FACE DETECTION: A COMPARISON BETWEEN HISTOGRAM THRESHOLDING AND NEURAL NETWORKS

JAMAL AHMAD DARGHAM

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED FOR THE FULFILMENT OF THE DEGREE OF DOCTOR PHILOSOPHY

UNIVERSITI MALAYSIA SABAH

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2008

BORANG PPENGESAHAN STATUS TESIS

JUDUL: FACE DETECTION: A COMPARISON BETWEEN HISTOGRAM THRESHOLDING AND NEURAL NETWORKS

IJAZAH: DOKTOR FALSAFAH (IMAGE PROCESSING)

Saya, JAMAL AHMAD DARGHAM mengaku membenarkan tesis doctor falsafah ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hakmilik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian saya
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi
- 4. TIDAK TERHAD

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

Disahkan oleh

ANITA BINTI ARSAD PUSTAKAWAN KANAN UNIVERSITI MALAYSIA SABAH

Penulis: JAMAL AHMAD DARGHAM

(TANDATANGAN PUSTAKAWAN)

Tarikh: 10 Julai 2008

(Penyelia: Prof. Madya Dr. Ali Chekima)

CATATAN: Tesus dimakksudkan sebagai tesis Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau laporan Projeck Sarjana Muda (LPSM)

DECLARATION

I hereby declare that the material in this thesis is my own except for quotations, excerpts, quotations, summaries and references, which have been dully acknowledged.

1 JULY 2008

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

JAMAL AHMAD DARGHAM PS99-008-081

CERTIFICATION

TITLE : FACE DETECTION: A COMPARISON BETWEEN HISTOGRAM THRESHOLDING AND NEURAL NETWORKS

DEGREE : DOCTOR OF PHILOSOPHY (IMAGE PROCESSING)

DATE OF VIVA : 17 MARCH 2008

DECLARED BY

SUPERVISOR

(Associate Professor Dr. Ali Chekima)

Chekima) UNIVERSITI MALAYSIA SABAH

ACKNOWLEDGMENTS

I am very grateful to Allah subhanahu wataala for giving me the physical and mental strength to complete this thesis. I am very grateful for my parents for their love, support and encouragement. I would also to thank my wife and two daughters for their love and understanding throughout the process of completing this thesis. My thank goes also to my supervisor and friend Associate Professor Dr. Ali Chekima for his advice and guidance not forgetting his patience. My sincere thank to my undergraduate students who volunteer to be included in the database. Lastly but not least, my sincere gratitude to the Dean and my colleagues at the School of Engineering and Information Technology, Universiti Malaysia Sabah as well as to the staff and management of Universiti Malaysia Sabah for their help and assistance.

iv

ABSTRACT

Face Detection: A Comparison Between Histogram Thresholding and Neural Networks

Face detection is an important process in many applications such as face recognition, person identification and tracking, and access control. The technique used for face detection depends on how a face is modelled. In this thesis, a face is defined as a skin region and a lips region that meet certain geometrical criteria. Thus, the face detection system has three main components: a skin detection module, a lips detection module, and a face verification module. Multi-laver perceptron (MLP) neural networks and histogram thresholding techniques have been used for skin and lips detection. In order to test the face detection system, two databases were created. The images in the first database, called In-house, were taken under controlled environment while those in the second database, called WWW, were collected from the World Wide Web. Only the skin and the lips colour in the normalised RGB colour scheme were used for the skin and lips detection respectively. A new method for obtaining the r, g, and b components of the normalised RGB systems from the R, G, and B components of the RGB system was proposed. It was found out that the proposed method, called maximum intensity normalisation, gives higher percentage of correct skin detection than the conventional rgb colour scheme regardless of the database used or the skin detection method. Two methods were used to find the number of neurons in the hidden layer of the MLP. The first method use binary search between a minimum and a maximum values while the second method use sequential search with a stopping criteria. The effect of scale factor, facial expressions and minor occlusions with glasses on skin, lips and face detection was investigated. It was found out that, as the scale factor increases the percentage skin and lips detection error decreases. However, the percentage decrease in skin and lips detection errors depends on the intensity normalisation, the detection method and the chrominance component used. But the scale factor did not have any effect on the face detection. In general, the facial expression did not have any significant effect on skin detection. However, for lips detection, the laughing expression did give the highest lips detection error followed by smiling expression. Furthermore, the percentage increase in lips detection error as a result of the facial expression depends on the intensity normalisation, the detection method and the chrominance component used. As for face detection, the facial expression has a negative effect on the correct face detection especially at scale factor of 3. Although, the minor occlusion increases the skin detection error it has no significant effect on the performance of face detection.

