides have become a frequent phenomenon in the coastal waters in many parts of West Sabah. The blooms are caused by a marine dinoflagellate, *Pyrodinium bahamense* var. *compressum*, which was first reported in 1967. This HAB species is an armored, bioluminescent dinoflagellate, and they are the major species involved in the tropical Indo-Pacific red tides (Badylak *et al.*, 2004). *Pyrodinium* blooms are very common in the Southeast Asia region, where the blooms were often reported in the waters of Malaysia (Anton *et al.*, 2000), Brunei (Seliger, 1989), Indonesia (Wiadnyana, 1996) and the Philippines (Azanza-Corrales & Hall, 1993).

The species, *P. bahamense* var. *compressum* produces toxins in shellfish called paralytic shellfish poisoning (PSP) (Anton *et al.*, 2000). PSP in humans is caused by consumption of filter-feeding bivalve shellfish contaminated with a number of saxitoxin derivatives produced by this HAB species (RaLonde, 1996). For this reason, rapid identification and early detection of this PSP toxin-producing species is important before its concentration reaches a level that may give rise to public health problems.

The standard method for detection and enumeration of HAB species in discrete water samples has traditionally been the microscope-based cell identification. Although the traditional method has been reliable, this method is time-consuming and requires expertise to recognize the different key morphological characters of different HAB species (Scholin & Anderson, 1998). The development of molecular or DNA probes can assist in rapid HAB species identification, which allows the early detection of blooms. Probes have the ability to selectively adhere to molecules specifically associated with a particular species or group of species, which then serve as a basis for detecting specific organisms even when they occur in complex natural communities (Scholin *et al.*, 2004).

DNA probes for identifying HAB species commonly target the ribosomal DNA (rDNA) sequence region. The rDNA region is targeted because it is abundant in cells and good recognition is therefore ensured (Rhodes, 1998). The sequences that are potentially unique to the target species are identified and DNA probes directed against those sequences are synthesized (Scholin *et al.*, 2004). In this study, the main focus is to design a DNA probe that is species-specific for the identification of HAB species, *P. bahamense* var. *compressum* infesting the coastal waters of West Sabah.

UNIVERSITI MALAYSIA SABAH

The triggering action for production of toxins by *P. bahamense* var. *compressum* has been a subject of controversy (Anton *et al.*, 2000). It has been reported that the secretion of toxins during a bloom were not only by the algae themselves but also by the bacteria associated with the toxic algae. Interactions between algae and bacteria are commonly observed in both freshwater and marine ecosystems, where bacteria are postulated to have a major role in regulating the processes of algal bloom initiation, maintenance and also decline (Doucette, 1995; Hold *et al.*, 2001).

Bacteria can live loosely or tightly with the phytoplankton or even live inside the microalgae cells (Córdova *et al.*, 2003; Töbe, 2003). Hold *et al.* (2001) showed that certain bacteria are common to general dinoflagellate cultures, whereas others appear to be specifically unique to a particular dinoflagellate. In this study, the identification of bacteria associated with *P. baharnense* var. *compressum*, can contribute to future research on bacteria-associated harmful algae by comparing the diversity of bacteria associated with different kind of harmful algae found in the waters of Sabah.

1.2 OBJECTIVES

This study aims to understand the molecular characteristics of *Pyrodinium bahamense* var. *compressum* found in the waters of Sabah based on their ribosomal DNA sequences. The research objectives of this study are as follows:

- (a) To compare the ribosomal DNA fingerprints of *Pyrodinium bahamense* var. *compressum* collected from various locations in the Sabah waters by means of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).
- (b) To design an oligonucleotide primer that is species-specific for the identification of *Pyrodinium bahamense* var. *compressum* based on the ribosomal DNA sequence.
- (c) To identify the bacteria diversity that are extracellularly associated with the toxic algae, *Pyrodinium bahamense* var. *compressum* based on the ribosomal DNA sequence.

1.3 SIGNIFICANCE OF STUDY UNIVERSITI MALAYSIA SABAH

The study will identify unique sequences which are species-specific as genetic markers. These ribosomal DNA sequences can be targeted for oligonucleotide probes and subsequently utilized as a tool for the identification of toxin-producing genes.

