ISOLATION, CHARACTERIZATION AND MAPPING OF EXPRESSED SEQUENCE TAGS (ESTs) FROM PINEAPPLE FRUIT cDNA LIBRARY

ONG WEN DEE

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

PERPUSTAKAAN

BIOTECHNOLOGY RESEARCH INSTITUTE UNIVERSITI MALAYSIA SABAH 2011

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS@

JUDUL: ISOLATION, CHARACTERIZATION, MAPPING OF THE EXPRESSED SEQUENCE TAGS FROM PINEAPPLE CDNA LIBRARY


IJAZAH: DEGREE OF MASTER OF SCIENCE

SAYA ONG WEN DEE

SESI PENGAJIAN: 2011

Mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:-

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah.
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institutsi pengajian tinggi.
- 4. Sila tandakan (/)

(Mengandungi maklumat yang berdarjah keselamatan atau Kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD (TANDATANGAN PENULIS)

UNIVERSITI MALAYSIA SA Disahkan Oleh (TANDATANGAN PERPUSTAKAAN)

Prof. Madya Dr. Vijay Kumar Nama Penyelia

Tarikh: 28 Julai 2011

CATATAN:-*Potong yang tidak berkenaan.

- **Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT dan TERHAD.
- @ Tesis ini dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau sertai bagi pengajian secara kerja kursus dan Laporan Projek Sarjana Muda (LPSM).

DECLARATION

I hereby declare that this dissertation is the result of my own research except for quotations and citations which have been duly acknowledged.

28 July 2011

ONG WEN DEE PB2007-8432

CERTIFICATION

NAME : ONG WEN DEE

MATRIC NO. : **PB2007-8432**

- TITLE : ISOLATION, CHARACTERIZATION AND MAPPING OF EXPRESSED SEQUENCE TAGS (ESTs) FROM PINEAPPLE FRUIT cDNA LIBRARY
- DEGREE : MASTER DEGREE OF SCIENCE
- VIVA DATE : 4 JULY 2011

DECLARED BY

Associate Professor Dr. Vijay Kumar

2. CO-SUPERVISOR

Dr. Christopher Voo Luk Yung

Signature

ACKNOWLEDGEMENT

First of all I thank God for His love and encouragement. To my family, thank you for giving me full support, love and understanding all this while. I am also very thankful to those who have supported and encouraged me throughout the duration of my MSc project.

I sincerely thank my supportive supervisor Assoc. Prof. Dr. Vijay Kumar for his guidance and also for providing me an opportunity to learn more in this field. I truly thank him for not only spending time reading the thesis but for the all valuable comments throughout these years. Most importantly, I would thank him for the encouragements and advice he gave me throughout the duration of this project.

I thank Mr. Ahmad Kamal Bin Ghazali from Science Vision for his important contribution to the success of my work. I thank him for spending his precious time teaching and guiding me on the analysis of my NGS data during my attachment at the Malaysia Genome Institute (MGI). His opinion and suggestions have truly contributed to a better and correct analysis and writing of my results. I also like to thank all the staff members at MGI for allowing me to access their facility and for their comments and technical troubleshooting during the assembly of the NGS data.

Here I would also like to take this opportunity to acknowledge my gratefulness to all the lab assistants in BRI for assisting me in the laboratory work and for providing me ideas to solve my technical difficulties and for not hesitating to assist me in using some sophisticated instruments. Last but not least, I would like to express my greatest gratitude to Biotechnology Research Institute, UMS for providing me a great workplace and environment for the success of the this research.

