DEVELOPMENT AND REAL TIME CONTROL OF AN ARM FOR PATIENT ASSISTANCE FOR LIFTING MOBILITY ROBOT (PALMBOT)

MURALINDRAN MARIAPPAN

PERPUSTAYAAN UNIVERSITI MALAYSIA SABAH

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY UNIVERSITI MALAYSIA SABAH 2008

UNIVERSITI MALAYSIA SABAH

BORANG PENGESAHAN STATUS TESIS[®]

JUDUL : DEVELOPMENT AND REAL TIME CONTROL OF AN ARM FOR PATIENT ASSISTANCE FOR LIFTING MOBILITY ROBOT (PALMBOT)

IJAZAH : Doktor Falsafah (Robotik)

SESSI PENGAJIAN : 2004 – 2008

Saya **MURALINDRAN MARIAPPAN** mengaku membenarkan tesis sarjana ini disimpan di Perpustakaan Universiti Malaysia Sabah dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hak milik Universiti Malaysia Sabah
- 2. Perpustakaan Universiti Malaysia Sabah dibenarkan membuat salinan untuk tujuan pengajian sahaja
- 3. Perp<mark>ustakaa</mark>n dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi
- 4. TIDAK TERHAD

PERPUSTAKAAN UNVERSITI MALAYSIA SABAHSIA SABAH Disahkan oleh MURALINDRAN MARIAPPAN) (TANDATANGAN PUSTAKAWAN)

Tarikh: 11 July 2008

PENYELIA: PROF. MADYA DR. ALI CHEKIMA

Tarikh: 11 July 2008

CATATAN: ^(a) Tesis dimaksudkan sebagai tesis Ijazah Doktor Falsafah dan Sarjana secara penyelidikan atau disertasi bagi pengajian secara kerja khusus dan penyelidikan, atau Laporan Projek Sarjana Muda (LPSM).

DECLARATION

This thesis is the result of my own work with the exception of quotations, excerpts, summaries and references, the sources which have been duly acknowledged.

17 July 2008

MURALINDRAN MARIAPPAN PS04-008-009

PERPUSTAKAAN UNIVERSITI MALAYSIA SABAH

CERTIFICATION

TITLE : DEVELOPMENT AND REAL TIME CONTROL OF AN ARM FOR PATIENT ASSISTANCE FOR LIFTING MOBILITY ROBOT (PALMBOT)

DEGREE

: DOCTOR OF PHILOSOPHY (ROBOTICS)

DATE OF VIVA

: 27 JUNE 2008

DECLARED BY

1. SUPERVISOR: Assoc. Professor Dr. Ali Chekima

2. EXTERNAL SUPERVISOR:

Professor Dr. Nagarajan Ramachandran

ACKNOWLEDGMENT

Thank you GOD, the Almighty.

I would like to express my unlimited appreciation to Prof. Dr. R. Nagarajan, Assoc. Prof. Dr. Ali Chekima and Prof. Dr. Sazali Yaacob for their valuable supervision and guidance in the research and preparation of this thesis. They provided me with great opportunity and allowed me to go in depth in the applications of areas of robotics, control, sensors, neural network and fuzzy logic. Their consistent motivation and encouragement allowed me to perform better and to unleash my capabilities in my areas, especially in the field related to this thesis.

I would like to express my gratitude to the 1st Vice Chancellor of University Malaysia Sabah, Tan Sri Prof. Datuk Seri Panglima Dr. Abu Hassan Othman and the 2nd Vice Chancellor, Prof. Datuk Dr. Mohd. Noh Dalimin and the current Vice Chancellor, Lt. Kol. Prof. Datuk Dr. Kamaruzaman Hj. Ampon for their permission to carryout this research.

I would also thank Dr. Goh Kim Huat and his team in Niche Frontiere Sdn. Bhd., Ipoh for their dedication and commitment in assisting me in the development of the PALMBOT single arm prototype.

I would like to express my sincere thanks especially to my co-researcher; Ms. Renee Chin Ka Yin, Dr. Mohd. Yunus Hamid, the lecturers and support staff from the School of Engineering & Information Technology and to all the staff of UMS for their kind cooperation in providing moral support during my research.

I would also like to express my sincere gratitude to my colleagues, Mr. M. Karthigayan, Ms. Bamini KPD Balakrishnan, Mr. U. Thangamani, Ms. Vani Annamala, Mr. Hew Yoon Fah and others whom are not mentioned here for their friendly cooperation.