ABSTRAK

Pengesan wajah merupakan proses penting dalam banyak aplikasi seperti pengesanan wajah, pengenalan diri dan pengesanan, dan akses kawalan. Teknik yang digunakan dalam pengesan wajah bergantung kepada wajah dimodelkan. Dalam Desertasi ini, wajah dimodelkan sebagai bahagian kulit dan bahagian bibir vana memenuhi beberapa kreteria geomatrik. Oleh itu, system pengesan wajah mempunai tiga komponen utama: Modul pengesan kulit, modul pengesan bibir, dan modul pengasahan wajah. Rangkaiaan "multi-layer perceptron" (MLP) neuro dan teknik-teknik diambang histogram telah digunakan bagi mengesan kulit dan bibir. Bagi menguji sistem pengesan wajah, dua pangkalan data telah dibina. Imej di dalam pengkalan data yang pertama, dinamakan "In-house" telah diambil dalam persekitaran yang terkawal sementara yang berada di dalam pangkalan data yang kedua, dinamakan "WWW" telah dikumpul daripada Rangkaian Web Sedunia "World-Wide Web". Hanya warna kulit and bibir dalam skema warna rgb telah digunakan begi mengesan kulit dna bibir. Satu kaedah baru, dinamakan "maximum intensity normalisation", bagi memperoleh komponen-komponen rgb daripada komponenkomponen RGB telah dicadangan. Didapati bahawa kaedah yang dicandankan member peratusan betul yang tingi daripada skema rgb konvensional tidak kira apa pangkalan data digunakan atau kaedah pengesan kulit. Dua kaedah telah digunakan bagi mencari bilangan neuron dalam lapisan tersembunyi "hidden layer". Kaedah pertama menggunakan pencarian secaraa binary di antara nilai-nilai minimum dan maksimum sementara kaedah yang kedua menggunakan pencarian secara seguen dengan kreteria untuk berhenti. Kesan factor scala, eksperasi wajah dan sedikit aklusi-aklusi den<mark>gan cermin</mark> di atas kulit, pengesan bibir dan wajah telah diuji kaji. Didapati bahawa, semakin meningkat peratus factor scala, ralat pengesan kulit dan bibir menurun. Walau bagaimanapun, peratus ralat menurun dalam pengesan kulit dan bibir bergantung kepada skema warna, kaedah pengesan dan komponen "chrominance" yang digunakan. Tetapi factor scala tidak member kesan apa-apa kepada pengesan wajah. Pada keseluruhanya, ekspresi wajah tidak member kesan yang besar atau bermakna kepada pengesan kulit. Walau bagaimanapun, bagi pengesan bibir, ekspresi ketawa telah member kesan ralat yang tinggi diikuti oleh ekspresi senyuman. Walau bagaimanapun, bagi pengesan bibir, peratus ralat meningkat bergantung kepada skema warna, kaedah pengesan dan komponen warna "chrominance" yang digunakan. Dan bagi pengesan wajah, ekspresi wajah member kesan negative terutamanya pada factor scala 3. Walaupun, aklusi kecil akan meningkatkan ralat pengesan kulit ia tidak member kesan yang signifikan kepada prestasi pengesan wajah

TABLE OF CONTENTS

		Page
DEC	LARATION	ii
CON	IFIRMATION	iii
АСК	NOWLEDGMENTS	iv
ABS	TRACT	v
ABS	TRAK	vi
ТАВ	LE OF CONTENTS	vii
LIST	OF TABLES	xi
LIST	OF FIGURES	xv
LIST	OF ABBREVIATIONS	xxi
LIST	OF SYMBOLS	xxii
KEY	WORDS	xxv
СНА	PTER 1 INTRODUCTION	1
1.1 1.2 1.3 1.4 1.5 1.6	OVERVIEW OF FACE PROCESSING SYSTEMS CHALLENGES OF FACE DETECTION STATE OF THE ART IN FACE DETECTION OBJECTIVES OF THE THESIS MAIN CONTRIBUTIONS ORGANISATION OF THE THESIS	1 2 3 4 5
СНА	PTER 2 OVERVIEW OF FACE DETECTION TECHNIQUES	8
2.1 2.2 2.3 S	CLASSIFICATION OF FACE PROCESSING SYSTEMS REVIEW OF FACE DETECTION SYSTEMS 2.2.1 Template-Based 2.2.2 Appearance-Based 2.2.3 Features Invariant 2.2.4 Knowledge-Based 2.2.5 Combination of More Than One Representation	8 9 10 14 16 16 17
2.4 T	THE PROPOSED SYSTEM	19
CHA	PTER 3 ANALYSIS OF SKIN AND LIPS COLOUR DISTRIBUTIONS	21
3.1 I	NTRODUCTION TO COLOUR SYSTEMS 3.1.1 The RGB Colour Space 3.1.2 The Normalised RGB Colour Space 3.1.3 The XYZ Colour Space 3.1.4 The Normalised XYZ Colour Space 3.1.5 The U*V*W* Colour Space 3.1.6 The L*a*b* Colour Space	21 21 22 22 23 23