Ong Wen Dee 28 July 2011

iv

ABSTRACT

ISOLATION, CHARACTERIZATION AND MAPPING OF EXPRESSED SEQUENCE TAGS (ESTs) FROM PINEAPPLE FRUIT cDNA LIBRARY

Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the phenomena behind fruit ripening with a focus on improving fruit quality traits such as flavor, texture, appearance and sweetness may be possible through gene expression profiling of pineapple fruit transcriptome. As such, the objectives of this project are to, firstly, construct and sequenced mature green pineapple cDNA and *de novo* assembly of paired-end Solexa reads. Secondly, to characterize and functionally annotate the transcripts through similarity search and mapping against Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database respectively, Finally, to develop a database of Expressed Sequence Tags containing Simple Sequence Repeats (EST-SSRs) using the newly obtained transcripts and/or through pineapple ESTs that are available in GenBank. The results show that both the unique transcripts (UT) assembled pineapple sequences and contigs from *de novo* assembly generated a total of 28,896 transcripts being generated with length ranges from 100 bp to 3.8 kb. A search for sequence similarity with NCBI's nonredundant database identified about 17,049 transcripts which were found to be associated with primary metabolisms, amino acid synthesis and processing, membrane and transport, cell division, cytoskeleton, cell wall and metabolism, RNA related gene expression, signal transduction, defense and stress related protein and also secondary metabolisms. Out of these transcripts, 71% returned GO terms with the distribution among the ontologies given as such: 35.8% in molecular function, 33.5% in cellular component and 30.7% in biological process. Annotation against the KEGG database pathways on the other hand, enabled the assignment of 542 enzyme commissions to 13,598 transcripts. The enzymes were further categorized into a total of 126 pathways with 122 pathways being involved in pineapple metabolism. The metabolic and cellular processes points out that there are tremendous changes in metabolic activities during pineapple fruit maturation as seen by the large numbers of the annotated transcripts. Data mining of the pineapple transcripts EST-SSRs showed that only 4% of the pineapple transcripts contained SSRs. Dinucleotide SSR (49.5%) was the most abundant followed by trinucleotide SSR (46.8%). The least abundant was tetranucleotide SSR (3.7%). Out of these, about 40% of the pineapple transcripts were found to have suitable flanking sites to enable the design of the upstream and downstream primers for future PCR amplification. This research cataloged the first pineapple fruit transcriptome. The transcripts will be subsequently useful to develop microarray chips for future gene expression studies among different plant tissue and development stages of the fruit. Further validation and/or relevant use of the EST-SSRs found will be useful in comparative mapping and genome mapping and gene tagging in pineapple.

ABSTRAK

Nenas, (Ananas comosus var. comosus) merupakan buah tropika yang mempunyai nilai komersial yang tinggi. Memahami fenomena disebalik pemasakan buah dengan tumpuan untuk memperbaharui nilai buah dari segi rasa, struktur, rupa dan manis buah boleh dicapai melalui analisa trankriptome ekspresi gene. Dengan itu, objektif kajian adalah pertamanya pembinaan perpustakaan jujukan saling melengkapi DNA dan pengelompokan pasangan hujung ke hujang jujukan Solexa. Keduanya, adalah menjelaskan transkript yang didapati melalui pencarian persamaan dan penentuan fungsi meggunakan pangkalan data ontologi serta 'Kyoto Encyclopedia of Genes and Genomes' (KEGG). Akhir sekali kajian ini akan membina satu pangkalan data transkript yang wujud dalam kawasan gen berkod dengan menggunakan transkript yang dihasilkan dan juga jujukan saling melengkapi DNA yang sedia ada dalam GenBank. Kesemua transcript unik (UT) dan contigs yang dihasilkan dapat dikelompokan dalam lebih kurang 30, 000 transkript dengan panjang antara 100 bp ke 3.8 kb. Pencarian persamaan dengan pangkalan data "non-redundant" NCBI mengenalpasti sejumlah 17,049 transkript dengan penglibatan dalam metabolisma asas, penghasilan dan pemprosesan asid amino, dinding dan pengangkutan, pembahagian sel, metabolisma dan pembinaan struktur dinding, expresi gen berhubungkait dengan jujukan RNA, transduksi isyarat, protein berkait dengan pertahanan dan tekanan, dan juga metabolisma sekunder. Daripada jumlah ini, 71% mempunyai penanda ontology dengan 35.8% dalam kumpulan fungsi molekular, 33.5% dalam komponen sel dan 30.7% dalam prosses biologi. Penentuan fungsi menggunakan pangkalan data KEGG mendapati sebanyak 13,598 trankript mempun<mark>yai fung</mark>si yang sama dengan sejumlah 542 kod enzim yang mana boleh dikelompokan kepada 126 laluan. Daripada jumlah laluan ini 122 didapati berhubung kait dengan metabolism nenas. Penentuan fungsi transcript mendapati kebanyakan transcript terlibat dalam metabolik and proses sel dinding. Ini menunjukan semasa pemasakan buah nenas, aktiviti metabolik giat berlaku. Kajian rangkaian jujukan berulang dalam transkript nenas pula menunjukan sebanyak 4% daripadanya mempunyai rangkaian jujukan berulang. Dua-nukleotid paling banyak dijumpai dengan sebanyak 676 (49.5%) jujukan penanda terungkap mengandungi rangkaian jujukan berulang. Ini diikuti dengan tiga-nukleotid dan empat-nukleotid dengan masing-masing sebanyak 639 (46.8%) dan 51 (3.7%). Daripada jumlah ini, 40% daripadanya dikenalpasti mempunyai rusuk yang sesuai untuk pencorakan "primers" bahagian depan dan belakang bagi kegunaaan amplifikasi PCR pada masa akan datang. Kajian ini menghasilkan transkriptome buah nenas yang pertama. Jujukan penanda terungkap ini berguna untuk penghasilan cip microarray bagi kajian expresi gen dalam pelbagai tisu dan peringkat pembentukan buah. Analisa yang lebih terperinci dan/atau penggunaan jujukan penanda terungkap mengandungi rangkaian jujukan berulang boleh diaplikasi dalam pemetaaan komparatif dan genome serta penandaan gene dalam nenas.