I am grateful to both of my parents Mdm. R. Kamalam and late Mr. A. Mariappan and also my siblings Vijandran, Ravinthran and Uma Devi for all their love, continuous support, patience and encouragement in completing this research work.

ABSTRACT

DEVELOPMENT AND REAL TIME CONTROL OF AN ARM FOR PATIENT ASSISTANCE FOR LIFTING MOBILITY ROBOT (PALMBOT)

The dawn of medical robots for hospital applications has enormously enhanced the services rendered to the patients. The medical robots, spanning from surgical to rehabilitation, provide their support not only to the doctors but to the patients as well. In spite of such advancement, some major health hazards still exist for the hospital nurses. Lifting and moving the patients in hospitals are the usual duties of nurses. Injuries and backache occur while they frequently lift the unconscious, uncooperating or immobile patients. This research highlights on the development of a single prototype arm of a Patient Assistance for Lifting Mobility Robot (PALMBOT) as an effort in order to resolve this problem. Fieldwork conducted in Queen Elizabeth Hospital and Nursing Training College, Kota Kinabalu reveals that 83.9% of nurses have backache and back injuries due to patient handling. Observations on lifting techniques and hospital specifications were used to conceive the PALMBOT. The PALMBOT is a semi-automatic robot designed especially to assist nurses to perform lifting and transferring patients to different locations, thereby reducing the chances of nurses getting injured during these tasks. The three arms of the PALMBOT, which perform the automatic patient loading and unloading process, use a set of open end conveyor systems. Since safety is a primary concern of the PALMBOT, Artificial Intelligence (AI) was incorporated in developing various sensing and control modules. Neural network was employed for the detection and execution systems which consist of Patient Position Tracking System (PPTS), Danger Monitoring System (DMS), Automatic Procedure Sequencing System (APSS) and Fail Safe and Automatic Recovery System (FSARS). The intricacy faced in maintaining the tension of the conveyor was resolved by using fuzzy logic in the Conveyor Tension Control System. A prototype single PALMBOT arm was fabricated. All the hardware and software modules are interconnected by using several tools such as MATLAB, EPOS Position Control and MPLAB® IDE PIC C working on the LABVIEW V8.0 as a common platform. The PALMBOT system is tested by a set of experiments and by simulated studies and found to be demonstrating an acceptable performance. It is envisaged that the PALMBOT is a very useful addition to the modern hospital facilities.

ABSTRAK

Robot perubatan bagi aplikasi hospital telah banyak meningkatkan perkhidmatan yang diberikan kepada pesakit. Robot perubatan bukan sahaja memberikan bantuan kepada para doktor malah kepada para pesakit juga iaitu dari segi pembedahan hingga pemulihan. Walaupun maju, masalah kesihatan yang penting masih wujud bagi jururawat hospital. Mengangkat dan mengalihkan pesakit di hospital adalah tugas seharian bagi jururawat tetapi kecederaan dan sakit belakang wujud semasa kerap mengangkat pesakit yang tidak sedar, tidak bekerjasama dan pesakit yang tidak boleh bergerak. Penyelidikan ini menonjolkan perkembangan satu lengan prototaip bagi robot bantuan mengangkat pesakit kuramg upaya pergerakan (PALMBOT) bagi menyelesaikan masalah ini. Kerja lapangan yang telah dilakukan di Hospital Queen Elizabeth dan di Kolej Latihan Kejururawatan, Kota Kinabalu menunjukkan bahawa 83.9% daripada jururawat mengalami sakit belakang serta kecederaan yang disebabkan oleh pengendalian pesakit. Pemerhatian pelbagai teknik mengangkat pesakit dan spesifikasi hospital digunakan bagi merekacipta PALMBOT. PALMBOT adalah robot semi-automatik yang direkacipta khas untuk membantu jururawat mengangkat dan memindahkan pesakit ke lokasi yang lain, secara langsung mengurangkan kebarangkalian jururawat mendapat kecederaan semasa melakukan tugas tersebut. Tiga lengan PALMBOT yang melakukan proses memuat dan memunggah pesakit secara automatik menggunakan satu set sistem konvevor terbuka. Oleh kerana keselamatan adalah kebimbangan utama bagi PALMBOT, kecerdikan buatan (AI) telah disertakan dalam pembangunan pelbagai modul pengesan dan k<mark>awalan.</mark> Rangkaian neural telah digunakan bagi mengesan dan mengendalikan sistem yang mengandungi sistem pengesan posisi pesakit, sistem memantau bahaya, sistem procedur urutan otomatik dan sistem gagal selamat dan pemulihan otomatik. Masalah rumit dalam mengekalkan ketengangan pada konvevor diselesaikan dengan menggunakan logik fuzzy dalam sistem kawalan ketegangan konveyor. Satu lengan prototaip PALMBOT telah dihasilkan. Semua modul perkakasan dan perisian disatukan dengan menggunakan pelbagai alat perisian seperti MATLAB, EPOS Position Control dan MPLAB® IDE PIC C yang bekerja diatas pentas umum LABVIEW V8.0. Data simulasi dan eksperimen telah diuji pada sistem PALMBOT dan prestasinya adalah memuaskan. Adalah dibayangkan bahawa PALMBOT akan meniadi sangat berguna sebagai kemudahan hospital moden.