The identification of *P. bahamense* var. *compressun* using molecular probes will contribute towards the development of a sensitive method for harmful algal bloom detection in Sabah waters. As paralytic shellfish poisoning (PSP) can happen even when cell densities of the *Pyrodinium* are low, the outputs of this study will contribute to the early detection of the presence of *P. bahamense* var. *compressum* even at low densities.

Lastly, this study will contribute to the efficient management of the wild harvest and aqua-culture of shellfish by the responsible monitoring agency, Fisheries Department of Sabah, in a region where the people are dependent on these resources for their daily consumption and livelihood.

CHAPTER 2

LITERATURE REVIEW

2.1 OVERVIEW OF HARMFUL ALGAL BLOOMS

2.1.1 Harmful Algae

Planktonic algae or phytoplankton are microscopic, single-celled plants that live in the sea. These algae serve as energy provider at the base of the marine food web for filter-feeding bivalve shellfish, such as oysters, scallops and mussels. Occasionally, the algae multiply or 'bloom' until they reach such high concentrations (up to millions of cells per litre) that the surface of the sea becomes discolored (Hallegraeff, 2004). In most cases, the proliferation of planktonic algae is not harmful, but unfortunately in some situations, the blooms are considered harmful because the algae can produce potent natural poisons known as biotoxins that can be transferred through the food web where they affect and even kill, the higher forms of life such as zooplankton, shellfish, fishes, marine mammals and even humans that feed either directly or indirectly on them (Rhodes, 1998).

Blooms of the planktonic algae are commonly referred to as "red-tides", due to the discolorations of the surface water by the pigments of these algae. The term has become a misnomer, however, because blooms can be greenish, yellowish or brownish, and some may not discolor the water at all. Scientists now prefer the term "harmful algal bloom" (HAB) to refer to the bloom phenomenon that produce toxin or that has negative impacts.

Harmful algae can be classified into three different groups, they are: (1) algal species that produce basically harmless water discolorations, however under certain conditions, blooms can grow so dense that they kill non-selectively fishes and invertebrates through oxygen depletion; (2) algal species that produce potent toxins that can be transferred through the food chain to humans, causing a variety of

gastrointestinal and neurological illnesses, such as paralytic shellfish poisoning, diarrhetic shellfish poisoning, amnesic shellfish poisoning, ciguatera fish poisoning, neurotoxic shellfish poisoning and cyanobacterial toxin poisoning; and (3) algal species that are non-toxic to humans but harmful to fishes and invertebrates, especially in the aquaculture industry, by damaging or clogging their gills (Hallegraeff, 2004).

2.1.2 History of Harmful Algal Bloom

The first written reference (1000 B.C.) of HAB was believed to appear in the Bible: `... all the water in the Nile turned to blood. The fish in the river died and the Nile was contaminated so that the Egyptians could no longer drink the water of the Nile. There was blood all over the country of Egypt' (Exodus 7: 20-21). During that time, it was most probably that a non-toxic harmful alga that is harmful to fishes and invertebrates had proliferated in the river, causing death due to oxygen depletion (Hallegraeff, 2004).

Another report of the appearance of HAB was in 1793, where five members of Captain George Vancouver's crew became ill and one died after eating toxin contaminated shellfish collected in Poison Cove on the central British Columbia Coast. Captain George Vancouver had also noticed that the local Indian tribes believed that it was a taboo to eat shellfish when the seawater became bioluminescent by the dinoflagellate blooms. A second shellfish poisoning incident happened in 1799 when about 100 Aleut hunters working for Alexander Baranof died after eating mussels harvested near Sitka, Alaska. In both cases, the shellfish was probably contaminated by a potent toxin called the paralytic shellfish toxins. These toxins accumulate in shellfish and can be fatal to both marine mammals as well as humans (Horner *et al.*, 1997; Hallegraeff, 2004).

2.1.3 Causes of Harmful Algal Blooms

Currently, HABs had apparently increased in their frequency, distributions, severity and variety worldwide. However, causes of the outbreak are still unknown. There are no proven causes, but many highly possible causes. One example of possible causes of the outbreak is the geographical features of the coast (Horner *et al.*, 1997). Horner and his colleague had suggested the water mass of the coastal current of U.S.