LIST OF CONTENTS

		Page
TITL	E I I I I I I I I I I I I I I I I I I I	Ĩ
DEC	LARATION	ii
CER ⁻	TIFICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	TRACT	V
ABS	TRAK	vi
LIST	OF CONTENTS	vii
LIST	OF TABLES	xii
LIST	OF FIGURES	xiii
LIST	OF ABBREVIATIONS	xvi
LIST	OF SYMBOLS	xviii
LIST	OF UNITS	xix
LIST	OF EQUATIONS	xx
LIST	OF APPENDICES	xxi
~		
	PTER 1: INTRODUCTION	
1.0 1.1	Introduction	1
1.1	The Objectives of the Study UNIVERSITI MALAYSIA SABAH	3
СНА	PTER 2: LITERATURE REVIEW	
2.1	Pineapple	4
2.2	Pineapple Fruit Maturity and Ripening	5
2.3	Uses of Pineapple	7
	2.3.1 Pineapple Fruit Processing	7
	2.3.2 Application in the Meat Industry	7
	2.3.3 Therapeutic Application	8
	2.3.4 By-products	9
2.4	Problems in the Pineapple Industry	9
2.5	Application of Biotechnology for Crop Improvement	10
2.6	Transcriptomic Studies in Plant	12
2.7	Sanger Sequencing	13
2.8	Next Generation Sequencing (NGS)	15

2.9	Expressed Sequence Tags	18
2.10	Application of Expressed Sequence Tags	21
	2.10.1 Hybridization Experiments	21
	2.10.2 Gene Discovery	22
	2.10.3 Simple Sequence Repeats (SSRs) Marker Development	24
2.11	ESTs in Non-climacteric Fruits	26
CHAP	PTER 3: MATERIALS AND METHODS	
3.1	Overview of Methodology	29
3.2	Plant Materials and Total RNA Extraction	29
3.3	First Strand cDNA Synthesis	30
3.4	Confirmation of Successful of Reverse Transcription	31
3.5	Determination of cDNA Amplification Cycles	31
3.6	Normalization of cDNA Library	33
	3.6.1 Hybridization	33
	3.6.2 Duplex-specific Nuclease Treatment	33
3.7	Determination of Optimal Number of PCR Cycles for Normalized	
	cDNA	34
3.8	Amplification of Normalized cDNA	35
3.9	Proteinase K and Sfil Restriction Treatment	35
3.10	Size Fractionation	36
3.11	Ligation of cDNA to Vector and cDNA Library Generation	37
3.12	Screening of cDNA Library	38
	3.12.1 Preparation of Host Bacteria	38
	3.12.2 Mass Excision of λ TripIEx2 to pTripIEx2	38
3.13	Colony PCR	38
3.14	Plasmid Isolation by Alkaline Lysis	39
3.15	DNA Sequencing	40
3.16	Bioinformatic Analysis	40
	3.16.1 Sequence Characterization and Gene Ontology (GO)	
	Annotation of Transcripts	40
	3.16.2 Functional Classification by Kyoto Encyclopedia of Genes	
	and Genomes (KEGG)	41
	3.16.3 Identification of EST-SSR Motifs and Flanking Primers	41