3.1.7 The III2I3 Colour Space 3.1.8 The HSI Colour Space	24 24
3.1.9 The YUV Colour Space 3.1.10 The YCrCh Colour Space	24
3.1.11 The YIQ Colour Space	25
3.2 THE SELECTED COLOUR SPACE	25
3.3 THE DATABASES	27
3.3.1 The In-House Database	28
3.3.2 The WWW Database	30
3.5.4 MODIFIED NORMALISED RGB COLOUR SPACE	31
3.6 DATA PREPARATION	33
3.7 ANALYSIS OF SKIN AND NON-SKIN DISTRIBUTIONS	34
3.8 ANALYSIS OF LIPS AND NON-LIPS DISTRIBUTIONS	39
3.9 ANALYSIS OF LIPS AND SKIN DISTRIBUTIONS	41
3.10 SUMMARY	42
CHAPTER 4 SKIN DETECTION USING HISTOGRAM THRESHOLDING	45
4.1 INTRODUCTION	45
4.2 REVIEW OF SKIN DETECTION METHODS	46
4.2.1 Non-Falametric Models	50
4.2.3 Parametric Models	52
4.2.4 Combined Techniques	53
4.3 HISTOGRAM THRESHOLDING METHODS	54
4.4 PROPOSED MODIFICATIONS TO THE THRESHOLDING METHOD	56
4.4.1 Scanning Window	56
4.4.2 Moving Window	57
4.4 PERFORMANCE METRICS 4.5 FINDING THE THRESHOLDS VALUES FRST MALAYSIA SABAH	59
4.6 SKIN DETECTION	64
4.6.1 The Effect of Chrominance Components on Skin Detection	65
4.6.2 The Effect of the Normalisation Method	70
4.6.3 Effect of the Pixel Selection Method on Skin Detection	72
4.6.4 The Effect of the Database	75
4.6.5 The Effect of Scaling	/5 77
4.6.7 Effect of Partial Occlusion with Glasses	78
4.6.8 Images of Best and Worst Skin Detection Error	80
4.7 SUMMARY	80
CHAPTER 5 SKIN DETECTION USING NEURAL NETWORKS	83
5.1 INTRODUCTION TO NEURAL NETWORKS	83
5.2 DETERMINING THE NETWORK PROPERTIES	84
5.3 FINDING THE NUMBER OF NEURONS IN THE HIDDEN LAYER	85
5.3.1 IN-HOUSE Database	09
5.4 TRAINING THE NETWORKS	92
5.4.1 Training Data for the In-House Database	92
5.4.2 Training Data for the WWW Database	93

 5.4.3 Training Performance for the In-house Database 5.4.4 Training Performance for the WWW Database 5.5 SKIN DETECTION RESULTS AND ANALYSIS 5.5.1 Thresholding the Output of the Neural Networks 5.5.2 The Effect of the Intensity Normalisation Methods 5.5.2.1 The In-House Database 5.5.2.2 The WWW Database 5.5.3 Effect of the Training Data Population 5.5.4 Effect of Scale, Facial Expressions and Partial Occlusion 5.6 SUMMARY 	95 96 97 98 98 99 101 104 108
CHAPTER 6 LIPS DETECTION USING HISTOGRAM THRESHOLDING	109
 6.1 REVIEW OF LIPS DETECTION METHODS 6.2 HISTOGRAM THRESHOLDING METHODS 6.3 LIPS DETECTION 6.3.1 The Effect of the Chrominance Component on Lips Detection 6.3.2 Effects of the Intensity Normalisation Method 6.3.3 Effects of the Pixel Selection Method 6.3.4 Effect of the Database 6.3.5 Effect of Scaling 6.3.6 Effect of the Facial Expression 6.3.7 Sample Images 6.4 LIPS AND SKIN SEGMENTATION 6.4.1 Skin and Lips Histograms 6.4.2 Finding the Optimum Threshold Values 6.4.3 Lips Detection 6.4.3.1 Effect of Threshold Selection Method 6.4.3.2 Effect of Scale on Lips Selection 6.4.3.4 Effect of Facial Expression 6.4.3.5 Effect of Scale on Lips Selection 6.4.3.6 Sample Images 	109 110 114 116 117 119 120 121 122 123 126 126 126 127 131 132 134 137 138 139 141
CHAPTER 7 LIPS DETECTION USING NEURAL NETWORKS	141
 7.1 TRAINING AND VALIDATION DATA 7.2 NEURAL NETWORKS STRUCTURES 7.2.1 Finding the Number of Neurons in the Hidden Layer 7.2.2 The In-House Database 7.2.3 The WWW Database 7.3 TRAINING THE NEURAL NETWORKS 7.4 LIPS DETECTION 7.4.1 The Effect of the Intensity Normalisation Method 7.4.2 The Effect of the Combination of Chrominance Components 7.4.3 Effect of Facial Expressions on Lips Detection 	144 145 145 147 149 150 152 152 153 154 156
7.5 LIPS DETECTION: A COMPARISON BETWEEN HISTOGRAM THRESHOLDING AND MLP NEURAL NETWORKS7.6 SUMMARY	157 157