CONTENTS

		Page
TITLE		i
DECLARATI	ON	ii
CERTIFICAT	ION	111
ACKNOWLE	DGEMENT	iv
ABSTRACT		V
ABSTRAK		vi
CONTENTS		vii
LIST OF TAB	BLES	xi
LIST OF FIG	URES	xiv
LIST OF ABE	BREVIATIONS	xx
LIST OF SYN	1BOLS	xxii
CHAPTER 1:	INTRODUCTION	1
1.1 1.2 1.3 1.4 1.5 1.6	ROBOTS MEDICAL ROBOTS REHABILITATION AND SERVICE ROBOTS PATIENT LIFTING AND TRANSFER ROBOT ARTIFICIAL INTELLIGENCE IN ROBOTICS RESEARCH MOTIVATION 1.6.1 Nursing Problems and Back Injuries a. Body Mechanics b. Lifting Techniques RESEARCH OBJECTIVES THESIS ORGANIZATION	1 2 4 9 12 15 15 16 16 16 18 18
CHAPTER 2:	FIELD WORK AND STATISTICAL FINDINGS	22
2.1 2.2 2.3 2.4 2.5 2.6 2.7	INTRODUCTION FIELD WORK OBSERVED PROBLEMS IN PATIENT HANDLING INTERVIEWS AND INFORMAL FINDINGS 2.4.1 Manpower Shortage 2.4.2 Overcrowded Wards 2.4.3 Utilizing PALMBOT in Hospitals PATIENT LIFTING TECHNIQUES HOSPITAL BED AND STRETCHER DIMENSIONS STATISTICAL ANALYSIS 2.7.1 Descriptive Statistics	22 23 24 25 25 26 26 26 26 28 30 31

		 2.7.2 Linear Regressions Analysis a. Regression Analysis for Relationship Between Nurse's Experiencing Back Injury and Interference 	34
		with Their Ability to Work b. Regression Analysis for Relationship Between Nurse's Experiencing Back Discomfort and	35
	2.8 2.9	Interference with Their Ability to Work DESIGN AND DEVELOPMENT TARGET DEFINITION CONCLUSION	36 37 38
СНАРТІ	ER 3:	PALMBOT DESIGN AND ARCHITECTURE	39
	3.1	INTRODUCTION	39
	3.2	CONCEPTUAL DESIGN	40
		3.2.1 Available Devices	40
	2 2	3.2.2 PALMBOT – Prototype Design and Dimension	44
	3.3	3.3.1 Sensor Integration	49
		3.3.2 Artificial Intelligence System	55
		3.3.3 Control System	57
	3.4	SOFTWARE REQUIREMENT	60
	3.5	CONCLUSION	61
СНАРТІ	ER 4:	PATIENT TRANSFER MECHANISM & SAFETY	62
	4.1		62
	4.2	4.2.1 Pre-Transfer Motion	62
		4.2.2 Patient Loading	64
		4.2.3 Patient Unloading	66
	4.3	MEDICALLY SAFE PALMBOT	69
		4.3.1 Design Challenges and Strategies	70
		a. Human Factor b. Clinical Constrains	70
		c. Redundancy	71
		d. Limited Operation	71
		4.3.2 Safety Rules	71
	4.4	CONCLUSION	76
СНАРТЕ	R 5:	PALMBOT PROTOTYPE ARM DEVELOPMENT	77
	5 1	INTRODUCTION	77
	5.2	PALMBOT PROTOTYPE ARM DESIGN, DIMENSIONS AND	
		CONTROL	80
		5.2.1 Base Platform	82
	E 2	5.2.2 Telescopic Extension Arm	84
	5.3	5 3 1 Patient Position Tracking System	88
		5.3.2 Patient Proximity Detection System	94
		5.3.3 PALMBOT Arm Limit Detection System	95