3.17	Solexa	Sequencing	42
3.18	De no	vo Assembly of Solexa Sequencing Reads	42
	3.18.1	Running Velveth	43
	3.18.2	Running Velvetg	44
3.19	Counti	ing of Contigs Size	44
СНАР	PTER 4:	RESULTS	
4.1	Overvi	iew of Result Presentation	47
4.2	Total I	RNA Extraction	47
4.3	Constr	ruction of cDNA Library	48
	4.3.1	First and Second Strand cDNA Synthesis	48
	4.3.2	Determination of Optimal PCR Cycles for Non-normalized	
		and Normalized cDNA	48
	4.3.3	Sfil Enzyme Treatment, Size Fractionation and Vector	
		Ligation of Normalized cDNA	51
	4.3.4	Tittering of cDNA Library, Amplification of Insert and	
		Plasmid Extraction of Positives Clones	52
	4.3.5	Single Pass Sequencing of Partial cDNA Clones	54
	4.3.6	Characterization of ESTs from Mature Green Fruit cDNA	
		Library UNIVERSITI MALAYSIA SABAH	56
4.4	Solexa	a Sequencing	61
	4.4.1	Solexa Reads and De novo Assembly using Velvet Software	61
	4.4.2	Distribution of Velvet K-mer 47 Contigs Size and Coverage	
		(Expression Level)	64
	4.4.3	Characterization of Velvet K-mer 47 Contigs	65
	4.4.4	High Coverage Contigs	68
4.5	Functi	onal Annotation	68
	4.5.1	Gene Ontology (GO) Annotation	68
	4.5.2	Kyoto Encyclopedia of Genes and Genomes (KEGG)	
		Pathway Assessment	73
	4.5.3	Gene Encoding Important Traits in Pineapple Fruit	78
		4.5.3.1 Fruit Ripening	78
		4.5.3.2 Fragrance Biosynthesis	80
		a) Terpene Biosynthesis	80

	b) Ester Biosynthesis	82
	4.5.3.3 Flavor Biosynthesis	85
	a) Organic Acid Synthesis	85
	b) Starch and Sucrose Metabolism	85
	4.5.3.4 Texture/structural Biosynthesis –Lignin Biosynthesis	89
	4.5.3.5 Health-Related Compound Biosynthesis	89
	a) Quinate Biosynthesis	89
	b) Riboflavin Metabolism	91
	c) Folate Biosyntheis	92
4.6	Detection of Simple Sequence Repeats (SSRs) in Pineapple ESTs	93
	4.6.1 Pineapple EST-SSRs Generated from Sanger Sequencing	93
	4.6.1.1 Occurrences of Different SSRs	93
	4.6.1.2 Sizes of Pineapple SSRs	95
	4.6.1.3 Distribution of EST-SSRs	96
	4.6.1.4 Determination of Gene Identities of EST-SSRs	99
	4.6.1.5 Identification of Flanking Sequences of Type I	
	EST-SSRs	99
	4.6.2 Pineapple EST-SSRs from Solexa Sequencing	117
	4.6.2.1 Occurrences of Different SSRs in Pineapple	
	B Fruit Contigs IVERSITI MALAYSIA SABAH	117
	4.6.2.2 Sizes of Pineapple SSRs in Pineapple Fruit Contigs	117
	4.6.2.3 Distribution of SSRs in Pineapple Fruit Contigs	119
	4.6.2.4 Determination of Gene Identities of Contigs	
	Containing SSRs	119
	4.6.2.5 Identification of Flanking Sequences of Type I	
	EST-SSRs Derived from Contigs	129
CHAI	PTER 5: DISCUSSION	
5.1	Isolation of Total RNA from Pineapple Fruit Tissue	147
5.2	Factors Affecting the Construction of Mature Green Pineapple	
	Fruit Library	148
5.3	Single Pass Sequencing of Green Mature Pineapple Clones	152
5.4	Assembly of Pineapple Transcripts	154
5.5	Characterization through Sequence Similarity Searches	157