CHAPTER 8 FACE DETECTION	159
 8.1 INTRODUCTION 8.2 SKIN DETECTION MODULE 8.2.1 Opening and Closing 8.2.2 Connected Component Labelling 8.2.3 Size Filtering 8.3 LIPS DETECTION MODULES 	159 159 160 162 162 163
8.4 FACE DETECTION 8.4.1 Face Detection Using Histogram Thresholding	164 167
8.4.2 Face Detection Using Neural Networks	168
8.5 ANALYSIS OF FACE DETECTION SYSTEMS	169
8.5.1 Effect of Scale Factor on Face Detection	170
8.5.2 Effect of Facial Expressions on Face Detection	171
8.5.4 Performance Comparisons of Histogram and Neural Networks Based	1/1
Systems	172
8.6 PERFORMANCE COMPARISON WITH EXISTING SYSTEMS	174
8.7 SUMMARY	1/5
CHAPTER 9 CONCLUSION	177
9.1 INTRODUCTION	177
9.2 SKIN DETECTION	1/8
9.5 LIPS DETECTION	180
9.5 FUTURE WORKS	181
REFERENCES	183
GLOSSARY	188
Appendix A Skin and Non-Skin Histograms Distributions	189
Appendix B Lips and Non-Lips Histograms Distributions	207
Appendix C Lips and Skin Histograms Distributions	216
Appendix D Relationship Between the Threshold Value and the Error Index for the Skin and Non-Skin	228
Appendix E Relationship Between the Threshold Value and the Error Index for the Lips and Non-Lips. The Selected Threshold Value is the Chrominance Value that Minimizes the Error Index.	237
Appendix F Relationship between the Threshold Value and the Error Index for the Lips and Non-Lips. The Threshold Value is Selected When Skin Error Equals Lips Error	249
Appendix G Average Percentage Skin Segmentation Error Networks Trained Using Single Chrominance Component and Using a Combination of two Chrominance Components	261

LIST OF TABLES

		Page
Table 2.1	Classification of Face Detection Methods	17
Table 3.1	Description of Common Face Databases	28
Table 3.2	Descriptions of the Types of Images in the In-house Database	29
Table 3.3	Classification of the Skin and Non-skin Histogram Distributions According to the Amount of Overlap Between the Two Distributions	37
Table 3.4	Classification of the Lips and Non-lips Histogram Distributions According to the Amount of Overlap between the Two Distributions	40
Table 3.5	Classification of the Lips and Skin Histogram Distributions According to the Amount of Overlap between the Two Distributions	42
Table 4.1	Upper and Lower Thresholds Values for Several Chrominance Components for Segmenting the In-House and WWW Databases into Skin and Non-Skin Regions	63
Table 4.2	Expected Percentage Skin Segmentation Error f ^O r a Number of Chrominance Components using Single and Double Thresholds on the In-house and the WWW Databases	64
Table 4.3	Percentage Skin Segmentation Error for a Number of Chrominance Components using Double Thresholds on Images of the In-house Database with Neutral Expressions at Scale factor of 1	65
Table 4.4	Percentage Skin Segmentation Error for a Number of Chrominance Components Using Double Thresholds on the WWW Database	67
Table 4.5	Percentage of Skin Detection Error for the WWW Database using Equations 4.24 and 4.25 with Pixel Intensity Normalisation Method	68
Table 4.6	Comparison of the Lowest Percentage Skin Detection Error given by Different Intensity Normalization methods for the	72

In-House and the WWW Databases

Table 5.1	Parameters Used for Finding the Number of Neurons in the Hidden Layer for Networks Used for Skin Detection	88
Table 5.2	Training Data Used to Find the Number of Neurons in the Hidden Layer for the Neural Networks Used for Skin Detection with a Single Chrominance Component	88
Table 5.3	Finding the Number of Neurons in the Hidden Layer for Skin Detection on the In-House Database	90
Table 5.4	Network Structures and the Corresponding Chrominance Component used for Skin Detection on the In-House Database	90
Table 5.5	Network Structures and the Corresponding Chrominance Component used for Skin Detection on the In-House Database	92
Table 5.6	Number of Training and Validation Samples for Training the Neural Networks for Skin Detection on the In-house Database	93
Table 5.7	Number of Training and Validation Samples for Training the Neural Networks for Skin Detection on the WWW Database using a Single Chrominance Component	94
Table 5.8	Description of the Five Methods used for Selecting the Images used for Training and Validation of the Neural Networks for the WWW Database	95
Table 5.9	Training Performance for the Skin Detection Networks Trained on the In-house Database	96
Table 5.10	Training Performance for the Skin Detection Networks Trained on the WWW Database Using a Single Chrominance Component	97
Table 6.1	Upper and Lower Thresholds Values for Several Chrominance Components for Segmenting the In-House and WWW Databases Into Lips and Non-Lips Regions	113
Table 6.2	Expected Lips Segmentation Error for a Number of Chrominance Components	115
Table 6.3	Percentage Lips Segmentation Error for a Number of Chrominance Components Using Double Thresholds for Neutral Expressions at Scale 1 Images of the In-house	116