	5.4	5.3.4 Conveyor End Detection System CONCLUSION	96 97
СНАРТЕ	R 6:	ARTIFICIAL INTELLIGENCE & PALMBOT SOFTWARE STRUCTURE	98
	6.1 6.2	INTRODUCTION ARTIFICIAL INTELLIGENCE COMPONENTS IN PALMBOT 6.2.1 Neural Network 6.2.2 Fuzzy Logic	98 99 99 103
	6.3	 PALMBOT AI ARCHITECTURE AND CONTROL 6.3.1 Necessity for AI Detection System 6.3.2 Necessity for AI Execution System 6.3.3 Necessity for Conveyor Tension Control System 	105 107 109 110
	6.4	 PALMBOT SOFTWARE AND HUMAN MACHINE INTERFACE (HMI) 6.4.1 LABVIEW Programming 6.4.2 MPLAB IDE PIC C Programming 6.4.3 MATLAB Integration Programming 6.4.4 Epos Positioning Controller Programming 6.4.5 PALMBOT Guided User Interface (GUI) 	110 111 112 113 113
CHADTE	6.5	CONCLUSION	114
СПАРТ	:R 7:	PALMBOT DETECTION SYSTEM	116
	7.1 7.2	INTRODUCTION PATIENT POSITION TRACKING SYSTEM (PPTS) 7.2.1 Position Tracking Classification 7.2.2 Data Processing and Modeling 7.2.3 Application of Neural Network in PPTS 7.2.4 Training of PPTS Neural Network 7.2.5 Performance of PPTS Neural Network	116 116 120 122 125 126 126
	7.3	 DANGER MONITORING SYSTEM (DMS) 7.3.1 Data Processing and Modeling 7.3.2 Application of Neural Network in DMS 7.3.3 Training of DMS Neural Network 7.3.4 Performance of DMS Neural Network 	128 130 135 135 136
	7.4	EXPERIMENTAL RESULTS 7.4.1 Data Pre-Processing & Architecture 7.4.2 Training Of Neural Network 7.4.3 Performance Of Neural Network	137 137 138 139
	7.5	CONCLUSION	141
СНАРТІ	ER 8:	PALMBOT EXECUTION SYSTEM	142
	8.1 8.2	INTRODUCTION AUTOMATIC PROCEDURE SEQUENCING SYSTEM (APSS) 8.2.1 Automatic Loading and Unloading Sequences a. Loading Sequences b. Unloading Sequences 8.2.2 Conveyor Belt Length Management	142 143 144 144 147 150

8	.3	 8.2.3 Data Modeling for APSS 8.2.4 Application of Neural Network in APSS 8.2.5 Training and Performance of APSS Neural Network FAIL SAFE AND AUTOMATIC RECOVERY SYSTEM (FSARS) 8.3.1 Unsafe Conditions During Automatic Sequences 8.3.2 Data Modeling for FSARS 8.3.3 Application of Neural Network In FSARS 	152 154 156 157 160 163 169
8	3.4	8.3.4 Training and Performance Of FSARS Neural Network CONCLUSION	170 172
CHAPTER	9:	CONVEYOR TENSION CONTROL SYSTEM	173
9).1).2	INTRODUCTION CONVEYOR TENSION CONTROL SYSTEM (CTCS) 9.2.1 Conveyor Tension Management 9.2.2 Conveyor Tension Measurement 9.2.3 Conveyor Motion Analysis	173 173 176 177 179
9	.3	APPLICATION OF FUZZY LOGIC IN CTCS	183
9	.4	PERFORMANCE OF CTCS FUZZY LOGIC	185
9	0.6	CONCLUSION	190
CHAPTER	10:	CONCLUSION	193
1 1	.0.1 .0.2	RESEARCH SUMMARY FUTURE RESEARCH	193 195
REFEREN	CES		107
		UNIVERSITI MALAYSIA SABAH	197
APPENDI	XA	Nursing Questionnaire	206
APPENDI	ХB	NI USB-6009 Specification	211
APPENDI	XC	PPTS Circuit Diagram	214
APPENDI	XD	LABVIEW Program Flow Chart and Coding	215
APPENDI	XE	MPLAB PIC C Program Flow Chart and Coding	225
APPENDI	XF	Guided User Interface	238
APPENDI	XG	DMS Full Listing and Generated Data	239
APPENDI	ХН	Automatic Procedure Sequencing Flow Chart	243
APPENDI	XI	FSARS Full Listing and Generated Data	245
APPENDI	X J	List of Papers Derived from this Thesis	247