х

5.6	Highly Expressed Transcripts 158		
5.7	Functi	onal Annotation of Pineapple Transcripts	163
5.8	Gene Encoding Important Traits in Pineapple Fruit 16		
5.9	Pinea	ople Type I EST-SSRs	170
	5.9.1	Distribution and Size	170
	5.9.2	Distribution of EST-SSR Motifs	172
	5.9.3	Identification of Gene Identities and Flanking Region of	
		EST-SSRs	174
СНАР	TER 6	SUMMARY	
6.1	Summ	ary and Conclusion	177
6.2	Future	e Prospects	179

REFERENCES

199

181

LIST OF TABLES

		Page
Table 2.1	Recent transgenic and mutant tomato and grape genotypes	
	with relation to the nutrient or shelf-life change.	12
Table 2.2	Abundant transcripts in pineapple fruit identified by Moyle	
	<i>et al</i> . (2005b).	28
Table 3.1	PCR cycling parameters for cDNA amplification.	32
Table 3.2	Dilution for DSN treatment.	34
Table 3.3	The various types of repeat motif screened for in the pineapple	
	transcripts.	42
Table 4.1	Blast results of UTs against non-redundant NCBI database.	60
Table 4.2	Assembly and characterization of k-mer 47 contigs generated	
	from <i>de novo</i> assembly.	66
Table 4.3	Contigs with significant identity and coverage over 500.	69
Table 4.4	Summary results of mapping and annotating of pineapple	
	transcripts against Gene Ontology database.	71
Table 4.5	List of metabolism pathways in pineapple fruit transcripts.	74
Table 4.6	Summary of functional assessment of EST containing SSRs	
	in pineapple ESTs.	99
Table 4.7	EST-SSRs with significant identities.	100
Table 4.8	EST-SSRs containing flanking primers.	108
Table 4.9	Summary of functional assessment of EST containing SSRs	
	in pineapple fruit contigs.	123
Table 4.10	EST-SSRs in pineapple fruit contigs with significant identities.	123
Table 4.11	Pineapple fruit contigs EST-SSRs with flanking primers.	130

LIST OF FIGURES

		Page
Figure 2.1	The changes in the physiochemical properties of pineapple	
	fruit from flowering to senescence.	6
Figure 2.2	Schematic workflow of paired-end tags methodology both	
	using cloning based and cloning free procedures.	19
Figure 3.1	Perl scripts tracking of contigs size.	46
Figure 4.1	Total RNA extracted from pineapple fruit tissue using high	
	salt concentration.	49
Figure 4.2	Amplification of metallothionein transcripts.	49
Figure 4.3	Amplification of double strand cDNA.	50
Figure 4.4	Amplification of cDNA with different number of PCR cycles.	50
Figure 4.5	Amplification of normalized cDNA treated with different	51
	DSN dilution.	
Figure 4.6	Fractionation of normalized cDNA.	52
Figure 4.7	Colony PCR amplification of insert.	53
Figure 4.8	Plasmid extraction based on alkaline lysis of different	
	positive clones.	53
Figure 4.9	Example of pineapple fruit cDNA sequence.	54
Figure 4.10	Chromatogram of single pass sequencing of mature	
	green pineapple cDNA clones.	55
Figure 4.11	Contig generated from two pineapple sequences.	57
Figure 4.12	Length distribution of UTs assembled from green mature	
	green pineapple sequences.	58
Figure 4.13	E-value distribution of mature green pineapple UTs with	
	significant identities.	58
Figure 4.14	Blast hit species distribution of UTs of mature green pineapple	
	sequences.	59
Figure 4.15	Example of forward and reverse Solexa reads.	62