	Database	
Table 6.4	Percentage Lips Segmentation Error for a Number of Chrominance Components Using Double Thresholds for the WWW Database	117
Table 6.5	Upper and Lower Thresholds Values Selected as the Minimum and the Maximum of the Sum of the False Acceptance Rate and the False Rejection Rate	128
Table 6.6	Threshold Value Selected when the False Acceptance Rate Equals the False Rejection Rate	129
Table 6.7	The Expected Percentage Lips Detection Error for the Tmin Threshold	131
Table 6.8	The Expected Percentage Lips Detection Error for the Tequal Threshold	132
Table 6.9	Combination of Chrominance Components Used for Skin Detection for Both Databases and for Both Intensity Normalisation Methods	132
Table 6.10	Description of the Intensity Normalisation Methods used for Lips Detection	135

Table 6.11Combination of Chrominance Components that Gave the136Lowest Lips Detection Error

- Table 7.1Number of pixels used for the Training and Validation of
the Neural Networks for Lips Detection on the In-house and
WWW Databases144
- Table 7.2Network Structures Used for Lips Detection for the In-
house Database for Several Combinations of Chrominance
Components147
- Table 7.3Network Structures Used for Lips Detection on the WWW150Database for Several Combinations of Chrominance
ComponentsCombinations of Chrominance
- Table 7.4Network Training Performance for Networks Used for Lips151DetectionontheIn-houseDatabaseforSeveralCombinations of Chrominance Components
- Table 7.5Network Training Performance for Networks Used for Lips151Detection on the WWW Database for Several Combinations
of Chrominance Components using Maximum Intensity151
- Table 7.6Network Training Performance for Networks Used for Lips152Detection on the WWW Database for Several Combinations
of Chrominance Components using Pixel Intensity152

Normalisation

Table 7.7	Combination of Chrominance Component that Gave the Lowest Percentage Lips Detection Error	154
Table 7.8	Average Percentage Decreases in the Percentage of Lips Detection Error as a Result of the Increase in the Scale Factor	157
Table 8.1	The Combination of Chrominance Components Used for the Skin Detection Module	160
Table 8.2	The Rules for Erosion and Dilation Processes	160
Table 8.3	Smallest and Largest Ratio of the Skin Regions to the Area of the Image for the In-house and WWW Databases	162
Table 8.4	Description of the Four Lips Detection Modules	164
Table 8.5	Smallest and Largest Ratios of the Lips Regions to the Area of the Image for the In-house and WWW Databases	164
Table 8.6	The Minimum and Maximum Ratio of the Face Candidate Size to the Size of the Lips Candidate for the In-house and WWW Databases	167
Table 8.7	Performance of the Four Face Detection Systems Using Histogram Thresholding	168
Table 8.8	Chrominance Component and Intensity Normalisation Methods Used for Skin and Lips Detection Modules for Face Detection using Neural Networks	170
Table 8.9	Performance of the Face Detection Systems using Neural Networks	171
Table 8.10	Performance Comparison Between the Proposed Systems and an Existing System	175

LIST OF FIGURES

		Page
Figure 1.1	Relationship between the Various Face Processing Tasks	3
Figure 2.1	Neural Network Architecture of Li, S.Z. et al.	11
Figure 2.2	Block Diagram of the Initially Proposed Face Detection System	19
Figure 2.3	Block Diagram of the Finally Proposed Face Detection System	19
Figure 3.1	Samples Images from the In-house Database	30
Figure 3.2	Samples Images from the WWW Database	31
Figure 3.3	A Sample of Original and Manually Segmented Images	31
Figure 3.4	A Sample Image From the In-House (top) and WWW (bottom) Databases with Maximum and Pixel Intensity Normalisation Methods	33
Figure 3.5	Skin and Non-skin Pixels Extraction Process	35
Figure 3.6	Skin and Non-Skin Extraction Flowchart	36
Figure 3.7	Classification of Skin and Non-Skin Histograms into Two Categories	38
Figure 3.8	Effect of the Database on the Skin and Non-skin Distribution.	39
Figure 3.9	Classifications of Lips and Non-Lips Histograms into Two Categories	40
Figure 3.10	Effect of the Database on the lips and Non-lips Distributions.	41
Figure 3.11	Effect of the Database on the lips and Skin Distributions	43
Figure 4.1	Classification of Skin and Non-Skin histograms into Two Types: One Requiring Two Threshold values and One Threshold Value	55
Figure 4.2	Flowchart of the Procedure for Finding Threshold Value	61