LIST OF TABLES

		Page
Table 2.1	Type 1, 2 and 3 Stretcher	29
Table 2.2	Type 1 and Type 2 Bed	29
Table 2.3	Descriptive Statistics (Nurses Background)	31
Table 2.4	Injury by Lifting Patients	32
Table 2.5	Injury Reported	32
Table 2.6	Nurses Experiencing Back Injury	33
Table 2.7	Nurses Experiencing Back Discomfort	34
Table 2.8	Interference of Back Injury in their Work Ability	34
Table 2.9	Regression Analysis of R and R ² values for Relationship between Nurse's Experiencing Back Injury and Interference with Their Ability to Work	35
Table 2.10	Regression Analysis of Beta Coefficient, t-Value and P-value for Relationship between Nurse's Experiencing Back Injury and Interference with Their Ability to Work	36
Table 2.11	Regression Analysis of R and R ² values for Relationship between Nurse's Experiencing Back Discomfort and Interference with Their Ability to Work	36
Table 2.12	Regression Analysis of Beta Coefficient, t-value and p-value for Relationship between Nurse's Experiencing Back Discomfort and Interference with Their Ability to Work	37
Table 3.1	Dimensions of PALMBOT and Hospital Bed	48
Table 5.1	Sensor Transfer Data Format for the PIC Module	91
Table 5.2	Sensor Array Data Format	92
Table 5.3	Sample Data Analysis	93
Table 7.1	Content of the Simulated Database	124
Table 7.2	PPTS Neural Network Configuration	125
Table 7.3	Number of Data Used for the Training the Network	126
Table 7.4	Convergence Performance with Respect to Various Configuration of NN	128
Table 7.5	The Inputs and Outputs for the Danger Monitoring Module due to Software Error	131

Table 7.6	The Inputs and Outputs for the Danger Monitoring Module for Hardware Errors	133
Table 7.7	The Inputs and Outputs for the Danger Monitoring Module for Unlikely Errors	134
Table 7.8	Network Configuration for the Danger Monitoring Neural Network	135
Table 7.9	Content of the Simulated Database	136
Table 8.1	Conveyor Belt Length Usage during Loading Process	151
Table 8.2	Conveyor Belt Length Usage during Unloading Process	152
Table 8.3	Inputs and Outputs for the Automatic Loading Procedures System	153
Table 8.4	Inputs and Outputs for the Automatic Unloading Procedures System	154
Table 8.5	Network Configuration for the Automatic Loading Procedure Neural Network	155
Table 8.6	Configuration for the Automatic Unloading Procedure Neural Network	156
Table 8.7	In <mark>puts and</mark> Outputs when Bottom Conveyor Stuck during Conveyor Sequence L1	164
Table 8.8	Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence L2	164
Table 8.9	Inputs and Outputs when Top Conveyor Stuck during Conveyor Sequence L2	165
Table 8.10	Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence L3	165
Table 8.11	Inputs and Outputs when Top Conveyor Stuck during Conveyor Sequence L3	165
Table 8.12	Inputs and Outputs when Top Conveyor Stuck during Conveyor Sequence U1	166
Table 8.13	Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence U1	167
Table 8.14	Inputs and Outputs when Top Conveyor Stuck during Conveyor Sequence U2	167
Table 8.15	Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence U2	168

Table 8.16	Inputs and Outputs when Bottom Conveyor Stuck during Conveyor Sequence U3	168
Table 8.17	Inputs and Outputs when Top Conveyor Stuck during Conveyor Sequence U4	169
Table 8.18	Network Configuration for FSARS Automatic Loading Procedure Neural Network	170
Table 8.19	Network Configuration for FSARS Automatic Unloading Procedure Neural Network	170
Table 9.1	Conveyor Motors and Extension Arm Motions for Each Sequence	177
Table 9.2	Patient Weight & Current Range for the PALMBOT Fuzzy CTCS	187
Table 9.3	Fuzzy Rules for Conveyor Rolling	189
Table 9.4	Fuzzy Rules for Conveyor Releasing	189