Figure 4.16	Results of <i>de novo</i> assembly of Solexa reads using different	
	<i>k</i> -mers.	63
Figure 4.17	Length distribution of pineapple fruit contigs generated from	
	de novo assembly.	64
Figure 4.18	Coverage distribution of contigs from <i>de novo</i> assembly.	65
Figure 4.19	E-value distribution of contigs with significant identities.	67
Figure 4.20	Blast hit species distribution of pineapple contigs.	67
Figure 4.21	Gene Ontology annotation of pineapple fruit transcripts (level 2).	72
Figure 4.22	List of biosynthesis involved in the pineapple fruit metabolism.	77
Figure 4.23	The ethylene synthesis and signal transduction.	79
Figure 4.24	The terpene biosynthesis.	81
Figure 4.25	The straight chain ester biosynthesis from fatty acids.	83
Figure 4.26	The branched chain ester biosynthesis.	84
Figure 4.27	The citrate acid cycle.	86
Figure 4.28	The sucrose metabolism.	87
Figure 4.29	The starch and sucrose metabolism.	88
Figure 4.30	The lignin biosynthesis. VERSITI MALAYSIA SABAH	90
Figure 4.31	The quinate biosynthesis.	91
Figure 4.32	The riboflavin (B2) biosynthesis.	92
Figure 4.33	The folate biosynthesis.	94
Figure 4.34	Distribution of Type I SSRs of single pass sequencing of	
	pineapple ESTs.	95
Figure 4.35	The distribution of single pass sequencing SSRs in categories	
	of repeats unit.	97
Figure 4.36	Distribution of single pass sequencing dinucleotide SSRs.	97
Figure 4.37	Distribution of single pass sequencing trinucleotide SSRs.	98
Figure 4.38	Distribution of single pass sequencing tetranucleotide SSRs.	98
Figure 4.39	Distribution of Type I simple sequence repeats in pineapple	
	contigs.	118

Figure 4.40	The distribution of contigs SSRs in categories of repeats unit.	118
Figure 4.41	Distribution of dinucleotide SSRs in pineapple fruit contigs.	120
Figure 4.42	Distribution of trinucleotide SSRs in pineapple fruit contigs.	121
Figure 4.43	Distribution of tetranucleotide SSRs in pineapple fruit contigs.	122
Figure 5.1	Total RNA extracted from pineapple fruit using alkaline	
	phenol:chloroform.	149
Figure 5.2	Colony PCR amplification of small insert cDNA clones.	152
Figure 5.3	Homopolymer slippage.	153

LIST OF ABBREVIATIONS

ACC	1-aminocyclopropane-1-carboxylate
AFLP	amplified fragment length polymorphism
CAD	cinnamyl alcohol dehydrogenase
CCD	charge coupled device
C-OMT	caffeate O-methyltransferase
СТАВ	cetyltrimethylammonium bromide
DEPC	diethylpyrocarbonate
DSN	duplex-specific nuclease
DTT	dithiothreitol
cDNA	complementary DNA
dNTP	deoxynucleotide tri phosphate
ddNTP	dideoxynucleotide tri phosphate
ddATP	dideoxyadenine tri phospahte
ddTTP	dideoxythiamine tri phosphate
ddGTP	dideoxyguanine tri phosphate
ddCTP	dideoxycytosine tri phosphate
EB	extraction buffer
EC	enzyme commission
EDTA	ethylenediaminetetraacetic acid
EMBL	European Molecular Biology Laboratory
ESTs	expressed sequence tags
EtBr	ethidium bromide
EtOH	ethanol
FSH	ferulate 5-hydroxlase
Gb	gigabase
GO	Gene Ontology
HCI	hydrochloride
IPTG	isopropyl-β-D-thiogalactopyranosid
IP	internet protocol
KEGG	Kyoto Encyclopedia of Genes and Genomes
LB	luria brutani
MEP	methylerythrito

LIST OF SYMBOLS

%	percentage
>	more than
<	less than
\leq	less or equal to
=	equal to
*	approximately
1	per
Α	absorbance
λ	lambda

LIST OF UNITS

bp	basepair
cm	centimeter
kg	kilogram
kb	kilobase
μl	microliter
μg	microgram
М	molar
m	meter
Mbp	megabasepair
min	minute
ml	mililiter
mM	milimolar
ng	nanogram
nm	nanometer
pfu	plaque-forming unit
rpm	rotation per minute
sec	second UNIVERSITI MALAYSIA SABAH
v/v	volume per volume
μΜ	micromolar
°C	degree celcius
w/v	weight per volume