Figure 4.3	Relationship Between the Error Index and the Threshold Value	62
Figure 4.4	Effect of the Normalisation Method on the Percentage of Skin Detection Error	69
Figure 4.5	Effects of the Intensity Normalisation Method on Skin Detection Error for the In-House Database	70
Figure 4.6	Skin Detection using both Maximum and Pixel Intensity Normalisation Methods	71
Figure 4.7	Effect of the Pixel Selection Method on the Percentage Skin Detection Error for the In-house Database	73
Figure 4.8	Effect of the Pixel Selection Method on the Percentage Skin Detection Error for the WWW Database	74
Figure 4.9	Percentage Skin Detection Errors for a Number of Chrominance Components for the In-House and WWW Databases	76
Figure 4.10	Effect of the Scaling on the Percentage of Skin Detection	77
Figure 4.11	Effect of the Facial Expression on the Percentage of Skin De <mark>tection E</mark> rror for Scale Factor of 1	78
Figure 4.12	Effect of partial Occlusion with Glasses on the Percentage Skin Detection Error for Scale Factor 1	79
Figure 4.13	Samples of Skin Detection Images of the In-House Database with Neutral Expression at Scale factor of 1	80
Figure 5.1	Network Structure for Skin Detection Using (a) a Single Chrominance and (b) Two Chrominance Components	85
Figure 5.2	Flowchart for the Procedure to Find the Number of Neurons in the Hidden Layer for Skin Detection	87
Figure 5.3	Number of Trained Networks (top) and the Mean Squared Error (bottom) Versus the Number of Neurons in the Hidden Layer for the In-House Database	89
Figure 5.4	Number of Trained Networks (top) and the Mean Squared Error (bottom) Versus the Number of Neurons in the Hidden Layer for the WWW Database	91
Figure 5.5	Determining the Optimal Threshold Value for Thresholding the Output of the Neural Networks	98

Figure 5.6	Percentage Skin Detection Error for Neural Networks Trained using a single Chrominance Component on the In-house Database	100
Figure 5.7	Percentage Skin Detection Error for Neural Networks Trained using Two Chrominance Components on the In- house Database	101
Figure 5.8	Effect of Intensity Normalisation Methods on the Percentage Skin Detection Error for Neural Networks Trained using a Single Chrominance Component on the WWW Database	102
Figure 5.9	Effect of Intensity Normalisation Methods on the Percentage Skin Detection Error for Neural Networks Trained using Two Chrominance Components on the WWW Database	103
Figure 5.10	Effect of Training Data Population on Skin Detection Error on the In-house Database	104
Figure 5.11	Effect of Training Data on Skin Detection Error using a Single Chrominance Component on the WWW Database	105
Figure 5.12	Effect of Training Data Selection Method on the Percentage Skin Detection Error When a Combination of Two Chrominance Components was Used for the WWW Database	106
Figure 5.13	Effect of Scale, Facial Expressions, and Partial Occlusion on the Percentage Skin Detection Error	107
Figure 6.1	Classification of Lips and Non-Lips histograms into Two Types	111
Figure 6.2	Relationships Between the Estimated Lips Segmentation Error and the Threshold Value	114
Figure 6.3	Effects of the Normalisation Method on the Percentage of Lips Detection Error	118
Figure 6.4	Effect of the Intensity Normalisation Method on the Percentage Lips Detection Error Under Different Scale, Facial Expressions and Minor Occlusions for the In- House Database	119
Figure 6.5	Effect of the Pixel Selection Method on the Percentage of Lips Detection Error for the In-house Database	120
Figure 6.6	Effect of the Pixel Selection Method on the Percentage of	121

Lips Detection Error for the WWW Database

Figure 6.7	Effect of the Database on the Percentage of Lips	122
Figure 6.8	Effect of Scaling on the Percentage of Lips Detection Error for the In-house Database for Several Chrominance Components	123
Figure 6.9	Effect of the Facial Expression on the Percentage of Lips Detection Error for the In-house Database for Several Chrominance Components	124
Figure 6.10	Performance of the Lips Detection Algorithm on Neutral Expression at Scale 1 Images of the In-House Database	125
Figure 6.11	Performance of the Lips Detection Algorithm on the WWW Database	125
Figure 6.12	Skin and Lips Histogram Distributions for the Normalised r-g Chrominance Component for the In-house and WWW Databases using Maximum Intensity and Pixel Intensity Normalisation	127
Figure 6.13	Chrominance Component that Give Similar Threshold Values (top) and Different Threshold Values (bottom) When Using Two Different Criteria for the Threshold Finding Algorithms	130
Figure 6.14	Percentage Lips Segmentation Error using Maximum Intensity Normalisation Method on both Databases	133
Figure 6.15	Percentage Lips Segmentation Error using Pixel Intensity Normalisation Method on both Databases	134
Figure 6.16	Percentage Lips Detection Error for Different Combination of Intensity Normalisation Methods for the WWW Database	136
Figure 6.17	Percentage Lips Detection Error for Different Combination of Intensity Normalisation Methods for the In-house Database	137
Figure 6.18	Effect of Scale Factor on the Lips Detection Error with Tmin Threshold	138
Figure 6.19	Effect of Facial Expressions on Lips Detection with Tequal Threshold	139
Figure 6.20	Effect of the Database on the Lips Detection Error with Tmin Threshold	140