LIST OF FIGURES

		Page
Figure 1.1	Terrain Exploratory Robot	1
Figure 1.2	ASIMO – Humanoid Robot	1
Figure 1.3	Arm Rehabilitation Robot	3
Figure 1.4	Surgical Robot	3
Figure 1.5	Pyxis HelpMate Service Robot	5
Figure 1.6	Robocart Service Robot	5
Figure 1.7	HelpMate Robot used in various Applications	5
Figure 1.8	Fujitsu's Service Robot and Robot Pets	6
Figure 1.9	Nursebot	6
Figure 1.10	The DeVAR Workstation	7
Figure 1.11	Wheelchair developed at CALL Centre	8
Figure 1.12	Intelligent Wheelchair Maid	8
Figure 1.13	Bionic Arm	8
Figure 1.14	Patient Lifting Arm for the Nursing Care Robot	10
Figure 1.15	Patient Care Robot – Trial Version	11
Figure 1.16	Humanoid Patient Lifting Robot	12
Figure 1.17	Lateral Transferring of Patient	17
Figure 1.18	Available Patient Transfer Devices in the Market	17
Figure 1.19	Lateral Transfer Using Available Equipment	18
Figure 2.1	Australian Lift	27
Figure 2.2	Orthodox Lift	27
Figure 2.3	3-Man Lift Technique	27
Figure 2.4	Type 1 and 2 Stretchers	29
Figure 2.5	Type 3 Stretcher	29
Figure 2.6	Type 1 Bed	30
Figure 2.7	Type 2 Bed	30
Figure 3.1	Manual Transferring of Patients – Proven Hazardous	40

Figure 3.2	Lateral Patient Transfer System	41
Figure 3.3	Easy Pivot EP-82	41
Figure 3.4	Patient-Transfer Device	42
Figure 3.5	"No-Lift" BOOSTER™	42
Figure 3.6	"No-Lift" TURNER	42
Figure 3.7	TOTALIFT-II – Flexibility of TOTALIFT_II and a Patient is transferred from bed to the device	44
Figure 3.8	Three-dimensional View of PALMBOT	44
Figure 3.9	The Front View and the Side View of PALMBOT	45
Figure 3.10	PALMBOT Deployed into Wheelchair Position	45
Figure 3.11	PALMBOT Arm Functioning	46
Figure 3.12	Top View of the PALMBOT with Dimensions	47
Figure 3.13	Patients Body Positions on the PALMBOT	47
Figure 3.14	PALMBOT Front View Dimensions	48
Figure 3.15	PALMBOT Side View Dimensions	49
Figure 3.16	Software and Control System Overview	51
Figure 3.17	PALMBOT Sensor System	52
Figure 3.18	Sensor Module Locations on the PALMBOT VSIA SABAH	53
Figure 3.19	Placements of the Proximity Sensors for Patient Collision Avoidance	54
Figure 3.20	NI USB data Acquisition Module	55
Figure 3.21	PALMBOT with AI System Modules	56
Figure 3.22	AI System Modules Connectivity	57
Figure 3.23	EPOS Position Controller Circuit Diagram	58
Figure 3.24	EPOS Position Controller, 24 DC Power Supply and Motors	59
Figure 4.1	The PALMBOT in HOME Position	63
Figure 4.2	The PALMBOT with Arm Lifted	63
Figure 4.3	PALMBOT when Aligned to the Bed	63
Figure 4.4	PALMBOT with Arm Lowered onto the Bed	64
Figure 4.5	The PALMBOT Arm Approaching the Patient	65

Figure 4.6	The PALMBOT Arm Extension Moves Between Patient and Mattress	65
Figure 4.7	Patient Rolled to the Middle of the PALMBOT Extension Arm and Ready to be Retracted	65
Figure 4.8	PALMBOT Arm Fully Retracted	65
Figure 4.9	The PALMBOT Arm Lifted	66
Figure 4.10	PALMBOT Moved Away from the Bed	66
Figure 4.11	PALMBOT Alongside of the Bed	66
Figure 4.12	PALMBOT Approaching the Bed	67
Figure 4.13	PALMBOT Extension Arm is Lowered onto the Bed	67
Figure 4.14	PALMBOT Extends the Arm to its Maximum Length	67
Figure 4.15	Patient is Moved to the Edge of the Arm	68
Figure 4.16	Patient Comes into Contact with the Bed	68
Figure 4.17	PALMBOT Arm Retracts Transferring Patient onto the Bed	68
Figure 4.18	Patient is Completely Transferred onto the Bed	68
Figure 4.19	PALMBOT Arm Lifted from the Bed	69
Figure 4.20	PALMBOT is Moved Away from the Bed	69
Figure 4.21	Watchdog Operating Principle	74
Figure 4.22	Power Line Separation Wiring Diagram	75
Figure 5.1	Patient Transfer using Available Equipment	78
Figure 5.2	Hazardous Lateral Patient Transfer using Available Equipment	78
Figure 5.3	Autonomous Patient Loading by PALMBOT	79
Figure 5.4	Top View of PALMBOT Arm	80
Figure 5.5	Developed Prototype PALMBOT Arm	81
Figure 5.6	Assembled View of PALMBOT Arm	81
Figure 5.7	Close up View of Belt Take-up Drum with Conveyor Belt	82
Figure 5.8	Rear View of Base Platform	83
Figure 5.9	Drive Pulley System	84
Figure 5.10	Top and Bottom Conveyor Motors	84
Figure 5.11	Front View of the Fabricated Telescopic Extension Arm	85