LIST OF EQUATIONS

		Page
Equation 1	N = X-7	35
Equation 2	PCR cycles for normalized cDNA	35

LIST OF APPENDICES

		Page
Appendix A	Sequences from single pass sequencing of green mature	
	pineapple clones.	199
Appendix B	Blast search of singletons assembled from green mature	
	pineapple sequences with significant identity to non-redundant	
	NCBI database.	203
Appendix C	Contigs from de novo assembly of ripe yellow paired-end	
	Solexa reads.	207

CHAPTER 1

INTRODUCTION

1.1 Introduction

The pineapple (*Ananas comosus* var. *comosus*), which is a member of the Bromeliaceae, is an economically important tropical fruit. Pineapple together with three other dominant tropical fruits (mango, papaya and avocado) are referred to as "major tropical fruits" as they account for the approximately 75% of global flesh tropical fruit production. The overall productions of pineapples fruit over the past few years has showed an increase and are expected grow in the global demand on the pineapple fruit flesh.

Pineapple fruit is mainly used in the processing industry to make canned pineapple and pineapple juice concentrate. Even though there is a very high demand for the fresh pineapple fruit, the short storage life of pineapple and the occurrence of blackheart disease disorder that is easily induced during storage, has hinder further export of pineapple fruits for direct consumption (Zhou *et al.*, 2003). As such, the export of pineapple is only limited to nearby countries.

Pineapple is a non-climacteric fruit where there is no increase in respiration and ethylene production upon ripening (Moyle *et al.*, 2005b). Therefore, the sweetness of the fruits relies on the time it is harvest. For climacteric fruits such as banana and tomato, the ripening process which follows the ethylene biosynthetic pathway is well characterized (Yang and Hoffman, 1984). In contrast, the mechanism of ripening in non-climacteric fruits such as pineapple, citrus and grape is totally unknown (Giovannoni, 2004).

Expressed Sequence Tags (ESTs) is a powerful tool for gene discovery, gene mapping, and for the analysis of quantitative traits. ESTs are partial sequencing of randomly picked cDNA clones generated by reverse transcription of mRNA. A large number of ESTs collections for various organisms representing libraries of different tissue and development stages are available in the GenBank EST database, dbEST. As there is a need to sequence large numbers of clones to be able to isolate most if not all the transcripts in an organisms, sequencing of a single library has shifted to large scale sequencing generating EST libraries of more than 10,000 clones. These large scales sequencing has no doubt been able to identify a great number of transcripts but the overall library construction methodology is laborious, time consuming and expensive.

The emergence of next generation sequencing technology has brought molecular study to gain a deeper insight into the mechanisms regulating DNA and RNA level. Instead of a clone-by clone sequencing approach, the massively parallel sequencing, provide a better approach as this sequencing technology greatly reduces the costs, time, labour, errors associated by clone mishandling and also reduces bias associated with the type of vector used in during cloning (Weber, 2007). Aside from the capability to capture large amount of transcripts in a single sequencing reaction, the data generated were able to provide quantitative measurement of the levels of genes expression. This study attempts to both the gene discovery and the identification of up and down-regulated genes by comparison of the transcripts expression.

UNIVERSITI MALAYSIA SABAH

As of Feb 2011, the pineapple's EST in the publicly available NCBI database only account for approximately 6,000 sequences. Most of the sequences deposited were from pineapple nematode-infected gall cDNA library and root tips cDNA library. Only a small portion of the sequences were generated from pineapple fruit tissue. The limited number of pineapple fruit transcripts available hampers the understanding of the mechanism governing non-climacteric fruit, pineapple. This study applied both the Sanger sequencing and massively parallel sequencing using Solexa paired end sequencing to generate sequence data on the pineapple fruit transcriptome.

1.2 Objectives of the Study

The objectives are;

- To identify pineapple mRNA transcripts through the construction of a fruit flesh EST library and assembly of sequences generated from Solexa pairedend sequencing reads.
- b) To characterize and annotate the pineapple transcripts through similarities search against non-redundant NCBI GenBank database and against both GO and KEGG databases respectively.
- c) To identify Type I Simple Sequence Repeats (SSRs) in pineapple fruit transcripts through different motifs searches.