- Figure 6.21 Images that Gave the Lowest and Highest Lips Detection 141 Error for Tequal and Tmin Thresholds Respectively for Scale factor 1 with Neutral Expression of the In-House Database
- Figure 6.22 Images that Gave the Lowest (top) and Highest 142 (bottom) Lips Detection Error for Tequal (left) and Tmin (right) Thresholds for Maximum Intensity for the WWW Database
- Figure 6.23Neutral Expression Images at Scale Factor of 1 of the In-
House Database Sorted According to the Percentage Lips
Detection Error143
- Figure 7.1 Flowchart for Finding the Number of Neurons in the 148 Hidden Layer for Lips
- Figure 7.2 Relationship between the Number of Neurons in the 149 Hidden Layer and the Mean Percentage Correct Detection
- Figure 7.3 Relationship between the Number of Neurons in the 150 Hidden Layer and the Mean Percentage Correct Detection and the Mean Squared Error for the WWW Database
- Figure 7.4 Effects of Intensity Normalisation on the Mean 153 Percentage lips Detection Error for the In-House Database
- Figure 7.5 Effects of Intensity Normalisation on the Mean 154 Percentage lips Detection Error for the WWW Database
- Figure 7.6 Effects of Scale Factor on the Percentage Lips Detection 155 Error for the In-house Database
- Figure 7.7Effect of the Facial Expression on the Percentage of Lips156Detection Error for the In-House Database
- Figure 7.8A Comparison Between the Histogram Thresholding and158MLP Neural Network for Lips Detection158
- Figure 8.1 Block Diagram of the Skin Detection Module Used by All 161 Face Detection Systems
- Figure 8.2 An Example of Skin Detection Process on the In-House 163 Database

Figure 8.3	Block Diagram of the Lips Detection Module When a Single Intensity Normalisation Method or a Single Threshold Selection Method is Used	165
Figure 8.4	Block Diagram of the Lips Detection Module When Two Intensity Normalization Methods are Used	165
Figure 8.5	Block Diagram of the Lips Detection Module When Two Threshold Selection Methods are Used	166
Figure 8.6	An Example of Lips Detection Process on the In-House Database	166
Figure 8.7	Performances of the Four Face Detection Systems on the In-house Database	168
Figure 8.8	Performances of the Four Face Detection Systems on the WWW Database	169
Figure 8.9	Effect of Scaling on the Percentage of Correct Face Detection	171
Figure 8.10	Effect of Facial Expressions on Face Detection for Different Scale Factors	172
Figure 8.11	Effect of Minor Occlusions with Glasses on the Performance of Face Detection Systems	173
Figure 8.12	Face Detection Comparisons Between Histogram Thresholding and Neural Network Systems	174
Figure 8.13	Face Detection Comparisons Between Histogram Thresholding and Neural Network Systems on Test Images	176

LIST OF ABBREVIATIONS

	the second se
CIE	Commission Internationale de l'Eclairage
EI	Error Index
EM	Expectation Maximization
FAR	False Acceptance Rate
FLD	Fisher's Linear Discrimination
FRR	False Rejection Rate
GMM	Gaussian Mixture Model
LDNN	Lips Detection Neural Network
MAP	Maximum a Posteriori
ML	Maximum Likelihood
MLP	Multi-Layer Perceptron
NSE	Non-Skin Error
PCA	Principal Component Analysis
PDF	Probability Density Function
PSE	Percentage Segmentation Error LAYSIA SABAH
RCE	Restricted Coulomb Energy
ROC	Receiver Operating Characteristics
SDNN	Skin Distinction Neural Network
SE	Skin Error
SNoW	Sparse Network of Winnows
SOM	Self-Organising Map

LIST OF SYMBOLS

T_i^c	Lower Threshold for Chrominance Component C
T_h^c	Higher Threshold for Chrominance Component C
<i>T</i> ^{<i>c</i>}	Threshold for Chrominance Component C
NE_s^J	The Number of Skin Pixels Incorrectly Classified as Non-Skin
NE_{ns}^J	The Number of Non-Skin Pixels Incorrectly Classified as Skin
%C	Percent Correct Classification
λ_s	The Mahalanobis Distance from the Vector X to the Mean
	Vector M _s
λ _{S,T}	A Standard Threshold
b St	The Blue Chrominance Component of the rgb Colour Space
B(x,y)	The Value of the Blue Chrominance Component at the x,y
	Coordinates
b(x,y)	The Value of the Normalised Blue Chrominance Component at
	the x,y Coordinates
С	A Given Chrominance Component
C1	Class 1
C_{11} and C_{22}	Correct Classification
C ₁₂	False Rejection
C2	Class 2
C ₂₁	False Acceptance
C _b	The Blue Chrominance of the YC _b C _r Colour Space.
C _{ij}	Cost Function
Cr	The Red Chrominance of the YC_bC_r Colour Space.
Cs	The Covariance Matrix of the Skin Chrominance
Cs	The Covariance Matrix Of The Skin Chrominance
fj	The Joint Probability Distribution Function