Figure 5.12	Top View and Side View of PALMBOT Telescopic Extension Arm	85
Figure 5.13	Bottom View of PALMBOT Arm	86
Figure 5.14	Rollers on the PALMBOT Telescopic Extension Arm	87
Figure 5.15	Bottom View of Developed PALMBOT Arm	88
Figure 5.16	Top View of 16 by 16 Sensor Array	89
Figure 5.17	Bottom View of 16 by 16 Sensor Array	89
Figure 5.18	The PALMBOT PPTS System Module (Schematic)	90
Figure 5.19	The PALMBOT PPTS System Module	90
Figure 5.20	Real Time Data Acquired from PPTS Module	93
Figure 5.21	KEYENCE PS2-61P photoelectric sensor used for proximity detection	94
Figure 5.22	KEYENCE PS2-61P photoelectric sensor dimensions	94
Figure 5.23	Close-up View of Arm Limit Detection Sensor	95
Figure 5.24	Maximum Arm Limit and Minimum Arm Limit Detection Sensor	96
Figure 5.25	Dimensions of SUNX CX 422 Sensor	96
Figure 5.26	Conveyor End Detection Sensor	97
Figure 6.1	Neuron Forming a Chemical Synapse	99
Figure 6.2	Neuron Model	100
Figure 6.3	A Typical Feed-Forward Network Structure	101
Figure 6.4	Net Input Function for a Neuron	102
Figure 6.5	PALMBOT Manual and Automatic Operations	106
Figure 6.6	AI Module System for PALMBOT	107
Figure 6.7	PALMBOT Software Structure	111
Figure 6.8	PALMBOT Graphical User Interface (GUI) using LABVIEW V8.0	114
Figure 7.1	Components of PPTS in the PALMBOT	117
Figure 7.2	Sensor Arrays Layout on the Arm of the PALMBOT	117
Figure 7.3	Sensor Tracking for Patient for Un-Split Head Section	118
Figure 7.4	Sensor Tracking for Patient for Split Head Section	119
Figure 7.5	Data Flow from the Array Sensors to the Computer	120

Figure 7.6	Patient of the height of 1.80 m on the Arm of PALMBOT	122
Figure 7.7	Data Flow of the Patient Position Tracking System	123
Figure 7.8	The Pre-Processing of the Sensor Data	125
Figure 7.9	Training Performance of the Position Tracking NN	127
Figure 7.10	The Input and Output of the Danger Monitoring System	129
Figure 7.11	Training Graph of the Danger Monitoring Neural Network	136
Figure 7.12	Developed Single PALMBOT Arm Prototype	137
Figure 7.13	Neural Network Model for Single PALMBOT Arm PPTS	138
Figure 7.14	Experimental Object with Prototype PALMBOT Arm	138
Figure 7.15	Mean Square Error Vs. Epoch for Position Tracking Neural Network	140
Figure 7.16	Object in 'Waiting' State	140
Figure 7.17	Object in 'In Progress' State	140
Figure 7.18	Object in 'Home' State	141
Figure 8.1	Data Flow of the Automatic Procedure Sequencing System	143
Figure 8.2	PALMBOT Arm is ready for Automatic Loading	145
Figure 8.3	PALMBOT Arm Approaching Patient for Loading	145
Figure 8.4	PALMBOT Arm Loading Patient: TI MALAYSIA SABAH	146
Figure 8.5	Positioning Patient in the Middle of PALMBOT Telescopic Arm	146
Figure 8.6	PALMBOT Arm is Fully Retracted	147
Figure 8.7	PALMBOT Arm is ready for Automatic Unloading	148
Figure 8.8	PALMBOT Telescopic Arm Moved to Maximum Length	148
Figure 8.9	Patient Moved to the Edge of the Hospital Bed	149
Figure 8.10	Patient Transferred to the Hospital Bed	149
Figure 8.11	PALMBOT Arm is Fully Retracted	150
Figure 8.12	Training Graph Response of the Automatic Loading Procedure NN	157
Figure 8.13	Training Graph Response of the Automatic Unloading Procedure NN	157
Figure 8.14	Fail Safe & Automatic Recovery Stages for Loading & Unloading Sequences	158

Figure 8.15	Data Flow of the Fail Safe & Automatic Recovery System	159
Figure 8.16	Training Graph of the FSARS for Automatic Loading Procedure NN	171
Figure 8.17	Training Graph of the FSARS for Automatic Unloading Procedure NN	172
Figure 9.1	Constant radius on belt take-up drum for close end conveyor system and varying radius on belt take-up drum for open end conveyor system	174
Figure 9.2	Measurement of Tension using Available Belt tension meter	177
Figure 9.3	Varying length of the mid point for the open end conveyor system	178
Figure 9.4	Effects of Tension over the Releasing Conveyor Motor	180
Figure 9.5	Effects of Tension over the Rolling Conveyor Motor	180
Figure 9.6	Effects of Tension over the Rolling Conveyor Motor with Load	181
Figure 9.7	Rear portion of Tension over the Rolling Conveyor Motor with Load	182
Figure 9.8	Fuzzy Rule Base Processing Sequence for PALMBOT CTCS	184
Figure 9.9	Single PALMBOT Arm CTCS using Fuzzy Logic	184
Figure 9.10	Input Membership Function for Top Conveyor Motor Rolling & Releasing	185
Figure 9.11	Input Membership Function for Bottom Conveyor Motor Rolling & Releasing	186
Figure 9.12	Conveyor Motor Position for Top and Bottom Conveyor Take- Up drum	186
Figure 9.13	Output Membership Function for Conveyor Rolling & Releasing	188
Figure 9.14	Rule Diagram for Conveyor Releasing	189
Figure 9.15	Rule Diagram for Conveyor Rolling	190
Figure 9.16	3D Output Plot for Conveyor Releasing during Loading Sequence 1	191

LIST OF ABBREVIATIONS

AGV	Automated Guided Vehicles
AI	Artificial Intelligence
APSS	Automatic Procedure Sequencing System
CALL	Communication Aid for Language and Learning
CAN	Control Area Network
Conv.	Conveyor
CS	Conveyor Sequence
CTCS	Conveyor Tension Control System
DARPA	Defense Advance Research Projects Agency
DMS	Danger Monitoring System
DOF	Degree of Freedom
EP	Electronic Personality
FL II	Fuzzy Logic
FR S	Fail Recovery
FSARS	Fail Safe and Automatic Recovery System
GUI	Graphical User Interface
HEX	Hexadecimal UNIVERSITI MALAYSIA SABAH
HMI	Human Machine Interface
I/O	Input Output
KS	Korean Industrial Standards
L	Load / Loading
LABVIEW	Laboratory Virtual Engineering Workbench
MAid	Mobility Aid for Elderly and Disabled People
MEL	Mechanical Engineering Laboratory
MSE	Mean-Square Error
NEDO	New Energy & Industrial Technology Development
	Organization
NGI	Next Generation Internet
NIOSH	National Institute for Occupational Safety and Health
NN	Neural Networks
PALMBOT	Patience Assistance for Lifting Mobility Robot

PIC	Peripheral Interface Controller
PPTS	Patient Position Tracking System
RPM	Revolution Per Minute
Seq.	Sequence
SIU	Spinal Injury Unit
SPSS	Statistical Package for Social Science
STRIPS	Stanford Research Institute Problem Solver
U	Unload / Unloading
VIs	Virtual Instruments

LIST OF SYMBOLS

- Kgf Kilogram Force
- N Number of Samples
- u(.) Net value
- f(.) Activation function / Threshold function

CHAPTER 1

INTRODUCTION

1.1 ROBOTS

The first robot, Ternstedt Unimate used by General Motors is a programmable machine that operated totally independent of human presence appeared in 1961 four decades after Karl Cepek coined the word 'robot' (Steven, 2002). Since then, these robots were effectively seen as a potential solution in any work settings of "3D": Dirty, Dangerous and Dull. This definition changed along time as the application flourished due to the technological advancement. From its industrial origin, robots have now spanned into many areas from sea to space. Figure 1.1 and Figure 1.2 show a planet terrain exploratory robot and humanoid robot respectively. A significant contributing factor to this increased use is the robot's ability to dynamically interact with its environment in a precise manner (Preising *et al.*, 1991).

Figure 1.1: Terrain Exploratory Robot

Figure 1.2: ASIMO – Humanoid Robot

Although Capek introduced the term 'robot', the word 'robotics' was pioneered by Isaac Asimov in 1942 (James, 1999). He underlined three fundamental laws of robotics to ensure that robots are built with safety measures in mind to assist human beings. These laws have been further added and made clear that in any basic engineering design, the robot should obey the laws in order to preserve mankind and