g	The Green Chrominance Component of the rgb Colour Space
G(x,y)	The Value of the Green Chrominance Component at the x,y
	Coordinates
g(x,y)	The Value of the Normalised Green Chrominance Component
	at the x,y Coordinates
g/b	The Ratio of the Green and Blue Chrominance Components of
	the rgb Colour Space.
М	The Total Number of Images in the Database
M(x,y)	Pixel at the x,y Coordinates in the Manually Segmented Image
Ms	The Mean Vector of the Skin Chrominance
Ν	Total Number of Pixels in the Image (equal to NC1 + NC2)
NC1	Number of Pixels of Class 1 in the Image
NC2	Number of Pixels of Class 2 in the Image
NCC1	Number of Class 1 Pixels Correctly Classified
NCC2	Number of Class 2 Pixels Correctly Classified
NEC1	Number of Class 1 Pixels Incorrectly Classified
NEC2	Number of Class 2 Pixels Incorrectly Classified
NEC2	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J
NEC2 N ³ N _M (x,y)	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using
NEC2 N ³ N _M (x,y)	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method
NEC2 N ³ N _M (x,y) N _P (x,y)	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using
NEC2 N ³ N _M (x,y) N _P (x,y)	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using Pixel Intensity Normalisation Method
NEC2 N ³ N _M (x,y) N _P (x,y) N _s (c)	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using Pixel Intensity Normalisation Method The Number of Skin Pixel in Colour C
NEC2 N ³ N _M (x,y) N _P (x,y) N _s (c) N _s (X)	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using Pixel Intensity Normalisation Method The Number of Skin Pixel in Colour C The Number of Skin Pixel in Colour X
NEC2 N^{3} $N_{M}(x,y)$ $N_{p}(x,y)$ $N_{s}(c)$ $N_{s}(x)$ $N_{s}'(c)$	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using Pixel Intensity Normalisation Method The Number of Skin Pixel in Colour C The Number of Skin Pixel in Colour X The Number of Non-Skin Pixel in Colour C
NEC2 N^{3} $N_{M}(x,y)$ $N_{p}(x,y)$ $N_{s}(c)$ $N_{s}(x)$ $N_{s}'(c)$ $N_{s}'(x)$	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using Pixel Intensity Normalisation Method The Number of Skin Pixel in Colour C The Number of Skin Pixel in Colour X The Number of Non-Skin Pixel in Colour C The Number of Non-Skin Pixel in Colour X
NEC2 N^{3} $N_{M}(x,y)$ $N_{p}(x,y)$ $N_{s}(c)$ $N_{s}(c)$ $N_{s}(x)$ $N_{s}'(c)$ $N_{s}'(x)$ O(x,y)	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using Pixel Intensity Normalisation Method The Number of Skin Pixel in Colour C The Number of Skin Pixel in Colour X The Number of Non-Skin Pixel in Colour X Pixel at the x,y Coordinates in the Output (Segmented) Image
NEC2 N^{3} $N_{M}(x,y)$ $N_{p}(x,y)$ $N_{s}(c)$ $N_{s}(c)$ $N_{s}'(c)$ $N_{s}'(x)$ O(x,y) P(C)	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using Pixel Intensity Normalisation Method The Number of Skin Pixel in Colour C The Number of Skin Pixel in Colour X The Number of Non-Skin Pixel in Colour C The Number of Non-Skin Pixel in Colour X Pixel at the x,y Coordinates in the Output (Segmented) Image The Probability Of Colour C Occurring In an Image.
NEC2 N^3 $N_m(x,y)$ $N_p(x,y)$ $N_s(c)$ $N_s(x)$ $Ns'(x)$ $Ns'(x)$ $O(x,y)$ $P(C)$ $P(C/S)$	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using Pixel Intensity Normalisation Method The Number of Skin Pixel in Colour C The Number of Skin Pixel in Colour X The Number of Non-Skin Pixel in Colour X Pixel at the x,y Coordinates in the Output (Segmented) Image The Probability Of Colour C Occurring In an Image. The A Priori Probability of a Pixel P(X,Y) being Skin
NEC2 N ³ N _M (x,y) N _P (x,y) N _s (c) Ns(X) Ns'(C) Ns'(X) O(x,y) P(C) P(CS)	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using Pixel Intensity Normalisation Method The Number of Skin Pixel in Colour C The Number of Skin Pixel in Colour X The Number of Non-Skin Pixel in Colour X The Number of Non-Skin Pixel in Colour X Pixel at the x,y Coordinates in the Output (Segmented) Image The Probability Of Colour C Occurring In an Image. The a Priori Probability of a Pixel P(X,Y) being Skin
NEC2 N ³ N _M (x,y) N _P (x,y) N _s (c) Ns(X) Ns'(C) Ns'(X) O(x,y) P(C) P(CS) P(S/C)	Number of Class 2 Pixels Incorrectly Classified The Number of Pixels in Image J Pixel at the x,y Coordinates in the Normalised Image using Maximum Intensity Normalisation Method Pixel at the x,y Coordinates in the Normalised Image using Pixel Intensity Normalisation Method The Number of Skin Pixel in Colour C The Number of Skin Pixel in Colour X The Number of Non-Skin Pixel in Colour X Pixel at the x,y Coordinates in the Output (Segmented) Image The Probability Of Colour C Occurring In an Image. The a Priori Probability of a Pixel P(X,Y) being Skin The Estimated Skin Probability